logo
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Extended-Connectivity Fingerprints

View Author Information
3429 North Mountain View Drive, San Diego, California 92116 and Accelrys, Incorporated, 10188 Telesis Court, Suite 100, San Diego, California 92121
* Corresponding author. Telephone: (619) 282-5480. E-mail: [email protected]
†3429 North Mountain View Drive, San Diego, California.
‡Accelrys, Incorporated.
Cite this: J. Chem. Inf. Model. 2010, 50, 5, 742–754
Publication Date (Web):April 28, 2010
https://doi.org/10.1021/ci100050t
Copyright © 2010 American Chemical Society
Article Views
17964
Altmetric
-
Citations
LEARN ABOUT THESE METRICS

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

Read OnlinePDF (1 MB)

Abstract

Abstract Image

Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular characterization. Historically, topological fingerprints were developed for substructure and similarity searching. ECFPs were developed specifically for structure−activity modeling. ECFPs are circular fingerprints with a number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent an essentially infinite number of different molecular features (including stereochemical information); their features represent the presence of particular substructures, allowing easier interpretation of analysis results; and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for different uses. While the use of ECFPs has been widely adopted and validated, a description of their implementation has not previously been presented in the literature.

Cited By


This article is cited by 1770 publications.

  1. Jinkui Wu, Shihui Wang, Li Zhou, Xu Ji, Yiyang Dai, Yagu Dang, Markus Kraft. Deep-Learning Architecture in QSPR Modeling for the Prediction of Energy Conversion Efficiency of Solar Cells. Industrial & Engineering Chemistry Research 2020, Article ASAP.
  2. Zhongliang Guo, Stephen Wu, Mitsuru Ohno, Ryo Yoshida. Bayesian Algorithm for Retrosynthesis. Journal of Chemical Information and Modeling 2020, Article ASAP.
  3. David J. Ponting, Ruud van Deursen, Martin A. Ott. Machine Learning Predicts Degree of Aromaticity from Structural Fingerprints. Journal of Chemical Information and Modeling 2020, Article ASAP.
  4. Ruimin Ma, Tengfei Luo. PI1M: A Benchmark Database for Polymer Informatics. Journal of Chemical Information and Modeling 2020, Article ASAP.
  5. Dingyan Wang, Zeen Yang, Bingqing Zhu, Xuefeng Mei, Xiaomin Luo. Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Crystal Growth & Design 2020, 20 (10) , 6610-6621. https://doi.org/10.1021/acs.cgd.0c00767
  6. Lewis J. Martin, Michael T. Bowen. Comparing Fingerprints for Ligand-Based Virtual Screening: A Fast and Scalable Approach for Unbiased Evaluation. Journal of Chemical Information and Modeling 2020, Article ASAP.
  7. Anthony DiFranzo, Robert P. Sheridan, Andy Liaw, Matthew Tudor. Nearest Neighbor Gaussian Process for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2020, Article ASAP.
  8. Thanh-Hoang Nguyen-Vo, Loc Nguyen, Nguyet Do, Phuc H. Le, Thien-Ngan Nguyen, Binh P. Nguyen, Ly Le. Predicting Drug-Induced Liver Injury Using Convolutional Neural Network and Molecular Fingerprint-Embedded Features. ACS Omega 2020, 5 (39) , 25432-25439. https://doi.org/10.1021/acsomega.0c03866
  9. Lindsey Burggraaff, Amber van Veen, Chi Chung Lam, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen. Annotation of Allosteric Compounds to Enhance Bioactivity Modeling for Class A GPCRs. Journal of Chemical Information and Modeling 2020, Article ASAP.
  10. Suman K. Chakravarti. Reason Vectors: Abstract Representation of Chemistry–Biology Interaction Outcomes, for Reasoning and Prediction. Journal of Chemical Information and Modeling 2020, Article ASAP.
  11. Zheng Zhao, Philip E. Bourne. Structural Insights into the Binding Modes of Viral RNA-Dependent RNA Polymerases Using a Function-Site Interaction Fingerprint Method for RNA Virus Drug Discovery. Journal of Proteome Research 2020, Article ASAP.
  12. Zoe Cournia, Bryce K. Allen, Thijs Beuming, David A. Pearlman, Brian K. Radak, Woody Sherman. Rigorous Free Energy Simulations in Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4153-4169. https://doi.org/10.1021/acs.jcim.0c00116
  13. Viet-Khoa Tran-Nguyen, Célien Jacquemard, Didier Rognan. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4263-4273. https://doi.org/10.1021/acs.jcim.0c00155
  14. Joseph A. Morrone, Jeffrey K. Weber, Tien Huynh, Heng Luo, Wendy D. Cornell. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein–Ligand Binding Mode Prediction over a Baseline Docking Approach. Journal of Chemical Information and Modeling 2020, 60 (9) , 4170-4179. https://doi.org/10.1021/acs.jcim.9b00927
  15. Lindsey Burggraaff, Eelke B. Lenselink, Willem Jespers, Jesper van Engelen, Brandon J. Bongers, Marina Gorostiola González, Rongfang Liu, Holger H. Hoos, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen. Successive Statistical and Structure-Based Modeling to Identify Chemically Novel Kinase Inhibitors. Journal of Chemical Information and Modeling 2020, 60 (9) , 4283-4295. https://doi.org/10.1021/acs.jcim.9b01204
  16. Henriëtte Willems, Stephane De Cesco, Fredrik Svensson. Computational Chemistry on a Budget: Supporting Drug Discovery with Limited Resources. Journal of Medicinal Chemistry 2020, 63 (18) , 10158-10169. https://doi.org/10.1021/acs.jmedchem.9b02126
  17. Zhi-Wen Zhao, Marcos del Cueto, Yun Geng, Alessandro Troisi. Effect of Increasing the Descriptor Set on Machine Learning Prediction of Small Molecule-Based Organic Solar Cells. Chemistry of Materials 2020, 32 (18) , 7777-7787. https://doi.org/10.1021/acs.chemmater.0c02325
  18. Stefano Costanzi, Charlotte K. Slavick, Brent O. Hutcheson, Gregory D. Koblentz, Richard T. Cupitt. Lists of Chemical Warfare Agents and Precursors from International Nonproliferation Frameworks: Structural Annotation and Chemical Fingerprint Analysis. Journal of Chemical Information and Modeling 2020, Article ASAP.
  19. Javed Iqbal, Martin Vogt, Jürgen Bajorath. Quantitative Comparison of Three-Dimensional Activity Landscapes of Compound Data Sets Based upon Topological Features. ACS Omega 2020, 5 (37) , 24111-24117. https://doi.org/10.1021/acsomega.0c03659
  20. Bingqing Cheng, Ryan-Rhys Griffiths, Simon Wengert, Christian Kunkel, Tamas Stenczel, Bonan Zhu, Volker L. Deringer, Noam Bernstein, Johannes T. Margraf, Karsten Reuter, Gabor Csanyi. Mapping Materials and Molecules. Accounts of Chemical Research 2020, 53 (9) , 1981-1991. https://doi.org/10.1021/acs.accounts.0c00403
  21. Paul Maragakis, Hunter Nisonoff, Brian Cole, David E. Shaw. A Deep-Learning View of Chemical Space Designed to Facilitate Drug Discovery. Journal of Chemical Information and Modeling 2020, Article ASAP.
  22. Alberga Domenico, Gambacorta Nicola, Trisciuzzi Daniela, Ciriaco Fulvio, Amoroso Nicola, Nicolotti Orazio. De Novo Drug Design of Targeted Chemical Libraries Based on Artificial Intelligence and Pair-Based Multiobjective Optimization. Journal of Chemical Information and Modeling 2020, Article ASAP.
  23. Bingjie Hu, Xin Zhou, Michael A. Mohutsky, Prashant V. Desai. Structure–Property Relationships and Machine Learning Models for Addressing CYP3A4-Mediated Victim Drug–Drug Interaction Risk in Drug Discovery. Molecular Pharmaceutics 2020, 17 (9) , 3600-3608. https://doi.org/10.1021/acs.molpharmaceut.0c00637
  24. W. F. Drew Bennett, Stewart He, Camille L. Bilodeau, Derek Jones, Delin Sun, Hyojin Kim, Jonathan E. Allen, Felice C. Lightstone, Helgi I. Ingólfsson. Predicting Small Molecule Transfer Free Energies by Combining Molecular Dynamics Simulations and Deep Learning. Journal of Chemical Information and Modeling 2020, Article ASAP.
  25. Julia Gebhardt, Matthias Kiesel, Sereina Riniker, Niels Hansen. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. Journal of Chemical Information and Modeling 2020, Article ASAP.
  26. Kangway V. Chuang, Laura M. Gunsalus, Michael J. Keiser. Learning Molecular Representations for Medicinal Chemistry. Journal of Medicinal Chemistry 2020, 63 (16) , 8705-8722. https://doi.org/10.1021/acs.jmedchem.0c00385
  27. Kevin McCloskey, Eric A. Sigel, Steven Kearnes, Ling Xue, Xia Tian, Dennis Moccia, Diana Gikunju, Sana Bazzaz, Betty Chan, Matthew A. Clark, John W. Cuozzo, Marie-Aude Guié, John P. Guilinger, Christelle Huguet, Christopher D. Hupp, Anthony D. Keefe, Christopher J. Mulhern, Ying Zhang, Patrick Riley. Machine Learning on DNA-Encoded Libraries: A New Paradigm for Hit Finding. Journal of Medicinal Chemistry 2020, 63 (16) , 8857-8866. https://doi.org/10.1021/acs.jmedchem.0c00452
  28. Xutong Li, Zhaojun Li, Xiaolong Wu, Zhaoping Xiong, Tianbiao Yang, Zunyun Fu, Xiaohong Liu, Xiaoqin Tan, Feisheng Zhong, Xiaozhe Wan, Dingyan Wang, Xiaoyu Ding, Ruirui Yang, Hui Hou, Chunpu Li, Hong Liu, Kaixian Chen, Hualiang Jiang, Mingyue Zheng. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation. Journal of Medicinal Chemistry 2020, 63 (16) , 8723-8737. https://doi.org/10.1021/acs.jmedchem.9b00855
  29. Filip Miljković, Raquel Rodríguez-Pérez, Jürgen Bajorath. Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes. Journal of Medicinal Chemistry 2020, 63 (16) , 8738-8748. https://doi.org/10.1021/acs.jmedchem.9b00867
  30. Raquel Rodríguez-Pérez, Jürgen Bajorath. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. Journal of Medicinal Chemistry 2020, 63 (16) , 8761-8777. https://doi.org/10.1021/acs.jmedchem.9b01101
  31. Amol Thakkar, Nidhal Selmi, Jean-Louis Reymond, Ola Engkvist, Esben Jannik Bjerrum. “Ring Breaker”: Neural Network Driven Synthesis Prediction of the Ring System Chemical Space. Journal of Medicinal Chemistry 2020, 63 (16) , 8791-8808. https://doi.org/10.1021/acs.jmedchem.9b01919
  32. Maurizio Recanatini, Chiara Cabrelle. Drug Research Meets Network Science: Where Are We?. Journal of Medicinal Chemistry 2020, 63 (16) , 8653-8666. https://doi.org/10.1021/acs.jmedchem.9b01989
  33. Evan N. Feinberg, Elizabeth Joshi, Vijay S. Pande, Alan C. Cheng. Improvement in ADMET Prediction with Multitask Deep Featurization. Journal of Medicinal Chemistry 2020, 63 (16) , 8835-8848. https://doi.org/10.1021/acs.jmedchem.9b02187
  34. Kyohei Hanaoka. Deep Neural Networks for Multicomponent Molecular Systems. ACS Omega 2020, 5 (33) , 21042-21053. https://doi.org/10.1021/acsomega.0c02599
  35. Carmen Esposito, Shuzhe Wang, Udo E. W. Lange, Frank Oellien, Sereina Riniker. Combining Machine Learning and Molecular Dynamics to Predict P-Glycoprotein Substrates. Journal of Chemical Information and Modeling 2020, Article ASAP.
