ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules

Cite this: J. Chem. Inf. Comput. Sci. 1988, 28, 1, 31–36
Publication Date (Print):February 1, 1988
https://doi.org/10.1021/ci00057a005
    ACS Legacy Archive

    Article Views

    11300

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (732 KB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 3675 publications.

    1. Mehdi Paykan Heyrati, Zahra Ghorbanali, Mohammad Akbari, Ghasem Pishgahi, Fatemeh Zare-Mirakabad. BioAct-Het: A Heterogeneous Siamese Neural Network for Bioactivity Prediction Using Novel Bioactivity Representation. ACS Omega 2023, 8 (47) , 44757-44772. https://doi.org/10.1021/acsomega.3c05778
    2. Babak Mahjour, Andrew McGrath, Andrew Outlaw, Ruheng Zhao, Charles Zhang, Tim Cernak. Interactive Python Notebook Modules for Chemoinformatics in Medicinal Chemistry. Journal of Chemical Education 2023, Article ASAP.
    3. Xuechen Tang, Janik Kokot, Franz Waibl, Monica L. Fernández-Quintero, Anna S. Kamenik, Klaus R. Liedl. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. Journal of Chemical Information and Modeling 2023, 63 (22) , 7107-7123. https://doi.org/10.1021/acs.jcim.3c01123
    4. Vidushi Sharma, Maxwell Giammona, Dmitry Zubarev, Andy Tek, Khanh Nugyuen, Linda Sundberg, Daniele Congiu, Young-Hye La. Formulation Graphs for Mapping Structure-Composition of Battery Electrolytes to Device Performance. Journal of Chemical Information and Modeling 2023, 63 (22) , 6998-7010. https://doi.org/10.1021/acs.jcim.3c01030
    5. Huaqiang Wen, Shihao Nan, Di Wu, Quanhu Sun, Yu Tong, Jun Zhang, Saimeng Jin, Weifeng Shen. A Systematic Review on Intensifications of Artificial Intelligence Assisted Green Solvent Development. Industrial & Engineering Chemistry Research 2023, Article ASAP.
    6. Haripriyan Uthayakumar, Rahul Krishna K, Raj Jain, Rajnish Kumar, Tarak K. Patra. QRChEM: A Deep Learning Framework for Materials Property Prediction and Design Using QR Codes. ACS Engineering Au 2023, Article ASAP.
    7. Hiroaki Iwata, Taichi Nakai, Takuto Koyama, Shigeyuki Matsumoto, Ryosuke Kojima, Yasushi Okuno. VGAE-MCTS: A New Molecular Generative Model Combining the Variational Graph Auto-Encoder and Monte Carlo Tree Search. Journal of Chemical Information and Modeling 2023, Article ASAP.
    8. Xuelian Jia, Tong Wang, Hao Zhu. Advancing Computational Toxicology by Interpretable Machine Learning. Environmental Science & Technology 2023, 57 (46) , 17690-17706. https://doi.org/10.1021/acs.est.3c00653
    9. Saer Samanipour, Jake W. O’Brien, Malcolm J. Reid, Kevin V. Thomas, Antonia Praetorius. From Molecular Descriptors to Intrinsic Fish Toxicity of Chemicals: An Alternative Approach to Chemical Prioritization. Environmental Science & Technology 2023, 57 (46) , 17950-17958. https://doi.org/10.1021/acs.est.2c07353
    10. Jackson W. Burns, David M. Rogers. QuantumScents: Quantum-Mechanical Properties for 3.5k Olfactory Molecules. Journal of Chemical Information and Modeling 2023, Article ASAP.
    11. Linh Thi Hoai Nguyen, Yasuhide Fukumoto, Pierluigi Cesana, Aleksandar Staykov. Fully Automatized Optimization of Ring-Opening Reactions in Lactone Derivatives via Two-Step Machine Learning. The Journal of Physical Chemistry A 2023, Article ASAP.
    12. Alessandra Toniato, Alain C. Vaucher, Marzena Maria Lehmann, Torsten Luksch, Philippe Schwaller, Marco Stenta, Teodoro Laino. Fast Customization of Chemical Language Models to Out-of-Distribution Data Sets. Chemistry of Materials 2023, 35 (21) , 8806-8815. https://doi.org/10.1021/acs.chemmater.3c01406
    13. Zixin Zhuang, Amanda S. Barnard. Structure-Free Mendeleev Encodings of Material Compounds for Machine Learning. Chemistry of Materials 2023, 35 (21) , 9325-9338. https://doi.org/10.1021/acs.chemmater.3c02134
    14. Maram Kiran, V. V. Krishnan. The Quantum Mechanical Particle-in-a-Box Experiment–A Revisit Using NMR Spectroscopy. Journal of Chemical Education 2023, 100 (11) , 4543-4548. https://doi.org/10.1021/acs.jchemed.3c00588
    15. Nathan J. Rebello, Tzyy-Shyang Lin, Heeba Nazeer, Bradley D. Olsen. BigSMARTS: A Topologically Aware Query Language and Substructure Search Algorithm for Polymer Chemical Structures. Journal of Chemical Information and Modeling 2023, 63 (21) , 6555-6568. https://doi.org/10.1021/acs.jcim.3c00978
    16. Haobo Wang, Wenjia Liu, Jingwen Chen, Zhongyu Wang. Applicability Domains Based on Molecular Graph Contrastive Learning Enable Graph Attention Network Models to Accurately Predict 15 Environmental End Points. Environmental Science & Technology 2023, 57 (44) , 16906-16917. https://doi.org/10.1021/acs.est.3c03860
    17. Emma L. Schymanski, Jian Zhang, Paul A. Thiessen, Parviel Chirsir, Todor Kondic, Evan E. Bolton. Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environmental Science & Technology 2023, 57 (44) , 16918-16928. https://doi.org/10.1021/acs.est.3c04855
    18. Chao Pang, Jianbo Qiao, Xiangxiang Zeng, Quan Zou, Leyi Wei. Deep Generative Models in De Novo Drug Molecule Generation. Journal of Chemical Information and Modeling 2023, Article ASAP.
    19. Lucas Ayres, Tomás Benavidez, Armelle Varillas, Jeb Linton, Daniel C. Whitehead, Carlos D. Garcia. Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data. Journal of Agricultural and Food Chemistry 2023, 71 (42) , 15644-15655. https://doi.org/10.1021/acs.jafc.3c05462
    20. Mao Wang, Gui Min Shi, Daohui Zhao, Xinyi Liu, Jianwen Jiang. Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery. Environmental Science & Technology 2023, 57 (42) , 15914-15924. https://doi.org/10.1021/acs.est.3c04773
    21. Ye Buehler, Jean-Louis Reymond. Expanding Bioactive Fragment Space with the Generated Database GDB-13s. Journal of Chemical Information and Modeling 2023, 63 (20) , 6239-6248. https://doi.org/10.1021/acs.jcim.3c01096
    22. Matthew P. Stewart, Paul E. Ohno, Karena McKinney, Scot T. Martin. Prediction of the Response of a Photoionization Detector to a Complex Gaseous Mixture of Volatile Organic Compounds Produced by α-Pinene Oxidation. ACS Earth and Space Chemistry 2023, 7 (10) , 1956-1970. https://doi.org/10.1021/acsearthspacechem.3c00054
    23. Julian Cremer, Leonardo Medrano Sandonas, Alexandre Tkatchenko, Djork-Arné Clevert, Gianni De Fabritiis. Equivariant Graph Neural Networks for Toxicity Prediction. Chemical Research in Toxicology 2023, 36 (10) , 1561-1573. https://doi.org/10.1021/acs.chemrestox.3c00032
    24. Shilpa Shilpa, Gargee Kashyap, Raghavan B. Sunoj. Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions. The Journal of Physical Chemistry A 2023, 127 (40) , 8253-8271. https://doi.org/10.1021/acs.jpca.3c04779
    25. Kei Terayama, Yamato Osaki, Takehiro Fujita, Ryo Tamura, Masanobu Naito, Koji Tsuda, Toru Matsui, Masato Sumita. Koopmans’ Theorem-Compliant Long-Range Corrected (KTLC) Density Functional Mediated by Black-Box Optimization and Data-Driven Prediction for Organic Molecules. Journal of Chemical Theory and Computation 2023, 19 (19) , 6770-6781. https://doi.org/10.1021/acs.jctc.3c00764
    26. Daiki Erikawa, Nobuaki Yasuo, Takamasa Suzuki, Shogo Nakamura, Masakazu Sekijima. Gargoyles: An Open Source Graph-Based Molecular Optimization Method Based on Deep Reinforcement Learning. ACS Omega 2023, 8 (40) , 37431-37441. https://doi.org/10.1021/acsomega.3c05430
    27. Damian M. Wilary, Jacqueline M. Cole. ReactionDataExtractor 2.0: A Deep Learning Approach for Data Extraction from Chemical Reaction Schemes. Journal of Chemical Information and Modeling 2023, 63 (19) , 6053-6067. https://doi.org/10.1021/acs.jcim.3c00422
    28. Sudha Cheranma Devi Eswaran, Mariefel V. Olarte, Robert Rallo, Laura Marrlett, Juliette Harper, Mariella Anderson, Eric Shapiro, Patrick Kozyra, Alexzabria Starks. HT Model: Using the Molecular Transformer for Predicting Hydrotreating Reactions. Energy & Fuels 2023, 37 (19) , 14922-14935. https://doi.org/10.1021/acs.energyfuels.3c02224
    29. Michael Riedl, Sayak Mukherjee, Mitch Gauthier. Descriptor-Free Deep Learning QSAR Model for the Fraction Unbound in Human Plasma. Molecular Pharmaceutics 2023, 20 (10) , 4984-4993. https://doi.org/10.1021/acs.molpharmaceut.3c00129
    30. Yuki Matsukiyo, Chikashige Yamanaka, Yoshihiro Yamanishi. De Novo Generation of Chemical Structures of Inhibitor and Activator Candidates for Therapeutic Target Proteins by a Transformer-Based Variational Autoencoder and Bayesian Optimization. Journal of Chemical Information and Modeling 2023, Article ASAP.
    31. Adrian Krzyzanowski, Axel Pahl, Michael Grigalunas, Herbert Waldmann. Spacial Score─A Comprehensive Topological Indicator for Small-Molecule Complexity. Journal of Medicinal Chemistry 2023, 66 (18) , 12739-12750. https://doi.org/10.1021/acs.jmedchem.3c00689
    32. Zu-Jia Lu, Yong Hu, Wen-Shuai Dong, Wen-Li Cao, Ting-Wei Wang, Jian-Guo Zhang, Qi-Yao Yu. From Concept to Synthesis: Developing Heat-Resistant High Explosives through Automated High-Throughput Virtual Screening. The Journal of Physical Chemistry C 2023, 127 (38) , 18832-18842. https://doi.org/10.1021/acs.jpcc.3c04039
    33. Jiale Shi, Nathan J. Rebello, Dylan Walsh, Weizhong Zou, Michael E. Deagen, Bruno Salomao Leao, Debra J. Audus, Bradley D. Olsen. Quantifying Pairwise Similarity for Complex Polymers. Macromolecules 2023, 56 (18) , 7344-7357. https://doi.org/10.1021/acs.macromol.3c00761
    34. Orion Dollar, Nisarg Joshi, Jim Pfaendtner, David A. C. Beck. Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE. The Journal of Physical Chemistry A 2023, 127 (37) , 7844-7852. https://doi.org/10.1021/acs.jpca.3c04188
    35. Timm Esper, Gernot Bauer, Philipp Rehner, Joachim Gross. PCP-SAFT Parameters of Pure Substances Using Large Experimental Databases. Industrial & Engineering Chemistry Research 2023, 62 (37) , 15300-15310. https://doi.org/10.1021/acs.iecr.3c02255
    36. Gang Yan, Jane Rose, Corie Ellison, Ashley M. Mudd, Xiaoling Zhang, Shengde Wu. Refine and Strengthen SAR-Based Read-Across by Considering Bioactivation and Modes of Action. Chemical Research in Toxicology 2023, 36 (9) , 1532-1548. https://doi.org/10.1021/acs.chemrestox.3c00156
    37. Yujie Yuan, Chengyou Shi, Huimin Zhao. Machine Learning-Enabled Genome Mining and Bioactivity Prediction of Natural Products. ACS Synthetic Biology 2023, 12 (9) , 2650-2662. https://doi.org/10.1021/acssynbio.3c00234
    38. Gergely Takács, Dávid Havasi, Márk Sándor, Zsolt Dohánics, György T. Balogh, Róbert Kiss. DIY Virtual Chemical Libraries - Novel Starting Points for Drug Discovery. ACS Medicinal Chemistry Letters 2023, 14 (9) , 1188-1197. https://doi.org/10.1021/acsmedchemlett.3c00146
    39. Ting Ruan, Pengyang Li, Haotian Wang, Tingyu Li, Guibin Jiang. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chemical Reviews 2023, 123 (17) , 10584-10640. https://doi.org/10.1021/acs.chemrev.3c00056
    40. Ömer H. Omar, Xiaoyu Xie, Alessandro Troisi, Daniele Padula. Identification of Unknown Inverted Singlet–Triplet Cores by High-Throughput Virtual Screening. Journal of the American Chemical Society 2023, 145 (36) , 19790-19799. https://doi.org/10.1021/jacs.3c05452
    41. Rok Frlan, Martina Hrast, Stanislav Gobec. Inhibition of MurA Enzyme from Escherichia coli by Flavonoids and Their Synthetic Analogues. ACS Omega 2023, 8 (36) , 33006-33016. https://doi.org/10.1021/acsomega.3c04813
    42. Mitsuru Ohno, Yoshihiro Hayashi, Qi Zhang, Yu Kaneko, Ryo Yoshida. SMiPoly: Generation of a Synthesizable Polymer Virtual Library Using Rule-Based Polymerization Reactions. Journal of Chemical Information and Modeling 2023, 63 (17) , 5539-5548. https://doi.org/10.1021/acs.jcim.3c00329
    43. Changchang Liu, Peter Kutchukian, Nhan D. Nguyen, Mohammed AlQuraishi, Peter K. Sorger. A Hybrid Structure-Based Machine Learning Approach for Predicting Kinase Inhibition by Small Molecules. Journal of Chemical Information and Modeling 2023, 63 (17) , 5457-5472. https://doi.org/10.1021/acs.jcim.3c00347
    44. Hyeongwoo Kim, Kyunghoon Lee, Chansu Kim, Jaechang Lim, Woo Youn Kim. DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual Screening. Journal of Chemical Information and Modeling 2023, Article ASAP.
    45. Hyeonsuk Yoo, Ruth M. Muthoka, Xiangyu Zhang, Yongjin Lee. Accelerated Design of Ultra-High-Performance Aramid Copolymers via a High-Throughput Screening Approach. ACS Applied Materials & Interfaces 2023, 15 (34) , 40877-40886. https://doi.org/10.1021/acsami.3c06195
    46. Kai-Yang Zhong, Meng-Liang Wen, Fan-Fang Meng, Xin Li, Bei Jiang, Xin Zeng, Yi Li. MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy. Journal of Chemical Information and Modeling 2023, Article ASAP.
    47. Yuwei Miao, Hehuan Ma, Junzhou Huang. Recent Advances in Toxicity Prediction: Applications of Deep Graph Learning. Chemical Research in Toxicology 2023, 36 (8) , 1206-1226. https://doi.org/10.1021/acs.chemrestox.2c00384
    48. Pawan Panwar, Quanpeng Yang, Ashlie Martini. Temperature-Dependent Density and Viscosity Prediction for Hydrocarbons: Machine Learning and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2023, Article ASAP.
    49. Jessica Lanini, Gianluca Santarossa, Finton Sirockin, Richard Lewis, Nikolas Fechner, Hubert Misztela, Sarah Lewis, Krzysztof Maziarz, Megan Stanley, Marwin Segler, Nikolaus Stiefl, Nadine Schneider. PREFER: A New Predictive Modeling Framework for Molecular Discovery. Journal of Chemical Information and Modeling 2023, 63 (15) , 4497-4504. https://doi.org/10.1021/acs.jcim.3c00523
    50. William K. Weigel, III, Alba L. Montoya, Raphael M. Franzini. Evaluation of the Topology Space of DNA-Encoded Libraries. Journal of Chemical Information and Modeling 2023, 63 (15) , 4641-4653. https://doi.org/10.1021/acs.jcim.3c01008
    51. Tianshuo Wang, Ruheng Wang, Leyi Wei. AttenSyn: An Attention-Based Deep Graph Neural Network for Anticancer Synergistic Drug Combination Prediction. Journal of Chemical Information and Modeling 2023, Article ASAP.
    52. Prateek Malhotra, Subhayan Biswas, Ganesh D. Sharma. Directed Message Passing Neural Network for Predicting Power Conversion Efficiency in Organic Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (31) , 37741-37747. https://doi.org/10.1021/acsami.3c08068
    53. Seonghwan Kim, Charles M. Schroeder, Nicholas E. Jackson. Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers. ACS Polymers Au 2023, 3 (4) , 318-330. https://doi.org/10.1021/acspolymersau.3c00003
    54. Dexin Deng, Yingxue Yang, Yurong Zou, Kongjun Liu, Chufeng Zhang, Minghai Tang, Tao Yang, Yong Chen, Xue Yuan, Yong Guo, Shunjie Zhang, Wenting Si, Bin Peng, Qing Xu, Wen He, Dingguo Xu, Mingli Xiang, Lijuan Chen. Discovery and Evaluation of 3-Quinoxalin Urea Derivatives as Potent, Selective, and Orally Available ATM Inhibitors Combined with Chemotherapy for the Treatment of Cancer via Goal-Oriented Molecule Generation and Virtual Screening. Journal of Medicinal Chemistry 2023, 66 (14) , 9495-9518. https://doi.org/10.1021/acs.jmedchem.3c00082
    55. Guoxiang Zhao, Weiyin Yan, Zirui Wang, Yao Kang, Zuju Ma, Zhi-Gang Gu, Qiao-Hong Li, Jian Zhang. Predict the Polarizability and Order of Magnitude of Second Hyperpolarizability of Molecules by Machine Learning. The Journal of Physical Chemistry A 2023, 127 (29) , 6109-6115. https://doi.org/10.1021/acs.jpca.2c08563
    56. Bradley S. Harris, Karteek K. Bejagam, Marcel D. Baer. Development of a Systematic and Extensible Force Field for Peptoids (STEPs). The Journal of Physical Chemistry B 2023, 127 (29) , 6573-6584. https://doi.org/10.1021/acs.jpcb.3c01424
    57. Amol Thakkar, Alain C. Vaucher, Andrea Byekwaso, Philippe Schwaller, Alessandra Toniato, Teodoro Laino. Unbiasing Retrosynthesis Language Models with Disconnection Prompts. ACS Central Science 2023, 9 (7) , 1488-1498. https://doi.org/10.1021/acscentsci.3c00372
    58. Yuta Aoki, Stephen Wu, Teruki Tsurimoto, Yoshihiro Hayashi, Shunya Minami, Okubo Tadamichi, Kazuya Shiratori, Ryo Yoshida. Multitask Machine Learning to Predict Polymer–Solvent Miscibility Using Flory–Huggins Interaction Parameters. Macromolecules 2023, 56 (14) , 5446-5456. https://doi.org/10.1021/acs.macromol.2c02600
    59. Rebekah Duke, Vinayak Bhat, Andrew Smith, Stephen Goodlett, Sergei Tretiak, Chad Risko. Factors Impacting Dihedral Angle Rotation and Classification in π-Conjugated Systems. Macromolecules 2023, 56 (14) , 5259-5267. https://doi.org/10.1021/acs.macromol.3c00824
    60. An Chen, Zhilong Wang, Jing Gao, Yanqiang Han, Junfei Cai, Simin Ye, Jinjin Li. A Data-Driven Platform for Two-Dimensional Hybrid Lead-Halide Perovskites. ACS Nano 2023, 17 (14) , 13348-13357. https://doi.org/10.1021/acsnano.3c01442
    61. Subhamoy Mahajan, Tian Tang. Automated Parameterization of Coarse-Grained Polyethylenimine under a Martini Framework. Journal of Chemical Information and Modeling 2023, 63 (14) , 4328-4341. https://doi.org/10.1021/acs.jcim.3c00103
    62. Xubin Wang, Shiqi Wang, Jingwen Wang, Shiwei Yin. Reverse Designing the Wavelength-Specific Thermally Activation Delayed Fluorescent Molecules Using a Genetic Algorithm Coupled with Cheap QM Methods. The Journal of Physical Chemistry A 2023, 127 (28) , 5930-5941. https://doi.org/10.1021/acs.jpca.3c01714
    63. Dorota Herman, Maciej M. Kańduła, Lorena G. A. Freitas, Caressa van Dongen, Thanh Le Van, Natalie Mesens, Steffen Jaensch, Emmanuel Gustin, Liesbeth Micholt, Charles-Hugues Lardeau, Christos Varsakelis, Joke Reumers, Sannah Zoffmann, Yvonne Will, Pieter J. Peeters, Hugo Ceulemans. Leveraging Cell Painting Images to Expand the Applicability Domain and Actively Improve Deep Learning Quantitative Structure–Activity Relationship Models. Chemical Research in Toxicology 2023, 36 (7) , 1028-1036. https://doi.org/10.1021/acs.chemrestox.2c00404
    64. Yan Ivanenkov, Bogdan Zagribelnyy, Alex Malyshev, Sergei Evteev, Victor Terentiev, Petrina Kamya, Dmitry Bezrukov, Alex Aliper, Feng Ren, Alex Zhavoronkov. The Hitchhiker’s Guide to Deep Learning Driven Generative Chemistry. ACS Medicinal Chemistry Letters 2023, 14 (7) , 901-915. https://doi.org/10.1021/acsmedchemlett.3c00041
    65. Nutaya Pravalphruekul, Maytus Piriyajitakonkij, Phond Phunchongharn, Supanida Piyayotai. De Novo Design of Molecules with Multiaction Potential from Differential Gene Expression using Variational Autoencoder. Journal of Chemical Information and Modeling 2023, 63 (13) , 3999-4011. https://doi.org/10.1021/acs.jcim.3c00355
    66. Yi Gao, Yang Zhao, Chengcheng Liu, Bin Yang. Analysis of Density Contributions of Molecular Substructures. Energy & Fuels 2023, 37 (13) , 9233-9246. https://doi.org/10.1021/acs.energyfuels.3c01186
    67. Andrea Mauri, Matteo Bertola. AlvaBuilder: A Software for De Novo Molecular Design. Journal of Chemical Information and Modeling 2023, Article ASAP.
    68. Vinayak Bhat, Connor P. Callaway, Chad Risko. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chemical Reviews 2023, 123 (12) , 7498-7547. https://doi.org/10.1021/acs.chemrev.2c00704
    69. Johanna Kleinekorte, Jonas Kleppich, Lorenz Fleitmann, Verena Beckert, Luise Blodau, André Bardow. APPROPRIATE Life Cycle Assessment: A PROcess-Specific, PRedictive Impact AssessmenT Method for Emerging Chemical Processes. ACS Sustainable Chemistry & Engineering 2023, 11 (25) , 9303-9319. https://doi.org/10.1021/acssuschemeng.2c07682
    70. Marco Ballarotto, Sabine Willems, Tanja Stiller, Felix Nawa, Julian A. Marschner, Francesca Grisoni, Daniel Merk. De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime. Journal of Medicinal Chemistry 2023, 66 (12) , 8170-8177. https://doi.org/10.1021/acs.jmedchem.3c00485
    71. Dmitrij Rappoport. Statistics and Bias-Free Sampling of Reaction Mechanisms from Reaction Network Models. The Journal of Physical Chemistry A 2023, 127 (24) , 5252-5263. https://doi.org/10.1021/acs.jpca.3c01430
    72. Suman Chakravarti. Augmenting Expert Knowledge-Based Toxicity Alerts by Statistically Mined Molecular Fragments. Chemical Research in Toxicology 2023, 36 (6) , 848-858. https://doi.org/10.1021/acs.chemrestox.2c00368
    73. Neha Paranjape, Laura E. Dean, Andres Martinez, Ronald B. Tjalkens, Hans-Joachim Lehmler, Jonathan A. Doorn. Structure–Activity Relationship of Lower Chlorinated Biphenyls and Their Human-Relevant Metabolites for Astrocyte Toxicity. Chemical Research in Toxicology 2023, 36 (6) , 971-981. https://doi.org/10.1021/acs.chemrestox.3c00095
    74. Xiangyang Liu, Jianchun Chu, Shaoxuan Huang, An Li, Shuanlai Wang, Maogang He. Machine Learning-Based Design of Ionic Liquids at the Atomic Scale for Highly Efficient CO2 Capture. ACS Sustainable Chemistry & Engineering 2023, 11 (24) , 8978-8987. https://doi.org/10.1021/acssuschemeng.3c01191
    75. Elena Xerxa, Filip Miljković, Jürgen Bajorath. Data-Driven Global Assessment of Protein Kinase Inhibitors with Emphasis on Covalent Compounds. Journal of Medicinal Chemistry 2023, 66 (11) , 7657-7665. https://doi.org/10.1021/acs.jmedchem.3c00621
    76. Masatsugu Yamada, Mahito Sugiyama. Molecular Graph Generation by Decomposition and Reassembling. ACS Omega 2023, 8 (22) , 19575-19586. https://doi.org/10.1021/acsomega.3c01078
    77. Han-Wen Pei, You-Liang Zhu, Zhong-Yuan Lu, Jun-Peng Li, Zhao-Yan Sun. Automatic Multiscale Method of Building up a Cross-linked Polymer Reaction System: Bridging SMILES to the Multiscale Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2023, 127 (21) , 4905-4914. https://doi.org/10.1021/acs.jpcb.3c01555
    78. Samuel Boobier, Joseph C. Davies, Ivan N. Derbenev, Christopher M. Handley, Jonathan D. Hirst. AI4Green: An Open-Source ELN for Green and Sustainable Chemistry. Journal of Chemical Information and Modeling 2023, 63 (10) , 2895-2901. https://doi.org/10.1021/acs.jcim.3c00306
    79. JonesGrier M.Graduate Teching AssistantStoryBrittanyPostdoctoral AssociateMaroulasVasileiosProfessorVogiatzisKonstantinos D.Associate ProfessorLaura Weiler, Graduate Student, Stanford University. Molecular Representations for Machine Learning. 2023https://doi.org/10.1021/acsinfocus.7e7006
    80. Jaime Carracedo-Cosme, Carlos Romero-Muñiz, Pablo Pou, Rubén Pérez. Molecular Identification from AFM Images Using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks. ACS Applied Materials & Interfaces 2023, 15 (18) , 22692-22704. https://doi.org/10.1021/acsami.3c01550
    81. Edison Mucllari, Vasily Zadorozhnyy, Qiang Ye, Duc Duy Nguyen. Novel Molecular Representations Using Neumann-Cayley Orthogonal Gated Recurrent Unit. Journal of Chemical Information and Modeling 2023, 63 (9) , 2656-2666. https://doi.org/10.1021/acs.jcim.2c01526
    82. Xinyue Zhang, Genwang Wei, Ye Sheng, Wenjun Bai, Jiong Yang, Wenqing Zhang, Caichao Ye. Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning. ACS Applied Materials & Interfaces 2023, 15 (17) , 21537-21548. https://doi.org/10.1021/acsami.3c03298
    83. Katharina Kohse-Höinghaus. Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews 2023, 123 (8) , 5139-5219. https://doi.org/10.1021/acs.chemrev.2c00828
    84. Shiori Watabe, Nahoko Kuroki, Hirotoshi Mori. COSMO-RS Exploration of Highly CO2-Selective Hydrogen-Bonded Binary Liquid Absorbents under Humid Conditions: Role of Trace Ionic Species. ACS Omega 2023, 8 (16) , 14478-14483. https://doi.org/10.1021/acsomega.2c08250
    85. Matthew P. Stewart, Scot T. Martin. Machine Learning for Ionization Potentials and Photoionization Cross Sections of Volatile Organic Compounds. ACS Earth and Space Chemistry 2023, 7 (4) , 863-875. https://doi.org/10.1021/acsearthspacechem.3c00009
    86. Ademola Soyemi, Tibor Szilvási. Calculated Physicochemical Properties of Glycerol-Derived Solvents to Drive Plastic Waste Recycling. Industrial & Engineering Chemistry Research 2023, 62 (15) , 6322-6337. https://doi.org/10.1021/acs.iecr.2c04567
    87. Bahareh Esteki, Mahmood Masoomi, Mohammad Moosazadeh, ChangKyoo Yoo. Data-Driven Prediction of Janus/Core–Shell Morphology in Polymer Particles: A Machine-Learning Approach. Langmuir 2023, 39 (14) , 4943-4958. https://doi.org/10.1021/acs.langmuir.2c03355
    88. Dibyajyoti Das, Broto Chakrabarty, Rajgopal Srinivasan, Arijit Roy. Gex2SGen: Designing Drug-like Molecules from Desired Gene Expression Signatures. Journal of Chemical Information and Modeling 2023, 63 (7) , 1882-1893. https://doi.org/10.1021/acs.jcim.2c01301
    89. Zaiyun Lin, Shiqiu Yin, Lei Shi, Wenbiao Zhou, Yingsheng John Zhang. G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training. Journal of Chemical Information and Modeling 2023, 63 (7) , 1894-1905. https://doi.org/10.1021/acs.jcim.2c01302
    90. Fernando Jaume-Santero, Alban Bornet, Alain Valery, Nona Naderi, David Vicente Alvarez, Dimitrios Proios, Anthony Yazdani, Colin Bournez, Thomas Fessard, Douglas Teodoro. Transformer Performance for Chemical Reactions: Analysis of Different Predictive and Evaluation Scenarios. Journal of Chemical Information and Modeling 2023, 63 (7) , 1914-1924. https://doi.org/10.1021/acs.jcim.2c01407
    91. Yujie Qian, Jiang Guo, Zhengkai Tu, Zhening Li, Connor W. Coley, Regina Barzilay. MolScribe: Robust Molecular Structure Recognition with Image-to-Graph Generation. Journal of Chemical Information and Modeling 2023, 63 (7) , 1925-1934. https://doi.org/10.1021/acs.jcim.2c01480
    92. Gregory W. Kyro, Rafael I. Brent, Victor S. Batista. HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein–Ligand Binding Affinity Prediction. Journal of Chemical Information and Modeling 2023, 63 (7) , 1947-1960. https://doi.org/10.1021/acs.jcim.3c00251
    93. Hong Yue, Jingtao Wang, Meijin Lu. Neural Network Prediction Model of Cocrystal Melting Temperature Based on Molecular Descriptors and Graphs. Crystal Growth & Design 2023, 23 (4) , 2540-2549. https://doi.org/10.1021/acs.cgd.2c01441
    94. Zhengtao Zhou, Mario Eden, Weifeng Shen. Treat Molecular Linear Notations as Sentences: Accurate Quantitative Structure–Property Relationship Modeling via a Natural Language Processing Approach. Industrial & Engineering Chemistry Research 2023, 62 (12) , 5336-5346. https://doi.org/10.1021/acs.iecr.2c04070
    95. Cayque Monteiro Castro Nascimento, André Silva Pimentel. Do Large Language Models Understand Chemistry? A Conversation with ChatGPT. Journal of Chemical Information and Modeling 2023, 63 (6) , 1649-1655. https://doi.org/10.1021/acs.jcim.3c00285
    96. Connor J. Taylor, Alexander Pomberger, Kobi C. Felton, Rachel Grainger, Magda Barecka, Thomas W. Chamberlain, Richard A. Bourne, Christopher N. Johnson, Alexei A. Lapkin. A Brief Introduction to Chemical Reaction Optimization. Chemical Reviews 2023, 123 (6) , 3089-3126. https://doi.org/10.1021/acs.chemrev.2c00798
    97. Dmitrij Rappoport, Adrian Jinich. Enzyme Substrate Prediction from Three-Dimensional Feature Representations Using Space-Filling Curves. Journal of Chemical Information and Modeling 2023, 63 (5) , 1637-1648. https://doi.org/10.1021/acs.jcim.3c00005
    98. Zailiang Zhu, Bozheng Dou, Yukang Cao, Jian Jiang, Yueying Zhu, Dong Chen, Hongsong Feng, Jie Liu, Bengong Zhang, Tianshou Zhou, Guo-Wei Wei. TIDAL: Topology-Inferred Drug Addiction Learning. Journal of Chemical Information and Modeling 2023, 63 (5) , 1472-1489. https://doi.org/10.1021/acs.jcim.3c00046
    99. Rishi Gurnani, Christopher Kuenneth, Aubrey Toland, Rampi Ramprasad. Polymer Informatics at Scale with Multitask Graph Neural Networks. Chemistry of Materials 2023, 35 (4) , 1560-1567. https://doi.org/10.1021/acs.chemmater.2c02991
    100. Ye Sun, Xiuheng Wang, Nanqi Ren, Yanbiao Liu, Shijie You. Improved Machine Learning Models by Data Processing for Predicting Life-Cycle Environmental Impacts of Chemicals. Environmental Science & Technology 2023, 57 (8) , 3434-3444. https://doi.org/10.1021/acs.est.2c04945
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect