ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors

View Author Information
GDECS Computational Chemistry, AstraZeneca R&D, Mölndal, Sweden, Cancer Discovery, AstraZeneca R&D, Boston, Massachusetts, and Medicinal Chemistry, AstraZeneca R&D, Mölndal, Sweden
Cite this: J. Chem. Inf. Model. 2006, 46, 1, 401–415
Publication Date (Web):December 14, 2005
https://doi.org/10.1021/ci0503255
Copyright © 2006 American Chemical Society

    Article Views

    2502

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (313 KB)

    Abstract

    Four of the most well-known, commercially available docking programs, FlexX, GOLD, GLIDE, and ICM, have been examined for their ligand-docking and virtual-screening capabilities. The relative performance of the programs in reproducing the native ligand conformation from starting SMILES strings for 164 high-resolution protein−ligand complexes is presented and compared. Applying only the native scoring functions, the latest versions of these four docking programs were also used to conduct virtual screening for 12 protein targets of therapeutic interest, involving both publicly available structures and AstraZeneca in-house structures. The capability of the four programs to correctly rank-order target-specific active compounds over alternative binders and nonbinders (decoys plus randomly selected compounds) and thereby enrich a small subset of a screening library is compared. Enrichments from the virtual-screening experiments are contrasted with those obtained with alternative 3D shape-matching and 2D similarity database-search methods.

    *

     To whom correspondence should be addressed. Phone:  +46 31 7065285 (H.C.); +46 31 7065735 (T.L.) E-mail:  hongming.chen@ astrazeneca.com (H.C.); [email protected] (T.L.).

     GDECS Chemical Computing, AstraZeneca R&D.

     Cancer Discovery, AstraZeneca R&D.

    §

     Medicinal Chemistry, AstraZeneca R&D.

    Cited By

    This article is cited by 177 publications.