  36. Luka Stojanović, Miloš Popović, Nebojša Tijanić, Goran Rakočević, Marko Kalinić. Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning. Journal of Chemical Information and Modeling 2020, Article ASAP.
  37. Todd J. Wills, Dmitrii A. Polshakov, Matthew C. Robinson, Alpha A. Lee. Impact of Chemist-In-The-Loop Molecular Representations on Machine Learning Outcomes. Journal of Chemical Information and Modeling 2020, Article ASAP.
  38. Kaifu Gao, Duc Duy Nguyen, Meihua Tu, Guo-Wei Wei. Generative Network Complex for the Automated Generation of Drug-like Molecules. Journal of Chemical Information and Modeling 2020, Article ASAP.
  39. Jenke Scheen, Wilson Wu, Antonia S. J. S. Mey, Paolo Tosco, Mark Mackey, Julien Michel. Hybrid Alchemical Free Energy/Machine-Learning Methodology for the Computation of Hydration Free Energies. Journal of Chemical Information and Modeling 2020, Article ASAP.
  40. Sunghoon Joo, Min Soo Kim, Jaeho Yang, Jeahyun Park. Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder. ACS Omega 2020, 5 (30) , 18642-18650. https://doi.org/10.1021/acsomega.0c01149
  41. Silvia Amabilino, Peter Pogány, Stephen D. Pickett, Darren V. S. Green. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries. Journal of Chemical Information and Modeling 2020, Article ASAP.
  42. Mihir S. Date, Devin O’Brien, Danielle J. Botelho, Terry W. Schultz, Daniel C. Liebler, Trevor M. Penning, Daniel T. Salvito. Clustering a Chemical Inventory for Safety Assessment of Fragrance Ingredients: Identifying Read-Across Analogs to Address Data Gaps. Chemical Research in Toxicology 2020, 33 (7) , 1709-1718. https://doi.org/10.1021/acs.chemrestox.9b00518
  43. Suqing Zheng, Yibing Wang, Wenxin Liu, Wenping Chang, Guang Liang, Yong Xu, Fu Lin. In Silico Prediction of Hemolytic Toxicity on the Human Erythrocytes for Small Molecules by Machine-Learning and Genetic Algorithm. Journal of Medicinal Chemistry 2020, 63 (12) , 6499-6512. https://doi.org/10.1021/acs.jmedchem.9b00853
  44. Yanxing Wang, Jianxing Hu, Junyong Lai, Yibo Li, Hongwei Jin, Lihe Zhang, Liang-Ren Zhang, Zhen-ming Liu. TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network. Journal of Chemical Information and Modeling 2020, 60 (6) , 2754-2765. https://doi.org/10.1021/acs.jcim.0c00005
  45. Fangqiang Zhu, Xiaohua Zhang, Jonathan E. Allen, Derek Jones, Felice C. Lightstone. Binding Affinity Prediction by Pairwise Function Based on Neural Network. Journal of Chemical Information and Modeling 2020, 60 (6) , 2766-2772. https://doi.org/10.1021/acs.jcim.0c00026
  46. Suqing Zheng, Jun Xiong, Yibing Wang, Guang Liang, Yong Xu, Fu Lin. Quantitative Prediction of Hemolytic Toxicity for Small Molecules and Their Potential Hemolytic Fragments by Machine Learning and Recursive Fragmentation Methods. Journal of Chemical Information and Modeling 2020, 60 (6) , 3231-3245. https://doi.org/10.1021/acs.jcim.0c00102
  47. Franziska Kruger, Nikolas Fechner, Nikolaus Stiefl. Automated Identification of Chemical Series: Classifying like a Medicinal Chemist. Journal of Chemical Information and Modeling 2020, 60 (6) , 2888-2902. https://doi.org/10.1021/acs.jcim.0c00204
  48. Mahendra Awale, Sereina Riniker, Christian Kramer. Matched Molecular Series Analysis for ADME Property Prediction. Journal of Chemical Information and Modeling 2020, 60 (6) , 2903-2914. https://doi.org/10.1021/acs.jcim.0c00269
  49. Weikaixin Kong, Xinyu Tu, Weiran Huang, Yang Yang, Zhengwei Xie, Zhuo Huang. Prediction and Optimization of NaV1.7 Sodium Channel Inhibitors Based on Machine Learning and Simulated Annealing. Journal of Chemical Information and Modeling 2020, 60 (6) , 2739-2753. https://doi.org/10.1021/acs.jcim.9b01180
  50. Zhongyu Wang, Jingwen Chen, Huixiao Hong. Applicability Domains Enhance Application of PPARγ Agonist Classifiers Trained by Drug-like Compounds to Environmental Chemicals. Chemical Research in Toxicology 2020, 33 (6) , 1382-1388. https://doi.org/10.1021/acs.chemrestox.9b00498
  51. Lena Hefke, Kerstin Hiesinger, W. Felix Zhu, Jan S. Kramer, Ewgenij Proschak. Computer-Aided Fragment Growing Strategies to Design Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase. ACS Medicinal Chemistry Letters 2020, 11 (6) , 1244-1249. https://doi.org/10.1021/acsmedchemlett.0c00102
  52. JanetJon PaulResearcherKulikHeather J.Associate Professor in the Department of Chemical EngineeringMorencyYamileeChemistry majors
    Get started with machine learning with this e-book

    ...what you should read if you want to get an idea of the black box that is machine learning.

    CaucciMary KateChemistry major
    Practical overview of the use of machine learning in chemistry

    Machine Learning in Chemistry is highly demonstrative of the wide applications of ML in the chemical sphere. It provides the tools and background to guide you to your own decision relevant to your particular work. It was written with practicality in mind, it presents the history, benefits, concerns, warnings, and critiques of ML in order to allow the reader to come to their own conclusions.

    .
    Machine Learning in Chemistry. 2020,,https://doi.org/10.1021/acs.infocus.7e4001
  53. Luca Pinzi, Rosaria Benedetti, Lucia Altucci, Giulio Rastelli. Design of Dual Inhibitors of Histone Deacetylase 6 and Heat Shock Protein 90. ACS Omega 2020, 5 (20) , 11473-11480. https://doi.org/10.1021/acsomega.0c00559
  54. Olivia Zhang, Jeffrey W. Schubert. Derivatization of Amino Acids and Peptides via Photoredox-Mediated Conjugate Addition. The Journal of Organic Chemistry 2020, 85 (9) , 6225-6232. https://doi.org/10.1021/acs.joc.0c00635
  55. Tao Zeng, Zhihong Liu, Jingyuan Zhuang, Yitao Jiang, Wengan He, Hongjuan Diao, Nan Lv, Yongxing Jian, Danhong Liang, Yufan Qiu, Rong Zhang, Fan Zhang, Xiaowen Tang, Ruibo Wu. TeroKit: A Database-Driven Web Server for Terpenome Research. Journal of Chemical Information and Modeling 2020, 60 (4) , 2082-2090. https://doi.org/10.1021/acs.jcim.0c00141
  56. Amanda J. Minnich, Kevin McLoughlin, Margaret Tse, Jason Deng, Andrew Weber, Neha Murad, Benjamin D. Madej, Bharath Ramsundar, Tom Rush, Stacie Calad-Thomson, Jim Brase, Jonathan E. Allen. AMPL: A Data-Driven Modeling Pipeline for Drug Discovery. Journal of Chemical Information and Modeling 2020, 60 (4) , 1955-1968. https://doi.org/10.1021/acs.jcim.9b01053
  57. Robert P. Sheridan, Prabha Karnachi, Matthew Tudor, Yuting Xu, Andy Liaw, Falgun Shah, Alan C. Cheng, Elizabeth Joshi, Meir Glick, Juan Alvarez. Experimental Error, Kurtosis, Activity Cliffs, and Methodology: What Limits the Predictivity of Quantitative Structure–Activity Relationship Models?. Journal of Chemical Information and Modeling 2020, 60 (4) , 1969-1982. https://doi.org/10.1021/acs.jcim.9b01067
  58. Fergus Imrie, Anthony R. Bradley, Mihaela van der Schaar, Charlotte M. Deane. Deep Generative Models for 3D Linker Design. Journal of Chemical Information and Modeling 2020, 60 (4) , 1983-1995. https://doi.org/10.1021/acs.jcim.9b01120
  59. Zi-Yi Yang, Jie Dong, Zhi-Jiang Yang, Ai-Ping Lu, Ting-Jun Hou, Dong-Sheng Cao. Structural Analysis and Identification of False Positive Hits in Luciferase-Based Assays. Journal of Chemical Information and Modeling 2020, 60 (4) , 2031-2043. https://doi.org/10.1021/acs.jcim.9b01188
  60. Masatake Sugita, Masataka Hamano, Kota Kasahara, Takeshi Kikuchi, Fumio Hirata. New Protocol for Predicting the Ligand-Binding Site and Mode Based on the 3D-RISM/KH Theory. Journal of Chemical Theory and Computation 2020, 16 (4) , 2864-2876. https://doi.org/10.1021/acs.jctc.9b01069
  61. Cecile Valsecchi, Francesca Grisoni, Viviana Consonni, Davide Ballabio. Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study. Journal of Chemical Information and Modeling 2020, 60 (3) , 1215-1223. https://doi.org/10.1021/acs.jcim.9b01057
  62. Hyunkyung Cho, Joo-Youn Lee, Sang Yoon Choi, Chaemin Lim, Min-Kyoung Park, Hyejin An, Jeong Ok Lee, Minsoo Noh, Seunghee Lee, Sanghee Kim. Identification of a New Chemotype of Anti-Obesity Compounds by Ensemble Screening. ACS Omega 2020, 5 (8) , 4338-4346. https://doi.org/10.1021/acsomega.9b04454
  63. Xinhao Li, Nicole C. Kleinstreuer, Denis Fourches. Hierarchical Quantitative Structure–Activity Relationship Modeling Approach for Integrating Binary, Multiclass, and Regression Models of Acute Oral Systemic Toxicity. Chemical Research in Toxicology 2020, 33 (2) , 353-366. https://doi.org/10.1021/acs.chemrestox.9b00259
  64. Asif J. Chowdhury, Wenqiang Yang, Kareem E. Abdelfatah, Mehdi Zare, Andreas Heyden, Gabriel A. Terejanu. A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications. Journal of Chemical Theory and Computation 2020, 16 (2) , 1105-1114. https://doi.org/10.1021/acs.jctc.9b00986
  65. Vikram Sundar, Lucy Colwell. The Effect of Debiasing Protein–Ligand Binding Data on Generalization. Journal of Chemical Information and Modeling 2020, 60 (1) , 56-62. https://doi.org/10.1021/acs.jcim.9b00415
  66. Vadim Korolev, Artem Mitrofanov, Alexandru Korotcov, Valery Tkachenko. Graph Convolutional Neural Networks as “General-Purpose” Property Predictors: The Universality and Limits of Applicability. Journal of Chemical Information and Modeling 2020, 60 (1) , 22-28. https://doi.org/10.1021/acs.jcim.9b00587
  67. Cong Fan, Ping-pui Wong, Huiying Zhao. DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction. Journal of Chemical Information and Modeling 2020, 60 (1) , 400-409. https://doi.org/10.1021/acs.jcim.9b00717
  68. Luca Pinzi, Giulio Rastelli. Identification of Target Associations for Polypharmacology from Analysis of Crystallographic Ligands of the Protein Data Bank. Journal of Chemical Information and Modeling 2020, 60 (1) , 372-390. https://doi.org/10.1021/acs.jcim.9b00821
  69. Yan Yang, Yanmin Zhang, Yi Hua, Xingye Chen, Yuanrong Fan, Yuchen Wang, Li Liang, Chenglong Deng, Tao Lu, Yadong Chen, Haichun Liu. In Silico Design and Analysis of a Kinase-Focused Combinatorial Library Considering Diversity and Quality. Journal of Chemical Information and Modeling 2020, 60 (1) , 92-107. https://doi.org/10.1021/acs.jcim.9b00841
  70. Alice Capecchi, Alain Zhang, Jean-Louis Reymond. Populating Chemical Space with Peptides Using a Genetic Algorithm. Journal of Chemical Information and Modeling 2020, 60 (1) , 121-132. https://doi.org/10.1021/acs.jcim.9b01014
  71. Shoichi Ishida, Kei Terayama, Ryosuke Kojima, Kiyosei Takasu, Yasushi Okuno. Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks. Journal of Chemical Information and Modeling 2019, 59 (12) , 5026-5033. https://doi.org/10.1021/acs.jcim.9b00538
  72. Damian Leśniak, Sabina Podlewska, Stanisław Jastrzębski, Igor Sieradzki, Andrzej J. Bojarski, Jacek Tabor. Development of New Methods Needs Proper Evaluation—Benchmarking Sets for Machine Learning Experiments for Class A GPCRs. Journal of Chemical Information and Modeling 2019, 59 (12) , 4974-4992. https://doi.org/10.1021/acs.jcim.9b00689
  73. Shi-Ping Peng, Yi Zhao. Convolutional Neural Networks for the Design and Analysis of Non-Fullerene Acceptors. Journal of Chemical Information and Modeling 2019, 59 (12) , 4993-5001. https://doi.org/10.1021/acs.jcim.9b00732
  74. Minjian Yang, Bingzhong Tao, Chengjuan Chen, Wenqiang Jia, Shaolei Sun, Tiantai Zhang, Xiaojian Wang. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. Journal of Chemical Information and Modeling 2019, 59 (12) , 5002-5012. https://doi.org/10.1021/acs.jcim.9b00798
  75. Xinyu Li, Raymond Chiong, Zhongyi Hu, David Cornforth, Alister J. Page. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning. Journal of Chemical Theory and Computation 2019, 15 (12) , 6882-6894. https://doi.org/10.1021/acs.jctc.9b00420
  76. Weixiao Cheng, Carla A. Ng. Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List. Environmental Science & Technology 2019, 53 (23) , 13970-13980. https://doi.org/10.1021/acs.est.9b04833
  77. Matteo Manica, Ali Oskooei, Jannis Born, Vigneshwari Subramanian, Julio Sáez-Rodríguez, María Rodríguez Martínez. Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders. Molecular Pharmaceutics 2019, 16 (12) , 4797-4806. https://doi.org/10.1021/acs.molpharmaceut.9b00520
  78. Sebastian Schneckener, Sergio Grimbs, Jessica Hey, Stephan Menz, Maren Osmers, Steffen Schaper, Alexander Hillisch, Andreas H. Göller. Prediction of Oral Bioavailability in Rats: Transferring Insights from in Vitro Correlations to (Deep) Machine Learning Models Using in Silico Model Outputs and Chemical Structure Parameters. Journal of Chemical Information and Modeling 2019, 59 (11) , 4893-4905. https://doi.org/10.1021/acs.jcim.9b00460
  79. Nicholas T. Cockroft, Xiaolin Cheng, James R. Fuchs. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products. Journal of Chemical Information and Modeling 2019, 59 (11) , 4906-4920. https://doi.org/10.1021/acs.jcim.9b00489
  80. Yipin Lu, Shankara Anand, William Shirley, Peter Gedeck, Brian P. Kelley, Suzanne Skolnik, Stephane Rodde, Mai Nguyen, Mika Lindvall, Weiping Jia. Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines. Journal of Chemical Information and Modeling 2019, 59 (11) , 4706-4719. https://doi.org/10.1021/acs.jcim.9b00498
  81. Alexey V. Zakharov, Tongan Zhao, Dac-Trung Nguyen, Tyler Peryea, Timothy Sheils, Adam Yasgar, Ruili Huang, Noel Southall, Anton Simeonov. Novel Consensus Architecture To Improve Performance of Large-Scale Multitask Deep Learning QSAR Models. Journal of Chemical Information and Modeling 2019, 59 (11) , 4613-4624. https://doi.org/10.1021/acs.jcim.9b00526
  82. Louis Bellmann, Patrick Penner, Matthias Rarey. Connected Subgraph Fingerprints: Representing Molecules Using Exhaustive Subgraph Enumeration. Journal of Chemical Information and Modeling 2019, 59 (11) , 4625-4635. https://doi.org/10.1021/acs.jcim.9b00571
  83. Friedemann Schmidt, Jan Wenzel, Nis Halland, Stefan Güssregen, Laure Delafoy, Andreas Czich. Computational Investigation of Drug Phototoxicity: Photosafety Assessment, Photo-Toxophore Identification, and Machine Learning. Chemical Research in Toxicology 2019, 32 (11) , 2338-2352. https://doi.org/10.1021/acs.chemrestox.9b00338
  84. Yuanrong Fan, Yanmin Zhang, Yi Hua, Yuchen Wang, Lu Zhu, Junnan Zhao, Yan Yang, Xingye Chen, Shuai Lu, Tao Lu, Yadong Chen, Haichun Liu. Investigation of Machine Intelligence in Compound Cell Activity Classification. Molecular Pharmaceutics 2019, 16 (11) , 4472-4484. https://doi.org/10.1021/acs.molpharmaceut.9b00558
  85. Rafał Roszak, Wiktor Beker, Karol Molga, Bartosz A. Grzybowski. Rapid and Accurate Prediction of pKa Values of C–H Acids Using Graph Convolutional Neural Networks. Journal of the American Chemical Society 2019, 141 (43) , 17142-17149. https://doi.org/10.1021/jacs.9b05895
  86. Maritza Hernandez, Guo Liang Gan, Kirby Linvill, Carl Dukatz, Jun Feng, Govinda Bhisetti. A Quantum-Inspired Method for Three-Dimensional Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling 2019, 59 (10) , 4475-4485. https://doi.org/10.1021/acs.jcim.9b00195
  87. Jesse G. Meyer, Shengchao Liu, Ian J. Miller, Joshua J. Coon, Anthony Gitter. Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests. Journal of Chemical Information and Modeling 2019, 59 (10) , 4438-4449. https://doi.org/10.1021/acs.jcim.9b00236
  88. Wen Torng, Russ B. Altman. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions. Journal of Chemical Information and Modeling 2019, 59 (10) , 4131-4149. https://doi.org/10.1021/acs.jcim.9b00628
  89. Jin Zhang, Daniel Mucs, Ulf Norinder, Fredrik Svensson. LightGBM: An Effective and Scalable Algorithm for Prediction of Chemical Toxicity–Application to the Tox21 and Mutagenicity Data Sets. Journal of Chemical Information and Modeling 2019, 59 (10) , 4150-4158. https://doi.org/10.1021/acs.jcim.9b00633
  90. Hironao Yamada, Chang Liu, Stephen Wu, Yukinori Koyama, Shenghong Ju, Junichiro Shiomi, Junko Morikawa, Ryo Yoshida. Predicting Materials Properties with Little Data Using Shotgun Transfer Learning. ACS Central Science 2019, 5 (10) , 1717-1730. https://doi.org/10.1021/acscentsci.9b00804
  91. James Schuler, Ram Samudrala. Fingerprinting CANDO: Increased Accuracy with Structure- and Ligand-Based Shotgun Drug Repurposing. ACS Omega 2019, 4 (17) , 17393-17403. https://doi.org/10.1021/acsomega.9b02160
  92. Uta Lessel, Christian Lemmen. Comparison of Large Chemical Spaces. ACS Medicinal Chemistry Letters 2019, 10 (10) , 1504-1510. https://doi.org/10.1021/acsmedchemlett.9b00331
  93. Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider, Shengyong Yang. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews 2019, 119 (18) , 10520-10594. https://doi.org/10.1021/acs.chemrev.8b00728
  94. Florian Leidner, Nese Kurt Yilmaz, Celia A. Schiffer. Target-Specific Prediction of Ligand Affinity with Structure-Based Interaction Fingerprints. Journal of Chemical Information and Modeling 2019, 59 (9) , 3679-3691. https://doi.org/10.1021/acs.jcim.9b00457
  95. Zi-Yi Yang, Zhi-Jiang Yang, Jie Dong, Liang-Liang Wang, Liu-Xia Zhang, Jun-Jie Ding, Xiao-Qin Ding, Ai-Ping Lu, Ting-Jun Hou, Dong-Sheng Cao. Structural Analysis and Identification of Colloidal Aggregators in Drug Discovery. Journal of Chemical Information and Modeling 2019, 59 (9) , 3714-3726. https://doi.org/10.1021/acs.jcim.9b00541
  96. Verena B. K. Kunig, Christiane Ehrt, Alexander Dömling, Andreas Brunschweiger. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Organic Letters 2019, 21 (18) , 7238-7243. https://doi.org/10.1021/acs.orglett.9b02448
  97. Oliver Laufkötter, Tomoyuki Miyao, Jürgen Bajorath. Large-Scale Comparison of Alternative Similarity Search Strategies with Varying Chemical Information Contents. ACS Omega 2019, 4 (12) , 15304-15311. https://doi.org/10.1021/acsomega.9b02470
  98. Sule Atahan-Evrenk, F. Betul Atalay. Prediction of Intramolecular Reorganization Energy Using Machine Learning. The Journal of Physical Chemistry A 2019, 123 (36) , 7855-7863. https://doi.org/10.1021/acs.jpca.9b02733
  99. Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi Jaakkola, Klavs Jensen, Regina Barzilay. Analyzing Learned Molecular Representations for Property Prediction. Journal of Chemical Information and Modeling 2019, 59 (8) , 3370-3388. https://doi.org/10.1021/acs.jcim.9b00237
  100. Yulan Wang, Yang Dai, Xiaowei Wu, Fei Li, Bo Liu, Chunpu Li, Qiufeng Liu, Yuanyang Zhou, Bao Wang, Mingrui Zhu, Rongrong Cui, Xiaoqin Tan, Zhaoping Xiong, Jia Liu, Minjia Tan, Yechun Xu, Meiyu Geng, Hualiang Jiang, Hong Liu, Jing Ai, Mingyue Zheng. Discovery and Development of a Series of Pyrazolo[3,4-d]pyridazinone Compounds as the Novel Covalent Fibroblast Growth Factor Receptor Inhibitors by the Rational Drug Design. Journal of Medicinal Chemistry 2019, 62 (16) , 7473-7488. https://doi.org/10.1021/acs.jmedchem.9b00510
  101. Adrian Jinich, Benjamin Sanchez-Lengeling, Haniu Ren, Rebecca Harman, Alán Aspuru-Guzik. A Mixed Quantum Chemistry/Machine Learning Approach for the Fast and Accurate Prediction of Biochemical Redox Potentials and Its Large-Scale Application to 315 000 Redox Reactions. ACS Central Science 2019, 5 (7) , 1199-1210. https://doi.org/10.1021/acscentsci.9b00297
  102. Isidro Cortés-Ciriano, Andreas Bender. Reliable Prediction Errors for Deep Neural Networks Using Test-Time Dropout. Journal of Chemical Information and Modeling 2019, 59 (7) , 3330-3339. https://doi.org/10.1021/acs.jcim.9b00297
  103. Ruimin Ma, Zeyu Liu, Quanwei Zhang, Zhiyu Liu, Tengfei Luo. Evaluating Polymer Representations via Quantifying Structure–Property Relationships. Journal of Chemical Information and Modeling 2019, 59 (7) , 3110-3119. https://doi.org/10.1021/acs.jcim.9b00358
  104. John S. Schreck, Connor W. Coley, Kyle J. M. Bishop. Learning Retrosynthetic Planning through Simulated Experience. ACS Central Science 2019, 5 (6) , 970-981. https://doi.org/10.1021/acscentsci.9b00055
  105. Tomoyuki Miyao, Kimito Funatsu. Iterative Screening Methods for Identification of Chemical Compounds with Specific Values of Various Properties. Journal of Chemical Information and Modeling 2019, 59 (6) , 2626-2641. https://doi.org/10.1021/acs.jcim.9b00093
  106. Shunsuke Tamura, Tomoyuki Miyao, Kimito Funatsu. Development of R-Group Fingerprints Based on the Local Landscape from an Attachment Point of a Molecular Structure. Journal of Chemical Information and Modeling 2019, 59 (6) , 2656-2663. https://doi.org/10.1021/acs.jcim.9b00122
  107. Emanuel S. R. Ehmki, Robert Schmidt, Farina Ohm, Matthias Rarey. Comparing Molecular Patterns Using the Example of SMARTS: Applications and Filter Collection Analysis. Journal of Chemical Information and Modeling 2019, 59 (6) , 2572-2586. https://doi.org/10.1021/acs.jcim.9b00249
  108. Adam C. Mater, Michelle L. Coote. Deep Learning in Chemistry. Journal of Chemical Information and Modeling 2019, 59 (6) , 2545-2559. https://doi.org/10.1021/acs.jcim.9b00266
  109. Suqing Zheng, Yibing Wang, Hongmei Liu, Wenping Chang, Yong Xu, Fu Lin. Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods. Chemical Research in Toxicology 2019, 32 (6) , 1014-1026. https://doi.org/10.1021/acs.chemrestox.8b00347
  110. Francesca Grisoni, Viviana Consonni, Davide Ballabio. Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project. Journal of Chemical Information and Modeling 2019, 59 (5) , 1839-1848. https://doi.org/10.1021/acs.jcim.8b00794
  111. Dominique Sydow, Lindsey Burggraaff, Angelika Szengel, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen, Andrea Volkamer. Advances and Challenges in Computational Target Prediction. Journal of Chemical Information and Modeling 2019, 59 (5) , 1728-1742. https://doi.org/10.1021/acs.jcim.8b00832
  112. Hongchao Ji, Yamei Xu, Hongmei Lu, Zhimin Zhang. Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification. Analytical Chemistry 2019, 91 (9) , 5629-5637. https://doi.org/10.1021/acs.analchem.8b05405
  113. Stefan Kuhn, Sean R. Johnson. Stereo-Aware Extension of HOSE Codes. ACS Omega 2019, 4 (4) , 7323-7329. https://doi.org/10.1021/acsomega.9b00488
  114. Thomas Blaschke, Filip Miljković, Jürgen Bajorath. Prediction of Different Classes of Promiscuous and Nonpromiscuous Compounds Using Machine Learning and Nearest Neighbor Analysis. ACS Omega 2019, 4 (4) , 6883-6890. https://doi.org/10.1021/acsomega.9b00492
  115. Mariana González-Medina, José L. Medina-Franco. Chemical Diversity of Cyanobacterial Compounds: A Chemoinformatics Analysis. ACS Omega 2019, 4 (4) , 6229-6237. https://doi.org/10.1021/acsomega.9b00532
  116. Márton Vass, Sabina Podlewska, Iwan J. P. de Esch, Andrzej J. Bojarski, Rob Leurs, Albert J. Kooistra, Chris de Graaf. Aminergic GPCR–Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. Journal of Medicinal Chemistry 2019, 62 (8) , 3784-3839. https://doi.org/10.1021/acs.jmedchem.8b00836
  117. Jennifer N. Wei, David Belanger, Ryan P. Adams, D. Sculley. Rapid Prediction of Electron–Ionization Mass Spectrometry Using Neural Networks. ACS Central Science 2019, 5 (4) , 700-708. https://doi.org/10.1021/acscentsci.9b00085
  118. Ingrid Grenet, Kevin Merlo, Jean-Paul Comet, Romain Tertiaux, David Rouquié, Frédéric Dayan. Stacked Generalization with Applicability Domain Outperforms Simple QSAR on in Vitro Toxicological Data. Journal of Chemical Information and Modeling 2019, 59 (4) , 1486-1496. https://doi.org/10.1021/acs.jcim.8b00553
  119. Angela Lopez-del Rio, Alfons Nonell-Canals, David Vidal, Alexandre Perera-Lluna. Evaluation of Cross-Validation Strategies in Sequence-Based Binding Prediction Using Deep Learning. Journal of Chemical Information and Modeling 2019, 59 (4) , 1645-1657. https://doi.org/10.1021/acs.jcim.8b00663
  120. Robert P. Sheridan. Interpretation of QSAR Models by Coloring Atoms According to Changes in Predicted Activity: How Robust Is It?. Journal of Chemical Information and Modeling 2019, 59 (4) , 1324-1337. https://doi.org/10.1021/acs.jcim.8b00825
  121. Samuel T. Hutchinson, Rika Kobayashi. Solvent-Specific Featurization for Predicting Free Energies of Solvation through Machine Learning. Journal of Chemical Information and Modeling 2019, 59 (4) , 1338-1346. https://doi.org/10.1021/acs.jcim.8b00901
  122. Fabrizio Giordanetto, Chentian Jin, Lindsay Willmore, Miklos Feher, David E. Shaw. Fragment Hits: What do They Look Like and How do They Bind?. Journal of Medicinal Chemistry 2019, 62 (7) , 3381-3394. https://doi.org/10.1021/acs.jmedchem.8b01855
  123. Kimberley M. Zorn, Thomas R. Lane, Daniel P. Russo, Alex M. Clark, Vadim Makarov, Sean Ekins. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Molecular Pharmaceutics 2019, 16 (4) , 1620-1632. https://doi.org/10.1021/acs.molpharmaceut.8b01297
  124. Isidro Cortés-Ciriano, Andreas Bender. Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks. Journal of Chemical Information and Modeling 2019, 59 (3) , 1269-1281. https://doi.org/10.1021/acs.jcim.8b00542
  125. Noé Sturm, Jiangming Sun, Yves Vandriessche, Andreas Mayr, Günter Klambauer, Lars Carlsson, Ola Engkvist, Hongming Chen. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models. Journal of Chemical Information and Modeling 2019, 59 (3) , 962-972. https://doi.org/10.1021/acs.jcim.8b00550
  126. Tomoyuki Miyao, Kimito Funatsu, Jürgen Bajorath. Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling. Journal of Chemical Information and Modeling 2019, 59 (3) , 983-992. https://doi.org/10.1021/acs.jcim.8b00584
  127. Suqing Zheng, Wenping Chang, Wenxin Liu, Guang Liang, Yong Xu, Fu Lin. Computational Prediction of a New ADMET Endpoint for Small Molecules: Anticommensal Effect on Human Gut Microbiota. Journal of Chemical Information and Modeling 2019, 59 (3) , 1215-1220. https://doi.org/10.1021/acs.jcim.8b00600
  128. Tomoyuki Miyao, Kimito Funatsu, Jürgen Bajorath. Three-Dimensional Activity Landscape Models of Different Design and Their Application to Compound Mapping and Potency Prediction. Journal of Chemical Information and Modeling 2019, 59 (3) , 993-1004. https://doi.org/10.1021/acs.jcim.8b00661
  129. Yadi Zhou, Suntara Cahya, Steven A. Combs, Christos A. Nicolaou, Jibo Wang, Prashant V. Desai, Jie Shen. Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets. Journal of Chemical Information and Modeling 2019, 59 (3) , 1005-1016. https://doi.org/10.1021/acs.jcim.8b00671
  130. Nobuaki Yasuo, Masakazu Sekijima. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning. Journal of Chemical Information and Modeling 2019, 59 (3) , 1050-1061. https://doi.org/10.1021/acs.jcim.8b00673
  131. Conrad Stork, Ya Chen, Martin Šícho, Johannes Kirchmair. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters. Journal of Chemical Information and Modeling 2019, 59 (3) , 1030-1043. https://doi.org/10.1021/acs.jcim.8b00677
  132. Sergey Sosnin, Dmitry Karlov, Igor V. Tetko, Maxim V. Fedorov. Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space. Journal of Chemical Information and Modeling 2019, 59 (3) , 1062-1072. https://doi.org/10.1021/acs.jcim.8b00685
  133. Yingchun Cai, Hongbin Yang, Weihua Li, Guixia Liu, Philip W. Lee, Yun Tang. Computational Prediction of Site of Metabolism for UGT-Catalyzed Reactions. Journal of Chemical Information and Modeling 2019, 59 (3) , 1085-1095. https://doi.org/10.1021/acs.jcim.8b00851
  134. Yi-Pei Li, Kehang Han, Colin A. Grambow, William H. Green. Self-Evolving Machine: A Continuously Improving Model for Molecular Thermochemistry. The Journal of Physical Chemistry A 2019, 123 (10) , 2142-2152. https://doi.org/10.1021/acs.jpca.8b10789
  135. Raquel Rodríguez-Pérez, Jürgen Bajorath. Multitask Machine Learning for Classifying Highly and Weakly Potent Kinase Inhibitors. ACS Omega 2019, 4 (2) , 4367-4375. https://doi.org/10.1021/acsomega.9b00298
  136. Lara Kuhnke, Antonius ter Laak, Andreas H. Göller. Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines. Journal of Chemical Information and Modeling 2019, 59 (2) , 668-672. https://doi.org/10.1021/acs.jcim.8b00758
  137. Javier L. Baylon, Nicholas A. Cilfone, Jeffrey R. Gulcher, Thomas W. Chittenden. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification. Journal of Chemical Information and Modeling 2019, 59 (2) , 673-688. https://doi.org/10.1021/acs.jcim.8b00801
  138. W. Patrick Walters. Virtual Chemical Libraries. Journal of Medicinal Chemistry 2019, 62 (3) , 1116-1124. https://doi.org/10.1021/acs.jmedchem.8b01048
  139. Zhuyifan Ye, Yilong Yang, Xiaoshan Li, Dongsheng Cao, Defang Ouyang. An Integrated Transfer Learning and Multitask Learning Approach for Pharmacokinetic Parameter Prediction. Molecular Pharmaceutics 2019, 16 (2) , 533-541. https://doi.org/10.1021/acs.molpharmaceut.8b00816
  140. Seokho Kang, Kyunghyun Cho. Conditional Molecular Design with Deep Generative Models. Journal of Chemical Information and Modeling 2019, 59 (1) , 43-52. https://doi.org/10.1021/acs.jcim.8b00263
  141. Ruifeng Liu, Hao Wang, Kyle P. Glover, Michael G. Feasel, Anders Wallqvist. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure–Activity Relationship Models Based on Deep Neural Networks?. Journal of Chemical Information and Modeling 2019, 59 (1) , 117-126. https://doi.org/10.1021/acs.jcim.8b00348
  142. Shengchao Liu, Moayad Alnammi, Spencer S. Ericksen, Andrew F. Voter, Gene E. Ananiev, James L. Keck, F. Michael Hoffmann, Scott A. Wildman, Anthony Gitter. Practical Model Selection for Prospective Virtual Screening. Journal of Chemical Information and Modeling 2019, 59 (1) , 282-293. https://doi.org/10.1021/acs.jcim.8b00363
  143. Francois Berenger, Yoshihiro Yamanishi. A Distance-Based Boolean Applicability Domain for Classification of High Throughput Screening Data. Journal of Chemical Information and Modeling 2019, 59 (1) , 463-476. https://doi.org/10.1021/acs.jcim.8b00499
  144. Mahendra Awale, Jean-Louis Reymond. Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning. Journal of Chemical Information and Modeling 2019, 59 (1) , 10-17. https://doi.org/10.1021/acs.jcim.8b00524
  145. Junmei Wang, Yubin Ge, Xiang-Qun Xie. Development and Testing of Druglike Screening Libraries. Journal of Chemical Information and Modeling 2019, 59 (1) , 53-65. https://doi.org/10.1021/acs.jcim.8b00537
  146. Jonas Dittrich, Denis Schmidt, Christopher Pfleger, Holger Gohlke. Converging a Knowledge-Based Scoring Function: DrugScore2018. Journal of Chemical Information and Modeling 2019, 59 (1) , 509-521. https://doi.org/10.1021/acs.jcim.8b00582
  147. Ruifeng Liu, Anders Wallqvist. Molecular Similarity-Based Domain Applicability Metric Efficiently Identifies Out-of-Domain Compounds. Journal of Chemical Information and Modeling 2019, 59 (1) , 181-189. https://doi.org/10.1021/acs.jcim.8b00597
  148. Domenico Alberga, Daniela Trisciuzzi, Michele Montaruli, Francesco Leonetti, Giuseppe Felice Mangiatordi, Orazio Nicolotti. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL). Journal of Chemical Information and Modeling 2019, 59 (1) , 586-596. https://doi.org/10.1021/acs.jcim.8b00698
  149. Ewgenij Proschak, Holger Stark, Daniel Merk. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. Journal of Medicinal Chemistry 2019, 62 (2) , 420-444. https://doi.org/10.1021/acs.jmedchem.8b00760
  150. Pasquale Linciano, Laura Cendron, Eleonora Gianquinto, Francesca Spyrakis, Donatella Tondi. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infectious Diseases 2019, 5 (1) , 9-34. https://doi.org/10.1021/acsinfecdis.8b00247
  151. Philippe Schwaller Teodoro Laino . Data-Driven Learning Systems for Chemical Reaction Prediction: An Analysis of Recent Approaches. 2019,,, 61-79. https://doi.org/10.1021/bk-2019-1326.ch004
  152. Sara E. Kearney, Gergely Zahoránszky-Kőhalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Noah Z. Burns, Jin K. Cha, Emily E. Mevers, Jon Clardy, Jason A. Clement, Peter A. Crooks, Gregory D. Cuny, Jake Ganor, Jesus Moreno, Lucas A. Morrill, Elias Picazo, Robert B. Susick, Neil K. Garg, Brian C. Goess, Robert B. Grossman, Chambers C. Hughes, Jeffrey N. Johnston, Madeleine M. Joullie, A. Douglas Kinghorn, David G.I. Kingston, Michael J. Krische, Ohyun Kwon, Thomas J. Maimone, Susruta Majumdar, Katherine N. Maloney, Enas Mohamed, Brian T. Murphy, Pavel Nagorny, David E. Olson, Larry E. Overman, Lauren E. Brown, John K. Snyder, John A. Porco, Jr., Fatima Rivas, Samir A. Ross, Richmond Sarpong, Indrajeet Sharma, Jared T. Shaw, Zhengren Xu, Ben Shen, Wei Shi, Corey R.J. Stephenson, Alyssa L. Verano, Derek S. Tan, Yi Tang, Richard E. Taylor, Regan J. Thomson, David A. Vosburg, Jimmy Wu, William M. Wuest, Armen Zakarian, Yufeng Zhang, Tianjing Ren, Zhong Zuo, James Inglese, Sam Michael, Anton Simeonov, Wei Zheng, Paul Shinn, Ajit Jadhav, Matthew B. Boxer, Matthew D. Hall, Menghang Xia, Rajarshi Guha, Jason M. Rohde. Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science 2018, 4 (12) , 1727-1741. https://doi.org/10.1021/acscentsci.8b00747
  153. Joshua Meyers, Nicola E. A. Chessum, Salyha Ali, N. Yi Mok, Birgit Wilding, A. Elisa Pasqua, Martin Rowlands, Michael J. Tucker, Lindsay E. Evans, Carl S. Rye, Lisa O’Fee, Yann-Vaï Le Bihan, Rosemary Burke, Michael Carter, Paul Workman, Julian Blagg, Nathan Brown, Rob L. M. van Montfort, Keith Jones, Matthew D. Cheeseman. Privileged Structures and Polypharmacology within and between Protein Families. ACS Medicinal Chemistry Letters 2018, 9 (12) , 1199-1204. https://doi.org/10.1021/acsmedchemlett.8b00364
  154. Evan N. Feinberg, Debnil Sur, Zhenqin Wu, Brooke E. Husic, Huanghao Mai, Yang Li, Saisai Sun, Jianyi Yang, Bharath Ramsundar, Vijay S. Pande. PotentialNet for Molecular Property Prediction. ACS Central Science 2018, 4 (11) , 1520-1530. https://doi.org/10.1021/acscentsci.8b00507
  155. Paulina Jakubiak, Michael Reutlinger, Patrizio Mattei, Franz Schuler, Arto Urtti, Rubén Alvarez-Sánchez. Understanding Molecular Drivers of Melanin Binding To Support Rational Design of Small Molecule Ophthalmic Drugs. Journal of Medicinal Chemistry 2018, 61 (22) , 10106-10115. https://doi.org/10.1021/acs.jmedchem.8b01281
  156. Swarit Jasial, Erik Gilberg, Thomas Blaschke, Jürgen Bajorath. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter. Journal of Medicinal Chemistry 2018, 61 (22) , 10255-10264. https://doi.org/10.1021/acs.jmedchem.8b01404
  157. Fang Hou, Zhenyao Wu, Zheng Hu, Zhourong Xiao, Li Wang, Xiangwen Zhang, Guozhu Li. Comparison Study on the Prediction of Multiple Molecular Properties by Various Neural Networks. The Journal of Physical Chemistry A 2018, 122 (46) , 9128-9134. https://doi.org/10.1021/acs.jpca.8b09376
  158. Evgeny Putin, Arip Asadulaev, Quentin Vanhaelen, Yan Ivanenkov, Anastasia V. Aladinskaya, Alex Aliper, Alex Zhavoronkov. Adversarial Threshold Neural Computer for Molecular de Novo Design. Molecular Pharmaceutics 2018, 15 (10) , 4386-4397. https://doi.org/10.1021/acs.molpharmaceut.7b01137
  159. Patrick Hop, Brandon Allgood, Jessen Yu. Geometric Deep Learning Autonomously Learns Chemical Features That Outperform Those Engineered by Domain Experts. Molecular Pharmaceutics 2018, 15 (10) , 4371-4377. https://doi.org/10.1021/acs.molpharmaceut.7b01144
  160. Yoni Donner, Stéphane Kazmierczak, Kristen Fortney. Drug Repurposing Using Deep Embeddings of Gene Expression Profiles. Molecular Pharmaceutics 2018, 15 (10) , 4314-4325. https://doi.org/10.1021/acs.molpharmaceut.8b00284
  161. Shahar Harel, Kira Radinsky. Prototype-Based Compound Discovery Using Deep Generative Models. Molecular Pharmaceutics 2018, 15 (10) , 4406-4416. https://doi.org/10.1021/acs.molpharmaceut.8b00474
  162. Raquel Rodríguez-Pérez, Jürgen Bajorath. Prediction of Compound Profiling Matrices, Part II: Relative Performance of Multitask Deep Learning and Random Forest Classification on the Basis of Varying Amounts of Training Data. ACS Omega 2018, 3 (9) , 12033-12040. https://doi.org/10.1021/acsomega.8b01682
  163. Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, Günter Klambauer. Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery. Journal of Chemical Information and Modeling 2018, 58 (9) , 1736-1741. https://doi.org/10.1021/acs.jcim.8b00234
  164. Isidro Cortés-Ciriano, Nicholas C. Firth, Andreas Bender, Oliver Watson. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening. Journal of Chemical Information and Modeling 2018, 58 (9) , 2000-2014. https://doi.org/10.1021/acs.jcim.8b00376
  165. Daniel Probst, Jean-Louis Reymond. Exploring DrugBank in Virtual Reality Chemical Space. Journal of Chemical Information and Modeling 2018, 58 (9) , 1731-1735. https://doi.org/10.1021/acs.jcim.8b00402
  166. Joshua Pottel, Anat Levit, Magdalena Korczynska, Marcus Fischer, Brian K. Shoichet. The Recognition of Unrelated Ligands by Identical Proteins. ACS Chemical Biology 2018, 13 (9) , 2522-2533. https://doi.org/10.1021/acschembio.8b00443
  167. Thomas M. Kaiser, Pieter B. Burger, Christopher J. Butch, Stephen C. Pelly, Dennis C. Liotta. A Machine Learning Approach for Predicting HIV Reverse Transcriptase Mutation Susceptibility of Biologically Active Compounds. Journal of Chemical Information and Modeling 2018, 58 (8) , 1544-1552. https://doi.org/10.1021/acs.jcim.7b00475
  168. Ruifeng Liu, Kyle P. Glover, Michael G. Feasel, Anders Wallqvist. General Approach to Estimate Error Bars for Quantitative Structure–Activity Relationship Predictions of Molecular Activity. Journal of Chemical Information and Modeling 2018, 58 (8) , 1561-1575. https://doi.org/10.1021/acs.jcim.8b00114
  169. Yingchun Cai, Hongbin Yang, Weihua Li, Guixia Liu, Philip W. Lee, Yun Tang. Multiclassification Prediction of Enzymatic Reactions for Oxidoreductases and Hydrolases Using Reaction Fingerprints and Machine Learning Methods. Journal of Chemical Information and Modeling 2018, 58 (6) , 1169-1181. https://doi.org/10.1021/acs.jcim.7b00656
  170. Evgeny Putin, Arip Asadulaev, Yan Ivanenkov, Vladimir Aladinskiy, Benjamin Sanchez-Lengeling, Alán Aspuru-Guzik, Alex Zhavoronkov. Reinforced Adversarial Neural Computer for de Novo Molecular Design. Journal of Chemical Information and Modeling 2018, 58 (6) , 1194-1204. https://doi.org/10.1021/acs.jcim.7b00690
  171. Samo Turk, Benjamin Merget, Sameh Eid, Simone Fulle. From Cancer to Pain Target by Automated Selectivity Inversion of a Clinical Candidate. Journal of Medicinal Chemistry 2018, 61 (11) , 4851-4859. https://doi.org/10.1021/acs.jmedchem.8b00140
  172. Izhar Wallach, Abraham Heifets. Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization. Journal of Chemical Information and Modeling 2018, 58 (5) , 916-932. https://doi.org/10.1021/acs.jcim.7b00403
  173. Sorin Avram, Alina Bora, Liliana Halip, Ramona Curpăn. Modeling Kinase Inhibition Using Highly Confident Data Sets. Journal of Chemical Information and Modeling 2018, 58 (5) , 957-967. https://doi.org/10.1021/acs.jcim.7b00729
  174. Shinji Nagasawa, Eman Al-Naamani, Akinori Saeki. Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest. The Journal of Physical Chemistry Letters 2018, 9 (10) , 2639-2646. https://doi.org/10.1021/acs.jpclett.8b00635
  175. Connor W. Coley, William H. Green, Klavs F. Jensen. Machine Learning in Computer-Aided Synthesis Planning. Accounts of Chemical Research 2018, 51 (5) , 1281-1289. https://doi.org/10.1021/acs.accounts.8b00087
  176. Ryo Kunimoto and Jürgen Bajorath . Combining Similarity Searching and Network Analysis for the Identification of Active Compounds. ACS Omega 2018, 3 (4) , 3768-3777. https://doi.org/10.1021/acsomega.8b00344
  177. Raquel Rodríguez-Pérez, Tomoyuki Miyao, Swarit Jasial, Martin Vogt, Jürgen Bajorath. Prediction of Compound Profiling Matrices Using Machine Learning. ACS Omega 2018, 3 (4) , 4713-4723. https://doi.org/10.1021/acsomega.8b00462
  178. Suman K. Chakravarti. Distributed Representation of Chemical Fragments. ACS Omega 2018, 3 (3) , 2825-2836. https://doi.org/10.1021/acsomega.7b02045
  179. Patrick Bleiziffer, Kay Schaller, Sereina Riniker. Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations. Journal of Chemical Information and Modeling 2018, 58 (3) , 579-590. https://doi.org/10.1021/acs.jcim.7b00663
  180. Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik . Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 2018, 4 (2) , 268-276. https://doi.org/10.1021/acscentsci.7b00572
  181. Connor W. Coley, Luke Rogers, William H. Green, and Klavs F. Jensen . SCScore: Synthetic Complexity Learned from a Reaction Corpus. Journal of Chemical Information and Modeling 2018, 58 (2) , 252-261. https://doi.org/10.1021/acs.jcim.7b00622
  182. Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller . Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. ACS Central Science 2018, 4 (1) , 120-131. https://doi.org/10.1021/acscentsci.7b00512
  183. Yue Kong, Andreas Bender, and Aixia Yan . Identification of Novel Aurora Kinase A (AURKA) Inhibitors via Hierarchical Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling 2018, 58 (1) , 36-47. https://doi.org/10.1021/acs.jcim.7b00300
  184. Hossam M. Ashtawy and Nihar R. Mahapatra . Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment. Journal of Chemical Information and Modeling 2018, 58 (1) , 119-133. https://doi.org/10.1021/acs.jcim.7b00309
  185. Hossam M. Ashtawy and Nihar R. Mahapatra . Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein–Ligand Interactions. Journal of Chemical Information and Modeling 2018, 58 (1) , 134-147. https://doi.org/10.1021/acs.jcim.7b00310
  186. John J. Irwin, Garrett Gaskins, Teague Sterling, Michael M. Mysinger, and Michael J. Keiser . Predicted Biological Activity of Purchasable Chemical Space. Journal of Chemical Information and Modeling 2018, 58 (1) , 148-164. https://doi.org/10.1021/acs.jcim.7b00316
  187. Sabrina Jaeger, Simone Fulle, and Samo Turk . Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. Journal of Chemical Information and Modeling 2018, 58 (1) , 27-35. https://doi.org/10.1021/acs.jcim.7b00616
  188. Andrey V. Bogolubsky, Yurii S. Moroz, Olena Savych, Sergey Pipko, Angelika Konovets, Maxim O. Platonov, Oleksandr V. Vasylchenko, Vasyl V. Hurmach, and Oleksandr O. Grygorenko . An Old Story in the Parallel Synthesis World: An Approach to Hydantoin Libraries. ACS Combinatorial Science 2018, 20 (1) , 35-43. https://doi.org/10.1021/acscombsci.7b00163
  189. Connor W. Coley, Luke Rogers, William H. Green, and Klavs F. Jensen . Computer-Assisted Retrosynthesis Based on Molecular Similarity. ACS Central Science 2017, 3 (12) , 1237-1245. https://doi.org/10.1021/acscentsci.7b00355
  190. Samo Turk, Benjamin Merget, Friedrich Rippmann, and Simone Fulle . Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization. Journal of Chemical Information and Modeling 2017, 57 (12) , 3079-3085. https://doi.org/10.1021/acs.jcim.7b00298
  191. Gary Tresadern, Andres A. Trabanco, Laura Pérez-Benito, John P. Overington, Herman W. T. van Vlijmen, and Gerard J. P. van Westen . Identification of Allosteric Modulators of Metabotropic Glutamate 7 Receptor Using Proteochemometric Modeling. Journal of Chemical Information and Modeling 2017, 57 (12) , 2976-2985. https://doi.org/10.1021/acs.jcim.7b00338
  192. Alexandru Korotcov, Valery Tkachenko, Daniel P. Russo, and Sean Ekins . Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. Molecular Pharmaceutics 2017, 14 (12) , 4462-4475. https://doi.org/10.1021/acs.molpharmaceut.7b00578
  193. Youjun Xu, Jianfeng Pei, and Luhua Lai . Deep Learning Based Regression and Multiclass Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction. Journal of Chemical Information and Modeling 2017, 57 (11) , 2672-2685. https://doi.org/10.1021/acs.jcim.7b00244
  194. Jie Liu, Grace Patlewicz, Antony J. Williams, Russell S. Thomas, and Imran Shah . Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Chemical Research in Toxicology 2017, 30 (11) , 2046-2059. https://doi.org/10.1021/acs.chemrestox.7b00084
  195. Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl, Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld . Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical Theory and Computation 2017, 13 (11) , 5255-5264. https://doi.org/10.1021/acs.jctc.7b00577
  196. Raquel Rodríguez-Pérez, Martin Vogt, and Jürgen Bajorath . Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction. ACS Omega 2017, 2 (10) , 6371-6379. https://doi.org/10.1021/acsomega.7b01079
  197. Axel Rudling, Robert Gustafsson, Ingrid Almlöf, Evert Homan, Martin Scobie, Ulrika Warpman Berglund, Thomas Helleday, Pål Stenmark, and Jens Carlsson . Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry 2017, 60 (19) , 8160-8169. https://doi.org/10.1021/acs.jmedchem.7b01006
  198. Ruifeng Liu, Mohamed Diwan M. AbdulHameed, and Anders Wallqvist . Molecular Structure-Based Large-Scale Prediction of Chemical-Induced Gene Expression Changes. Journal of Chemical Information and Modeling 2017, 57 (9) , 2194-2202. https://doi.org/10.1021/acs.jcim.7b00281
  199. John P. Santa Maria, Jr., Yumi Park, Lihu Yang, Nicholas Murgolo, Michael D. Altman, Paul Zuck, Greg Adam, Chad Chamberlin, Peter Saradjian, Peter Dandliker, Helena I. M. Boshoff, Clifton E. Barry, III, Charles Garlisi, David B. Olsen, Katherine Young, Meir Glick, Elliott Nickbarg, and Peter S. Kutchukian . Linking High-Throughput Screens to Identify MoAs and Novel Inhibitors of Mycobacterium tuberculosis Dihydrofolate Reductase. ACS Chemical Biology 2017, 12 (9) , 2448-2456. https://doi.org/10.1021/acschembio.7b00468
  200. Seth D. Axen, Xi-Ping Huang, Elena L. Cáceres, Leo Gendelev, Bryan L. Roth, and Michael J. Keiser . A Simple Representation of Three-Dimensional Molecular Structure. Journal of Medicinal Chemistry 2017, 60 (17) , 7393-7409. https://doi.org/10.1021/acs.jmedchem.7b00696
  201. Connor W. Coley, Regina Barzilay, William H. Green, Tommi S. Jaakkola, and Klavs F. Jensen . Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. Journal of Chemical Information and Modeling 2017, 57 (8) , 1757-1772. https://doi.org/10.1021/acs.jcim.6b00601
  202. Stefano E. Rensi and Russ B. Altman . Shallow Representation Learning via Kernel PCA Improves QSAR Modelability. Journal of Chemical Information and Modeling 2017, 57 (8) , 1859-1867. https://doi.org/10.1021/acs.jcim.6b00694
  203. Richard L. Marchese Robinson, Anna Palczewska, Jan Palczewski, and Nathan Kidley . Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets. Journal of Chemical Information and Modeling 2017, 57 (8) , 1773-1792. https://doi.org/10.1021/acs.jcim.6b00753
  204. Nadine Schneider, Nikolas Fechner, Gregory A. Landrum, and Nikolaus Stiefl . Chemical Topic Modeling: Exploring Molecular Data Sets Using a Common Text-Mining Approach. Journal of Chemical Information and Modeling 2017, 57 (8) , 1816-1831. https://doi.org/10.1021/acs.jcim.7b00249
  205. Peter Gedeck, Suzanne Skolnik, and Stephane Rodde . Developing Collaborative QSAR Models Without Sharing Structures. Journal of Chemical Information and Modeling 2017, 57 (8) , 1847-1858. https://doi.org/10.1021/acs.jcim.7b00315
  206. Richard J. Hall, Christopher W. Murray, and Marcel L. Verdonk . The Fragment Network: A Chemistry Recommendation Engine Built Using a Graph Database. Journal of Medicinal Chemistry 2017, 60 (14) , 6440-6450. https://doi.org/10.1021/acs.jmedchem.7b00809
  207. Liying Zhang, Kjell Johnson, Jeremy Starr, Jared Milbank, Andrew M. Kuhn, Christopher Poss, Robert V. Stanton, and Veerabahu Shanmugasundaram . Novel Methods for Prioritizing “Close-In” Analogs from Structure–Activity Relationship Matrices. Journal of Chemical Information and Modeling 2017, 57 (7) , 1667-1676. https://doi.org/10.1021/acs.jcim.7b00055
  208. Luca Codutti, Manuela Grimaldi, and Teresa Carlomagno . Structure-Based Design of Scaffolds Targeting PDE10A by INPHARMA-NMR. Journal of Chemical Information and Modeling 2017, 57 (6) , 1488-1498. https://doi.org/10.1021/acs.jcim.7b00246
  209. Marta Arimont, Shan-Liang Sun, Rob Leurs, Martine Smit, Iwan J. P. de Esch, and Chris de Graaf . Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry 2017, 60 (12) , 4735-4779. https://doi.org/10.1021/acs.jmedchem.6b01309
  210. David Schaller, Stefanie Hagenow, Gina Alpert, Alexandra Naß, Robert Schulz, Marcel Bermudez, Holger Stark, and Gerhard Wolber . Systematic Data Mining Reveals Synergistic H3R/MCHR1 Ligands. ACS Medicinal Chemistry Letters 2017, 8 (6) , 648-653. https://doi.org/10.1021/acsmedchemlett.7b00118
  211. Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen . Prediction of Organic Reaction Outcomes Using Machine Learning. ACS Central Science 2017, 3 (5) , 434-443. https://doi.org/10.1021/acscentsci.7b00064
  212. Ryo Kunimoto, Dilyana Dimova, and Jürgen Bajorath . Application of a New Scaffold Concept for Computational Target Deconvolution of Chemical Cancer Cell Line Screens. ACS Omega 2017, 2 (4) , 1463-1468. https://doi.org/10.1021/acsomega.7b00215
  213. Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, and Vijay Pande . Low Data Drug Discovery with One-Shot Learning. ACS Central Science 2017, 3 (4) , 283-293. https://doi.org/10.1021/acscentsci.6b00367
  214. Benjamín Sánchez-Lengeling and Alán Aspuru-Guzik . Learning More, with Less. ACS Central Science 2017, 3 (4) , 275-277. https://doi.org/10.1021/acscentsci.7b00153
  215. Sungjin Kim, Adrián Jinich, and Alán Aspuru-Guzik . MultiDK: A Multiple Descriptor Multiple Kernel Approach for Molecular Discovery and Its Application to Organic Flow Battery Electrolytes. Journal of Chemical Information and Modeling 2017, 57 (4) , 657-668. https://doi.org/10.1021/acs.jcim.6b00332
  216. Mahendra Awale, Daniel Probst, and Jean-Louis Reymond . WebMolCS: A Web-Based Interface for Visualizing Molecules in Three-Dimensional Chemical Spaces. Journal of Chemical Information and Modeling 2017, 57 (4) , 643-649. https://doi.org/10.1021/acs.jcim.6b00690
  217. Sereina Riniker . Molecular Dynamics Fingerprints (MDFP): Machine Learning from MD Data To Predict Free-Energy Differences. Journal of Chemical Information and Modeling 2017, 57 (4) , 726-741. https://doi.org/10.1021/acs.jcim.6b00778
  218. Aleksejs Kontijevskis . Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular Frameworks. Journal of Chemical Information and Modeling 2017, 57 (4) , 680-699. https://doi.org/10.1021/acs.jcim.7b00006
  219. Ricardo Visini, Mahendra Awale, and Jean-Louis Reymond . Fragment Database FDB-17. Journal of Chemical Information and Modeling 2017, 57 (4) , 700-709. https://doi.org/10.1021/acs.jcim.7b00020
  220. Raquel Rodríguez-Pérez, Martin Vogt, and Jürgen Bajorath . Influence of Varying Training Set Composition and Size on Support Vector Machine-Based Prediction of Active Compounds. Journal of Chemical Information and Modeling 2017, 57 (4) , 710-716. https://doi.org/10.1021/acs.jcim.7b00088
  221. Ming Wen, Zhimin Zhang, Shaoyu Niu, Haozhi Sha, Ruihan Yang, Yonghuan Yun, and Hongmei Lu . Deep-Learning-Based Drug–Target Interaction Prediction. Journal of Proteome Research 2017, 16 (4) , 1401-1409. https://doi.org/10.1021/acs.jproteome.6b00618
  222. Andreas Verras, Chris L. Waller, Peter Gedeck, Darren V. S. Green, Thierry Kogej, Anandkumar Raichurkar, Manoranjan Panda, Anang A. Shelat, Julie Clark, R. Kiplin Guy, George Papadatos, and Jeremy Burrows . Shared Consensus Machine Learning Models for Predicting Blood Stage Malaria Inhibition. Journal of Chemical Information and Modeling 2017, 57 (3) , 445-453. https://doi.org/10.1021/acs.jcim.6b00572
  223. Bernd Kuhn, Michal Tichý, Lingle Wang, Shaughnessy Robinson, Rainer E. Martin, Andreas Kuglstatter, Jörg Benz, Maude Giroud, Tanja Schirmeister, Robert Abel, François Diederich, and Jérôme Hert . Prospective Evaluation of Free Energy Calculations for the Prioritization of Cathepsin L Inhibitors. Journal of Medicinal Chemistry 2017, 60 (6) , 2485-2497. https://doi.org/10.1021/acs.jmedchem.6b01881
  224. Antoni Aguilar-Mogas, Marta Sales-Pardo, Miriam Navarro, Roger Guimerà, and Oscar Yanes . iMet: A Network-Based Computational Tool To Assist in the Annotation of Metabolites from Tandem Mass Spectra. Analytical Chemistry 2017, 89 (6) , 3474-3482. https://doi.org/10.1021/acs.analchem.6b04512
  225. Yulan Wang, Linjuan Li, Bidong Zhang, Jing Xing, Shijie Chen, Wei Wan, Yakai Song, Hao Jiang, Hualiang Jiang, Cheng Luo, and Mingyue Zheng . Discovery of Novel Disruptor of Silencing Telomeric 1-Like (DOT1L) Inhibitors using a Target-Specific Scoring Function for the (S)-Adenosyl-l-methionine (SAM)-Dependent Methyltransferase Family. Journal of Medicinal Chemistry 2017, 60 (5) , 2026-2036. https://doi.org/10.1021/acs.jmedchem.6b01785
  226. Ross McGuire, Stefan Verhoeven, Márton Vass, Gerrit Vriend, Iwan J. P. de Esch, Scott J. Lusher, Rob Leurs, Lars Ridder, Albert J. Kooistra, Tina Ritschel, and Chris de Graaf . 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. Journal of Chemical Information and Modeling 2017, 57 (2) , 115-121. https://doi.org/10.1021/acs.jcim.6b00686
  227. Frederik J. R. Rombouts, José-Ignacio Andrés, Manuela Ariza, José Manuel Alonso, Nigel Austin, Astrid Bottelbergs, Lu Chen, Vladimir Chupakhin, Erna Cleiren, Katleen Fierens, Alberto Fontana, Xavier Langlois, Joseph E. Leenaerts, Jonas Mariën, Carolina Martínez Lamenca, Rhys Salter, Mark E. Schmidt, Paula Te Riele, Cindy Wintmolders, Andrés A. Trabanco, Wei Zhang, Gregor Macdonald, and Dieder Moechars . Discovery of N-(Pyridin-4-yl)-1,5-naphthyridin-2-amines as Potential Tau Pathology PET Tracers for Alzheimer’s Disease. Journal of Medicinal Chemistry 2017, 60 (4) , 1272-1291. https://doi.org/10.1021/acs.jmedchem.6b01173
  228. Peter S. Kutchukian, Lee Warren, Brian C. Magliaro, Adam Amoss, Jason A. Cassaday, Gregory O’Donnell, Brian Squadroni, Paul Zuck, Danette Pascarella, J. Chris Culberson, Andrew J. Cooke, Danielle Hurzy, Kelly-Ann Sondra Schlegel, Fiona Thomson, Eric N. Johnson, Victor N. Uebele, Jeffrey D. Hermes, Sophie Parmentier-Batteur, and Michael Finley . Iterative Focused Screening with Biological Fingerprints Identifies Selective Asc-1 Inhibitors Distinct from Traditional High Throughput Screening. ACS Chemical Biology 2017, 12 (2) , 519-527. https://doi.org/10.1021/acschembio.6b00913
  229. Florbela Pereira, Kaixia Xiao, Diogo A. R. S. Latino, Chengcheng Wu, Qingyou Zhang, and Joao Aires-de-Sousa . Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals. Journal of Chemical Information and Modeling 2017, 57 (1) , 11-21. https://doi.org/10.1021/acs.jcim.6b00340
  230. Benjamin Merget, Samo Turk, Sameh Eid, Friedrich Rippmann, and Simone Fulle . Profiling Prediction of Kinase Inhibitors: Toward the Virtual Assay. Journal of Medicinal Chemistry 2017, 60 (1) , 474-485. https://doi.org/10.1021/acs.jmedchem.6b01611
  231. Manish Sud . MayaChemTools: An Open Source Package for Computational Drug Discovery. Journal of Chemical Information and Modeling 2016, 56 (12) , 2292-2297. https://doi.org/10.1021/acs.jcim.6b00505
  232. Nadine Schneider, Nikolaus Stiefl, and Gregory A. Landrum . What’s What: The (Nearly) Definitive Guide to Reaction Role Assignment. Journal of Chemical Information and Modeling 2016, 56 (12) , 2336-2346. https://doi.org/10.1021/acs.jcim.6b00564
  233. Patric Schyman, Ruifeng Liu, and Anders Wallqvist . Using the Variable-Nearest Neighbor Method To Identify P-Glycoprotein Substrates and Inhibitors. ACS Omega 2016, 1 (5) , 923-929. https://doi.org/10.1021/acsomega.6b00247
  234. Michelle Lynn Hall, David Calkins, and Woody Sherman . Automated Protocol for Large-Scale Modeling of Gene Expression Data. Journal of Chemical Information and Modeling 2016, 56 (11) , 2216-2224. https://doi.org/10.1021/acs.jcim.6b00260
  235. Robert P. Sheridan . Debunking the Idea that Ligand Efficiency Indices Are Superior to pIC50 as QSAR Activities. Journal of Chemical Information and Modeling 2016, 56 (11) , 2253-2262. https://doi.org/10.1021/acs.jcim.6b00431
  236. Jennifer N. Wei, David Duvenaud, and Alán Aspuru-Guzik . Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Central Science 2016, 2 (10) , 725-732. https://doi.org/10.1021/acscentsci.6b00219
  237. Paul Czodrowski and Wolf-Guido Bolick . OCEAN: Optimized Cross rEActivity estimatioN. Journal of Chemical Information and Modeling 2016, 56 (10) , 2013-2023. https://doi.org/10.1021/acs.jcim.6b00067
  238. Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny . Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches. Journal of Chemical Information and Modeling 2016, 56 (10) , 1936-1949. https://doi.org/10.1021/acs.jcim.6b00290
  239. Eelke B. Lenselink, Willem Jespers, Herman W. T. van Vlijmen, Adriaan P. IJzerman, and Gerard J. P. van Westen . Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening. Journal of Chemical Information and Modeling 2016, 56 (10) , 2053-2060. https://doi.org/10.1021/acs.jcim.6b00314
  240. Florian Lauck and Matthias Rarey . FSees: Customized Enumeration of Chemical Subspaces with Limited Main Memory Consumption. Journal of Chemical Information and Modeling 2016, 56 (9) , 1641-1653. https://doi.org/10.1021/acs.jcim.6b00117
  241. Yu-Chen Chen, Robert Tolbert, Alex M. Aronov, Georgia McGaughey, W. Patrick Walters, and Lidio Meireles . Prediction of Protein Pairs Sharing Common Active Ligands Using Protein Sequence, Structure, and Ligand Similarity. Journal of Chemical Information and Modeling 2016, 56 (9) , 1734-1745. https://doi.org/10.1021/acs.jcim.6b00118
  242. Serge Christmann-Franck, Gerard J. P. van Westen, George Papadatos, Fanny Beltran Escudie, Alexander Roberts, John P. Overington, and Daniel Domine . Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?. Journal of Chemical Information and Modeling 2016, 56 (9) , 1654-1675. https://doi.org/10.1021/acs.jcim.6b00122
  243. Jason A. Berberich, Terry R. Stouch, Sankar Manepalli, Emilio Xavier Esposito, and Jeffry D. Madura . Biological Testing of Organophosphorus-Inactivated Acetylcholinesterase Oxime Reactivators Identified via Virtual Screening. Chemical Research in Toxicology 2016, 29 (9) , 1534-1540. https://doi.org/10.1021/acs.chemrestox.6b00198
  244. Isidro Cortes-Ciriano . Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR. Journal of Chemical Information and Modeling 2016, 56 (8) , 1576-1587. https://doi.org/10.1021/acs.jcim.6b00136
  245. Jansy P. Sarathy, Fabio Zuccotto, Ho Hsinpin, Lars Sandberg, Laura E. Via, Gwendolyn A. Marriner, Thierry Masquelin, Paul Wyatt, Peter Ray, and Véronique Dartois . Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infectious Diseases 2016, 2 (8) , 552-563. https://doi.org/10.1021/acsinfecdis.6b00051
  246. Chimed Jansen, Albert J. Kooistra, Georgi K. Kanev, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. Journal of Medicinal Chemistry 2016, 59 (15) , 7029-7065. https://doi.org/10.1021/acs.jmedchem.5b01813
  247. Bruno J. Neves, Rafael F. Dantas, Mario R. Senger, Cleber C. Melo-Filho, Walter C. G. Valente, Ana C. M. de Almeida, João M. Rezende-Neto, Elid F. C. Lima, Ross Paveley, Nicholas Furnham, Eugene Muratov, Lee Kamentsky, Anne E. Carpenter, Rodolpho C. Braga, Floriano P. Silva-Junior, and Carolina Horta Andrade . Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. Journal of Medicinal Chemistry 2016, 59 (15) , 7075-7088. https://doi.org/10.1021/acs.jmedchem.5b02038
  248. Peng Lu, Xiaoxin Liu, Xinrui Yuan, Minfang He, Yubin Wang, Qi Zhang, and Ping-kai Ouyang . Discovery of a novel NEDD8 Activating Enzyme Inhibitor with Piperidin-4-amine Scaffold by Structure-Based Virtual Screening. ACS Chemical Biology 2016, 11 (7) , 1901-1907. https://doi.org/10.1021/acschembio.6b00159
  249. Xia Wang, Chenxu Pan, Jiayu Gong, Xiaofeng Liu, and Honglin Li . Enhancing the Enrichment of Pharmacophore-Based Target Prediction for the Polypharmacological Profiles of Drugs. Journal of Chemical Information and Modeling 2016, 56 (6) , 1175-1183. https://doi.org/10.1021/acs.jcim.5b00690
  250. Shardul Paricharak, Adriaan P. IJzerman, Andreas Bender, and Florian Nigsch . Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data. ACS Chemical Biology 2016, 11 (5) , 1255-1264. https://doi.org/10.1021/acschembio.6b00029
  251. Zheng Zhao, Li Xie, Lei Xie, and Philip E. Bourne . Delineation of Polypharmacology across the Human Structural Kinome Using a Functional Site Interaction Fingerprint Approach. Journal of Medicinal Chemistry 2016, 59 (9) , 4326-4341. https://doi.org/10.1021/acs.jmedchem.5b02041
  252. Kazi Yasin Helal, Mateusz Maciejewski, Elisabet Gregori-Puigjané, Meir Glick, and Anne Mai Wassermann . Public Domain HTS Fingerprints: Design and Evaluation of Compound Bioactivity Profiles from PubChem’s Bioassay Repository. Journal of Chemical Information and Modeling 2016, 56 (2) , 390-398. https://doi.org/10.1021/acs.jcim.5b00498
  253. Tobias Lang, Florian Flachsenberg, Ulrike von Luxburg, and Matthias Rarey . Feasibility of Active Machine Learning for Multiclass Compound Classification. Journal of Chemical Information and Modeling 2016, 56 (1) , 12-20. https://doi.org/10.1021/acs.jcim.5b00332
  254. Patric Schyman, Ruifeng Liu, and Anders Wallqvist . General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers. Journal of Chemical Information and Modeling 2016, 56 (1) , 213-222. https://doi.org/10.1021/acs.jcim.5b00616
  255. Eugen LounkineMiguel L. Camargo. How Many Fingers Does a Compound Have? Molecular Similarity beyond Chemical Space. 2016,,, 331-343. https://doi.org/10.1021/bk-2016-1222.ch015
  256. Ryusuke Sawada, Hiroaki Iwata, Sayaka Mizutani, and Yoshihiro Yamanishi . Target-Based Drug Repositioning Using Large-Scale Chemical–Protein Interactome Data. Journal of Chemical Information and Modeling 2015, 55 (12) , 2717-2730. https://doi.org/10.1021/acs.jcim.5b00330
  257. Isidro Cortes-Ciriano and Andreas Bender . Improved Chemical Structure–Activity Modeling Through Data Augmentation. Journal of Chemical Information and Modeling 2015, 55 (12) , 2682-2692. https://doi.org/10.1021/acs.jcim.5b00570
  258. Sereina Riniker and Gregory A. Landrum . Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation. Journal of Chemical Information and Modeling 2015, 55 (12) , 2562-2574. https://doi.org/10.1021/acs.jcim.5b00654
  259. Rosa Buonfiglio, Ola Engkvist, Péter Várkonyi, Astrid Henz, Elisabet Vikeved, Anders Backlund, and Thierry Kogej . Investigating Pharmacological Similarity by Charting Chemical Space. Journal of Chemical Information and Modeling 2015, 55 (11) , 2375-2390. https://doi.org/10.1021/acs.jcim.5b00375
  260. Teague Sterling and John J. Irwin . ZINC 15 – Ligand Discovery for Everyone. Journal of Chemical Information and Modeling 2015, 55 (11) , 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559
  261. Matthias Hilbig and Matthias Rarey . MONA 2: A Light Cheminformatics Platform for Interactive Compound Library Processing. Journal of Chemical Information and Modeling 2015, 55 (10) , 2071-2078. https://doi.org/10.1021/acs.jcim.5b00292
  262. T. Justin Rettenmaier, Hao Fan, Joel Karpiak, Allison Doak, Andrej Sali, Brian K. Shoichet, and James A. Wells . Small-Molecule Allosteric Modulators of the Protein Kinase PDK1 from Structure-Based Docking. Journal of Medicinal Chemistry 2015, 58 (20) , 8285-8291. https://doi.org/10.1021/acs.jmedchem.5b01216
  263. Virginia A. Kincaid, Nir London, Kittikhun Wangkanont, Darryl A. Wesener, Sarah A. Marcus, Annie Héroux, Lyudmila Nedyalkova, Adel M. Talaat, Katrina T. Forest, Brian K. Shoichet, and Laura L. Kiessling . Virtual Screening for UDP-Galactopyranose Mutase Ligands Identifies a New Class of Antimycobacterial Agents. ACS Chemical Biology 2015, 10 (10) , 2209-2218. https://doi.org/10.1021/acschembio.5b00370
  264. F. Chevillard and P. Kolb . SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability. Journal of Chemical Information and Modeling 2015, 55 (9) , 1824-1835. https://doi.org/10.1021/acs.jcim.5b00203
  265. Mahendra Awale and Jean-Louis Reymond . Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces. Journal of Chemical Information and Modeling 2015, 55 (8) , 1509-1516. https://doi.org/10.1021/acs.jcim.5b00182
  266. Ruifeng Liu, Patric Schyman, and Anders Wallqvist . Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability. Journal of Chemical Information and Modeling 2015, 55 (8) , 1566-1575. https://doi.org/10.1021/acs.jcim.5b00255
  267. Stefan Bietz, Karen T. Schomburg, Matthias Hilbig, and Matthias Rarey . Discriminative Chemical Patterns: Automatic and Interactive Design. Journal of Chemical Information and Modeling 2015, 55 (8) , 1535-1546. https://doi.org/10.1021/acs.jcim.5b00323
  268. Nathalie Lagarde, Jean-François Zagury, and Matthieu Montes . Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling 2015, 55 (7) , 1297-1307. https://doi.org/10.1021/acs.jcim.5b00090
  269. Isidro Cortes-Ciriano, Andreas Bender, and Thérèse E. Malliavin . Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets. Journal of Chemical Information and Modeling 2015, 55 (7) , 1413-1425. https://doi.org/10.1021/acs.jcim.5b00101
  270. Nicholas C. Firth, Butrus Atrash