    1. Vaibhav A. Dixit, Upadhyayula Suryanarayana Murty, Priyanka Bajaj, Jochen Blumberger, Sam P. de Visser. Mechanisms of Electron Transfer Rate Modulations in Cytochrome P450 BM3. The Journal of Physical Chemistry B 2022, 126 (47) , 9737-9747. https://doi.org/10.1021/acs.jpcb.2c03967
    2. Gergely M. Makara, László Kovács, István Szabó, Gábor Pőcze. Derivatization Design of Synthetically Accessible Space for Optimization: In Silico Synthesis vs Deep Generative Design. ACS Medicinal Chemistry Letters 2021, 12 (2) , 185-194. https://doi.org/10.1021/acsmedchemlett.0c00540
    3. Samuel C. Gill, David L. Mobley. Reversibly Sampling Conformations and Binding Modes Using Molecular Darting. Journal of Chemical Theory and Computation 2021, 17 (1) , 302-314. https://doi.org/10.1021/acs.jctc.0c00752
    4. Alexander D. Smith, Brent D. G. Page, Abby C. Collier, Michael W. H. Coughtrie. Homology Modeling of Human Uridine-5′-diphosphate-glucuronosyltransferase 1A6 Reveals Insights into Factors Influencing Substrate and Cosubstrate Binding. ACS Omega 2020, 5 (12) , 6872-6887. https://doi.org/10.1021/acsomega.0c00205
    5. Stefano Motta and Laura Bonati . Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches. Journal of Chemical Information and Modeling 2017, 57 (7) , 1563-1578. https://doi.org/10.1021/acs.jcim.7b00125
    6. A. Y. Lizunov, A. L. Gonchar, N. I. Zaitseva, and V. V. Zosimov . Accounting for Intraligand Interactions in Flexible Ligand Docking with a PMF-Based Scoring Function. Journal of Chemical Information and Modeling 2015, 55 (10) , 2121-2137. https://doi.org/10.1021/acs.jcim.5b00158
    7. Samuel R. Perry, Weijun Xu, Anna Wirija, Junxian Lim, Mei-Kwan Yau, Martin J. Stoermer, Andrew J. Lucke, and David P. Fairlie . Three Homology Models of PAR2 Derived from Different Templates: Application to Antagonist Discovery. Journal of Chemical Information and Modeling 2015, 55 (6) , 1181-1191. https://doi.org/10.1021/acs.jcim.5b00087
    8. Yan Li, Zhihai Liu, Jie Li, Li Han, Jie Liu, Zhixiong Zhao, and Renxiao Wang . Comparative Assessment of Scoring Functions on an Updated Benchmark: 1. Compilation of the Test Set. Journal of Chemical Information and Modeling 2014, 54 (6) , 1700-1716. https://doi.org/10.1021/ci500080q
    9. Yan Li, Li Han, Zhihai Liu, and Renxiao Wang . Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results. Journal of Chemical Information and Modeling 2014, 54 (6) , 1717-1736. https://doi.org/10.1021/ci500081m
    10. Paul C. D. Hawkins, Brian P. Kelley, and Gregory L. Warren . The Application of Statistical Methods to Cognate Docking: A Path Forward?. Journal of Chemical Information and Modeling 2014, 54 (5) , 1339-1355. https://doi.org/10.1021/ci5001086
    11. Anshuman Dixit and Gennady M. Verkhivker . Integrating Ligand-Based and Protein-Centric Virtual Screening of Kinase Inhibitors Using Ensembles of Multiple Protein Kinase Genes and Conformations. Journal of Chemical Information and Modeling 2012, 52 (10) , 2501-2515. https://doi.org/10.1021/ci3002638
    12. Sheng-You Huang and Xiaoqin Zou . Construction and Test of Ligand Decoy Sets Using MDock: Community Structure–Activity Resource Benchmarks for Binding Mode Prediction. Journal of Chemical Information and Modeling 2011, 51 (9) , 2107-2114. https://doi.org/10.1021/ci200080g
    13. Zsolt Zsoldos , Ph.D. . A Fragment-Based Docking Engine: eHiTS. 2011, 91-130. https://doi.org/10.1021/bk-2011-1076.ch006
    14. Michal Brylinski and Jeffrey Skolnick. Comprehensive Structural and Functional Characterization of the Human Kinome by Protein Structure Modeling and Ligand Virtual Screening. Journal of Chemical Information and Modeling 2010, 50 (10) , 1839-1854. https://doi.org/10.1021/ci100235n
    15. Luke R. Odell, Dian Howan, Christopher P. Gordon, Mark J. Robertson, Ngoc Chau, Anna Mariana, Ainslie E. Whiting, Ruben Abagyan, James A. Daniel, Nick N. Gorgani, Phillip J. Robinson and Adam McCluskey . The Pthaladyns: GTP Competitive Inhibitors of Dynamin I and II GTPase Derived from Virtual Screening. Journal of Medicinal Chemistry 2010, 53 (14) , 5267-5280. https://doi.org/10.1021/jm100442u
    16. Yaozong Li, Jie Shen, Xianqiang Sun, Weihua Li, Guixia Liu and Yun Tang. Accuracy Assessment of Protein-Based Docking Programs against RNA Targets. Journal of Chemical Information and Modeling 2010, 50 (6) , 1134-1146. https://doi.org/10.1021/ci9004157
    17. Miriam López-Ramos and Francesca Perruccio. HPPD: Ligand- and Target-Based Virtual Screening on a Herbicide Target. Journal of Chemical Information and Modeling 2010, 50 (5) , 801-814. https://doi.org/10.1021/ci900498n
    18. Izhar Wallach and Ryan Lilien. Predicting Multiple Ligand Binding Modes Using Self-Consistent Pharmacophore Hypotheses. Journal of Chemical Information and Modeling 2009, 49 (9) , 2116-2128. https://doi.org/10.1021/ci900199e
    19. Chidochangu P. Mpamhanga, Daniel Spinks, Lindsay B. Tulloch, Emma J. Shanks, David A. Robinson, Iain T. Collie, Alan H. Fairlamb, Paul G. Wyatt, Julie A. Frearson, William N. Hunter, Ian H. Gilbert and Ruth Brenk. One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening. Journal of Medicinal Chemistry 2009, 52 (14) , 4454-4465. https://doi.org/10.1021/jm900414x
    20. Mark D. Mackey and James L. Melville. Better than Random? The Chemotype Enrichment Problem. Journal of Chemical Information and Modeling 2009, 49 (5) , 1154-1162. https://doi.org/10.1021/ci8003978
    21. Christopher R. Corbeil and Nicolas Moitessier. Docking Ligands into Flexible and Solvated Macromolecules. 3. Impact of Input Ligand Conformation, Protein Flexibility, and Water Molecules on the Accuracy of Docking Programs. Journal of Chemical Information and Modeling 2009, 49 (4) , 997-1009. https://doi.org/10.1021/ci8004176
    22. Pedro Fong, Jonathan P. McNamara, Ian H. Hillier and Richard A. Bryce . Assessment of QM/MM Scoring Functions for Molecular Docking to HIV-1 Protease. Journal of Chemical Information and Modeling 2009, 49 (4) , 913-924. https://doi.org/10.1021/ci800432s
    23. Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu and Renxiao Wang. Comparative Assessment of Scoring Functions on a Diverse Test Set. Journal of Chemical Information and Modeling 2009, 49 (4) , 1079-1093. https://doi.org/10.1021/ci9000053
    24. Kirk E. Hevener, Wei Zhao, David M. Ball, Kerim Babaoglu, Jianjun Qi, Stephen W. White and Richard E. Lee . Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. Journal of Chemical Information and Modeling 2009, 49 (2) , 444-460. https://doi.org/10.1021/ci800293n
    25. Mahmud Tareq Hassan Khan, Ole-Martin Fuskevåg and Ingebrigt Sylte. Discovery of Potent Thermolysin Inhibitors Using Structure Based Virtual Screening and Binding Assays. Journal of Medicinal Chemistry 2009, 52 (1) , 48-61. https://doi.org/10.1021/jm8008019
    26. Irina Kufareva and Ruben Abagyan . Type-II Kinase Inhibitor Docking, Screening, and Profiling Using Modified Structures of Active Kinase States. Journal of Medicinal Chemistry 2008, 51 (24) , 7921-7932. https://doi.org/10.1021/jm8010299
    27. Wei Deng and Christophe L. M. J. Verlinde. Evaluation of Different Virtual Screening Programs for Docking in a Charged Binding Pocket. Journal of Chemical Information and Modeling 2008, 48 (10) , 2010-2020. https://doi.org/10.1021/ci800154w
    28. Dilmurat Yusuf, Andrew M. Davis, Gerard J. Kleywegt and Stefan Schmitt . An Alternative Method for the Evaluation of Docking Performance: RSR vs RMSD. Journal of Chemical Information and Modeling 2008, 48 (7) , 1411-1422. https://doi.org/10.1021/ci800084x
    29. Tuomo Kalliokoski, Toni Ronkko and Antti Poso. FieldChopper, A New Tool for Automatic Model Generation and Virtual Screening Based on Molecular Fields. Journal of Chemical Information and Modeling 2008, 48 (6) , 1131-1137. https://doi.org/10.1021/ci700216u
    30. David C. Sullivan and Eric J. Martin. Exploiting Structure–Activity Relationships in Docking. Journal of Chemical Information and Modeling 2008, 48 (4) , 817-830. https://doi.org/10.1021/ci700439z
    31. Eric J. Martin and David C. Sullivan. AutoShim: Empirically Corrected Scoring Functions for Quantitative Docking with a Crystal Structure and IC50 Training Data. Journal of Chemical Information and Modeling 2008, 48 (4) , 861-872. https://doi.org/10.1021/ci7004548
    32. José S. Duca,, Vincent S. Madison, and, Johannes H. Voigt. Cross-Docking of Inhibitors into CDK2 Structures. 1. Journal of Chemical Information and Modeling 2008, 48 (3) , 659-668. https://doi.org/10.1021/ci7004274
    33. Albert C. Pierce, Marc Jacobs and Cameron Stuver-Moody. Docking Study Yields Four Novel Inhibitors of the Protooncogene Pim-1 Kinase. Journal of Medicinal Chemistry 2008, 51 (6) , 1972-1975. https://doi.org/10.1021/jm701248t
    34. Robert P. Sheridan. Alternative Global Goodness Metrics and Sensitivity Analysis:  Heuristics to Check the Robustness of Conclusions from Studies Comparing Virtual Screening Methods. Journal of Chemical Information and Modeling 2008, 48 (2) , 426-433. https://doi.org/10.1021/ci700380x
    35. Pallav D. Patel,, Maulik R. Patel,, Neerja Kaushik-Basu, and, Tanaji T. Talele. 3D QSAR and Molecular Docking Studies of Benzimidazole Derivatives as Hepatitis C Virus NS5B Polymerase Inhibitors. Journal of Chemical Information and Modeling 2008, 48 (1) , 42-55. https://doi.org/10.1021/ci700266z
    36. Timothy Lovell,, Hongming Chen,, Paul D. Lyne,, Fabrizio Giordanetto, and, Jin Li. DECS Global Compound Sciences, Computational Chemistry, AstraZeneca R&D, Pepparedsleden 1, 43183 Mölndal, Sweden, Cancer Discovery, As. On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors. [J. Chem. Inf. Model. 46, 401−415 (2006)] by. Journal of Chemical Information and Modeling 2008, 48 (1) , 246-246. https://doi.org/10.1021/ci7003169
    37. C. David Andersson,, Elin Thysell,, Anton Lindström,, Max Bylesjö,, Florian Raubacher, and, Anna Linusson. A Multivariate Approach to Investigate Docking Parameters' Effects on Docking Performance. Journal of Chemical Information and Modeling 2007, 47 (4) , 1673-1687. https://doi.org/10.1021/ci6005596
    38. Kenji Onodera,, Kazuhito Satou, and, Hiroshi Hirota. Evaluations of Molecular Docking Programs for Virtual Screening. Journal of Chemical Information and Modeling 2007, 47 (4) , 1609-1618. https://doi.org/10.1021/ci7000378
    39. Georgia B. McGaughey,, Robert P. Sheridan,, Christopher I. Bayly,, J. Chris Culberson,, Constantine Kreatsoulas,, Stacey Lindsley,, Vladimir Maiorov,, Jean-Francois Truchon, and, Wendy D. Cornell. Comparison of Topological, Shape, and Docking Methods in Virtual Screening. Journal of Chemical Information and Modeling 2007, 47 (4) , 1504-1519. https://doi.org/10.1021/ci700052x
    40. Antje Wolf,, Marc Zimmermann, and, Martin Hofmann-Apitius. Alternative to Consensus ScoringA New Approach Toward the Qualitative Combination of Docking Algorithms. Journal of Chemical Information and Modeling 2007, 47 (3) , 1036-1044. https://doi.org/10.1021/ci6004965
    41. Jean-François Truchon and, Christopher I. Bayly. Evaluating Virtual Screening Methods:  Good and Bad Metrics for the “Early Recognition” Problem. Journal of Chemical Information and Modeling 2007, 47 (2) , 488-508. https://doi.org/10.1021/ci600426e
    42. Emanuele Perola,, W. Patrick Walters, and, Paul Charifson. Comments on the Article “On Evaluating Molecular-Docking Methods for Pose Prediction and Enrichment Factors”. Journal of Chemical Information and Modeling 2007, 47 (2) , 251-253. https://doi.org/10.1021/ci600460h
    43. Gilles Marcou and, Didier Rognan. Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints. Journal of Chemical Information and Modeling 2007, 47 (1) , 195-207. https://doi.org/10.1021/ci600342e
    44. Yi-Ming Chen, Ching-Tai Lu, Chia-Wen Wang, Wolfgang B. Fischer. Repurposing dye ligands as antivirals via a docking approach on viral membrane and globular proteins – SARS-CoV-2 and HPV-16. Biochimica et Biophysica Acta (BBA) - Biomembranes 2024, 1866 (1) , 184220. https://doi.org/10.1016/j.bbamem.2023.184220
    45. Linwei Li, Songtao Liu, Bi Wang, Fei Liu, Shu Xu, Pirui Li, Yu Chen. An Updated Review on Developing Small Molecule Kinase Inhibitors Using Computer-Aided Drug Design Approaches. International Journal of Molecular Sciences 2023, 24 (18) , 13953. https://doi.org/10.3390/ijms241813953
    46. Khac-Minh Thai, Thai-Son Tran, The-Huan Tran, Thi-Cam-Nhung Cao, Hoang-Nhan Ho, Phuong Nguyen Hoai Huynh, Tan Thanh Mai, Thanh-Dao Tran, Minh-Tri Le, Van-Thanh Tran. Recent Advances in Computational Modeling of Multi-targeting Inhibitors as Anti-Alzheimer Agents. 2023, 231-277. https://doi.org/10.1007/978-1-0716-3311-3_8
    47. Maryké Shaw, Anél Petzer, Jacobus P. Petzer, Theunis T. Cloete. The pterin binding site of dihydropteroate synthase (DHPS): In silico screening and in vitro antibacterial activity of existing drugs. Results in Chemistry 2023, 5 , 100863. https://doi.org/10.1016/j.rechem.2023.100863
    48. Danfeng Shi, Qianqian Pang, Qianyu Qin, Xinsheng Yao, Xiaojun Yao, Yang Yu. Discovery of novel anti-tumor compounds targeting PARP-1 with induction of autophagy through in silico and in vitro screening. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1026306
    49. Marija Sorokina, Jaydeep Belapure, Christian Tüting, Reinhard Paschke, Ioannis Papasotiriou, João P.G.L.M. Rodrigues, Panagiotis L. Kastritis. An Electrostatically-steered Conformational Selection Mechanism Promotes SARS-CoV-2 Spike Protein Variation. Journal of Molecular Biology 2022, 434 (13) , 167637. https://doi.org/10.1016/j.jmb.2022.167637
    50. Marina Miñarro-Lleonar, Sergio Ruiz-Carmona, Daniel Alvarez-Garcia, Peter Schmidtke, Xavier Barril. Development of an Automatic Pipeline for Participation in the CELPP Challenge. International Journal of Molecular Sciences 2022, 23 (9) , 4756. https://doi.org/10.3390/ijms23094756
    51. Romen Singh Naorem, Bandana Devi Pangabam, Sudipta Sankar Bora, Gunajit Goswami, Madhumita Barooah, Dibya Jyoti Hazarika, Csaba Fekete. Identification of Putative Vaccine and Drug Targets against the Methicillin-Resistant Staphylococcus aureus by Reverse Vaccinology and Subtractive Genomics Approaches. Molecules 2022, 27 (7) , 2083. https://doi.org/10.3390/molecules27072083
    52. Yaping Li, Xingyong Liu, Shuqun Zhang, Liangliang Wang, Li Zhang, Zhili Zuo. Computational simulation studies on the binding selectivity of Wee1 and Checkpoint kinase 1 by molecular dynamics simulation combined with free energy calculations. Journal of Biomolecular Structure and Dynamics 2022, 40 (3) , 1172-1181. https://doi.org/10.1080/07391102.2020.1823882
    53. Pawan Kumar, Debasisa Mohanty. Development of a Novel Pharmacophore Model Guided by the Ensemble of Waters and Small Molecule Fragments Bound to SARS‐CoV‐2 Main Protease. Molecular Informatics 2022, 41 (2) https://doi.org/10.1002/minf.202100178
    54. G. Selvakumar, C. Palanivel. Catalytic synthesis, spectral characterization, antimicrobial and molecular docking studies on some novel [E]-N-phenyl-3,5-dichloropyridin-4-amine and its derivatives. Materials Today: Proceedings 2022, 48 , 387-393. https://doi.org/10.1016/j.matpr.2020.10.377
    55. Yendrek Velasquez-López, Eduardo Tejera, Yunierkis Perez-Castillo. Can docking scoring functions guarantee success in virtual screening?. 2022, 1-41. https://doi.org/10.1016/bs.armc.2022.08.008
    56. Richa Mishra, Himani Chaurasia, Vishal K. Singh, Farha Naaz, Ramendra K Singh. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. Journal of Molecular Structure 2021, 1243 , 130763. https://doi.org/10.1016/j.molstruc.2021.130763
    57. Tatiana F. Vieira, Fábio G. Martins, Joel P. Moreira, Tiago Barbosa, Sérgio F. Sousa. In Silico Identification of Possible Inhibitors for Protein Kinase B (PknB) of Mycobacterium tuberculosis. Molecules 2021, 26 (20) , 6162. https://doi.org/10.3390/molecules26206162
    58. Louis Thesnaar, Jaco J. Bezuidenhout, Anél Petzer, Jacobus P. Petzer, Theunis T. Cloete. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. European Journal of Pharmaceutical Sciences 2021, 157 , 105603. https://doi.org/10.1016/j.ejps.2020.105603
    59. Chia-Wen Wang, Oscar K. Lee, Wolfgang B. Fischer, , , . Screening coronavirus and human proteins for sialic acid binding sites using a docking approach. AIMS Biophysics 2021, 8 (3) , 248-263. https://doi.org/10.3934/biophy.2021019
    60. Shome S. Bhunia, Mridula Saxena, Anil K. Saxena. Ligand- and Structure-Based Virtual Screening in Drug Discovery. 2021, 281-339. https://doi.org/10.1007/7355_2021_130
    61. Janke Kleynhans, Hendrik Gerhardus Kruger, Theunis Cloete, Jan Rijn Zeevaart, Thomas Ebenhan. In Silico Modelling in the Development of Novel Radiolabelled Peptide Probes. Current Medicinal Chemistry 2020, 27 (41) , 7048-7063. https://doi.org/10.2174/0929867327666200504082256
    62. Ritika Srivastava, Sunil K. Gupta, Farha Naaz, Parth Sarthi Sen Gupta, Madhu Yadav, Vishal Kumar Singh, Anuradha Singh, Malay Kumar Rana, Satish Kumar Gupta, Dominique Schols, Ramendra K. Singh. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Computational Biology and Chemistry 2020, 89 , 107400. https://doi.org/10.1016/j.compbiolchem.2020.107400
    63. Erika Oselladore, Alberto Ongaro, Giuseppe Zagotto, Maurizio Memo, Giovanni Ribaudo, Alessandra Gianoncelli. Combinatorial library generation, molecular docking and molecular dynamics simulations for enhancing the isoflavone scaffold in phosphodiesterase inhibition. New Journal of Chemistry 2020, 44 (45) , 19472-19488. https://doi.org/10.1039/D0NJ02537B
    64. Eric D. Boittier, Yat Yin Tang, McKenna E. Buckley, Zachariah P. Schuurs, Derek J. Richard, Neha S. Gandhi. Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors. International Journal of Molecular Sciences 2020, 21 (15) , 5183. https://doi.org/10.3390/ijms21155183
    65. Gurbet Tutumlu, Berna Dogan, Timucin Avsar, Muge Didem Orhan, Seyma Calis, Serdar Durdagi. Integrating Ligand and Target-Driven Based Virtual Screening Approaches With in vitro Human Cell Line Models and Time-Resolved Fluorescence Resonance Energy Transfer Assay to Identify Novel Hit Compounds Against BCL-2. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00167
    66. George Nicola, Irina Kufareva, Andrey V. Ilatovskiy, Ruben Abagyan. Druggable exosites of the human kino-pocketome. Journal of Computer-Aided Molecular Design 2020, 34 (3) , 219-230. https://doi.org/10.1007/s10822-019-00276-y
    67. Noreen Akhtar, Ishrat Jabeen, Nasir Jalal, Jon Antilla. Structure‐based pharmacophore models to probe anticancer activity of inhibitors of protein kinase B‐beta (PKB β). Chemical Biology & Drug Design 2019, 93 (3) , 325-336. https://doi.org/10.1111/cbdd.13418
    68. Fergal Duffy, Nikunj Maheshwari, Nicolae-Viorel Buchete, Denis Shields. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein–Protein Interactions. 2019, 73-95. https://doi.org/10.1007/978-1-4939-9504-2_5
    69. Madhu Yadav, Ritika Srivastava, Farha Naaz, Ramendra K. Singh. Synthesis, docking, ADMET prediction, cytotoxicity and antimicrobial activity of oxathiadiazole derivatives. Computational Biology and Chemistry 2018, 77 , 226-239. https://doi.org/10.1016/j.compbiolchem.2018.10.008
    70. Alex Dickson. Mapping the Ligand Binding Landscape. Biophysical Journal 2018, 115 (9) , 1707-1719. https://doi.org/10.1016/j.bpj.2018.09.021
    71. Ritika Srivastava, Sunil K. Gupta, Farha Naaz, Anuradha Singh, Vishal K. Singh, Rajesh Verma, Nidhi Singh, Ramendra K. Singh. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues. Computational Biology and Chemistry 2018, 76 , 1-16. https://doi.org/10.1016/j.compbiolchem.2018.05.021
    72. Sheng-You Huang. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges. Briefings in Bioinformatics 2018, 19 (5) , 982-994. https://doi.org/10.1093/bib/bbx030
    73. Farha Naaz, Ritika Srivastava, Anuradha Singh, Nidhi Singh, Rajesh Verma, Vishal K. Singh, Ramendra K. Singh. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorganic & Medicinal Chemistry 2018, 26 (12) , 3414-3428. https://doi.org/10.1016/j.bmc.2018.05.015
    74. Adrian Kolodzik, Nadine Schneider, Matthias Rarey. Structure‐Based Virtual Screening. 2018, 313-331. https://doi.org/10.1002/9783527806539.ch6h
    75. Yan Li, Minyi Su, Zhihai Liu, Jie Li, Jie Liu, Li Han, Renxiao Wang. Assessing protein–ligand interaction scoring functions with the CASF-2013 benchmark. Nature Protocols 2018, 13 (4) , 666-680. https://doi.org/10.1038/nprot.2017.114
    76. Sami T. Kurkinen, Sanna Niinivehmas, Mira Ahinko, Sakari Lätti, Olli T. Pentikäinen, Pekka A. Postila. Improving Docking Performance Using Negative Image-Based Rescoring. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00260
    77. Liting Feng, Maolin Tu, Meiling Qiao, Fengjiao Fan, Hui Chen, Wei Song, Ming Du. Thrombin inhibitory peptides derived from Mytilus edulis proteins: identification, molecular docking and in silico prediction of toxicity. European Food Research and Technology 2018, 244 (2) , 207-217. https://doi.org/10.1007/s00217-017-2946-7
    78. Ludovic Chaput, Liliane Mouawad. Efficient conformational sampling and weak scoring in docking programs? Strategy of the wisdom of crowds. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0227-x
    79. Vassilios Myrianthopoulos, Olivier Lozach, Danae Zareifi, Leonidas Alexopoulos, Laurent Meijer, Vassilis Gorgoulis, Emmanuel Mikros. Combined Virtual and Experimental Screening for CK1 Inhibitors Identifies a Modulator of p53 and Reveals Important Aspects of in Silico Screening Performance. International Journal of Molecular Sciences 2017, 18 (10) , 2102. https://doi.org/10.3390/ijms18102102
    80. Nataraj S. Pagadala, Khajamohiddin Syed, Jack Tuszynski. Software for molecular docking: a review. Biophysical Reviews 2017, 9 (2) , 91-102. https://doi.org/10.1007/s12551-016-0247-1
    81. J. Cole, E. Davis, G. Jones, C.R. Sage. Molecular Docking—A Solved Problem?. 2017, 297-318. https://doi.org/10.1016/B978-0-12-409547-2.12352-2
    82. Khaled H. Barakat, Michael Houghton, D. Lorne Tyrrel, Jack A. Tuszynski. Rational Drug Design Rational Drug Design. 2017, 1144-1174. https://doi.org/10.4018/978-1-5225-1762-7.ch044
    83. Noreen Akhtar, Ishrat Jabeen, . A 2D-QSAR and Grid-Independent Molecular Descriptor (GRIND) Analysis of Quinoline-Type Inhibitors of Akt2: Exploration of the Binding Mode in the Pleckstrin Homology (PH) Domain. PLOS ONE 2016, 11 (12) , e0168806. https://doi.org/10.1371/journal.pone.0168806
    84. Anuradha Singh, Madhu Yadav, Ritika Srivastava, Nidhi Singh, Rajinder Kaur, Satish K. Gupta, Ramendra K. Singh. Design and anti-HIV activity of arylsulphonamides as non-nucleoside reverse transcriptase inhibitors. Medicinal Chemistry Research 2016, 25 (12) , 2842-2859. https://doi.org/10.1007/s00044-016-1707-7
    85. Ludovic Chaput, Juan Martinez-Sanz, Eric Quiniou, Pascal Rigolet, Nicolas Saettel, Liliane Mouawad. vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0112-z
    86. Muhammad Mirza, Nazia Ikram. Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40. International Journal of Molecular Sciences 2016, 17 (11) , 1748. https://doi.org/10.3390/ijms17111748
    87. Niklas Laasch, Monoj Mon Kalita, Stephen Griffin, Wolfgang B. Fischer. Small molecule ligand docking to genotype specific bundle structures of hepatitis C virus (HCV) p7 protein. Computational Biology and Chemistry 2016, 64 , 56-63. https://doi.org/10.1016/j.compbiolchem.2016.04.010
    88. Agenor Limon, Argel Estrada-Mondragón, Jorge M. Reyes Ruiz, Ricardo Miledi. Dipicrylamine Modulates GABA ρ 1 Receptors through Interactions with Residues in the TM4 and Cys-Loop Domains. Molecular Pharmacology 2016, 89 (4) , 446-456. https://doi.org/10.1124/mol.116.103432
    89. Marcus Wieder, Ugo Perricone, Thomas Seidel, Stefan Boresch, Thierry Langer. Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Monatshefte für Chemie - Chemical Monthly 2016, 147 (3) , 553-563. https://doi.org/10.1007/s00706-016-1674-1
    90. Sumudu P Leelananda, Steffen Lindert. Computational methods in drug discovery. Beilstein Journal of Organic Chemistry 2016, 12 , 2694-2718. https://doi.org/10.3762/bjoc.12.267
    91. Junfeng Gu, Xu Yang, Ling Kang, Jinying Wu, Xicheng Wang. MoDock: A multi-objective strategy improves the accuracy for molecular docking. Algorithms for Molecular Biology 2015, 10 (1) https://doi.org/10.1186/s13015-015-0034-8
    92. Janez Konc, Samo Lešnik, Dušanka Janežič. Modeling enzyme-ligand binding in drug discovery. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0096-0
    93. Chandrabhan Seniya, Ajay Yadav, G.J. Khan, Nand K. Sah. In-silico Studies Show Potent Inhibition of HIV-1 Reverse Transcriptase Activity by a Herbal Drug. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2015, 12 (6) , 1355-1364. https://doi.org/10.1109/TCBB.2015.2415771
    94. Wen‐Jing Wang, Qi Huang, Jun Zou, Lin‐Li Li, Sheng‐Yong Yang. TS ‐Chemscore, a Target‐Specific Scoring Function, Significantly Improves the Performance of Scoring in Virtual Screening. Chemical Biology & Drug Design 2015, 86 (1) , 1-8. https://doi.org/10.1111/cbdd.12470
    95. Ajay Pradhan, Solomon Asnake, Joubert Banjop Kharlyngdoh, Carina Modig, Per-Erik Olsson. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish. Chemico-Biological Interactions 2015, 233 , 35-45. https://doi.org/10.1016/j.cbi.2015.03.023
    96. Bhanu P. Jagilinki, Nikhil Gadewal, Harshal Mehta, Hafiza Mahadik, Vikrant Pandey, Ulka Sawant, Prasad A. Wadegaonkar, Peyush Goyal, Satish Kumar, Ashok K. Varma. Conserved residues at the MAPKs binding interfaces that regulate transcriptional machinery. Journal of Biomolecular Structure and Dynamics 2015, 33 (4) , 852-860. https://doi.org/10.1080/07391102.2014.915764
    97. Weijun Xu, Andrew J. Lucke, David P. Fairlie. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. Journal of Molecular Graphics and Modelling 2015, 57 , 76-88. https://doi.org/10.1016/j.jmgm.2015.01.009
    98. Anuradha Singh, Dipti Yadav, Madhu Yadav, Ashwini Dhamanage, Smita Kulkarni, Ramendra K. Singh. Molecular Modeling, Synthesis and Biological Evaluation of N ‐Heteroaryl Compounds as Reverse Transcriptase Inhibitors Against HIV ‐1. Chemical Biology & Drug Design 2015, 85 (3) , 336-347. https://doi.org/10.1111/cbdd.12397
    99. Zhengfu Li, Junfeng Gu, Hongyan Zhuang, Ling Kang, Xiaoyu Zhao, Quan Guo. Adaptive molecular docking method based on information entropy genetic algorithm. Applied Soft Computing 2015, 26 , 299-302. https://doi.org/10.1016/j.asoc.2014.10.008
    100. Gayatri Ramakrishnan, Nagasuma R. Chandra, Narayanaswamy Srinivasan. Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv. Molecular BioSystems 2015, 11 (12) , 3316-3331. https://doi.org/10.1039/C5MB00476D
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect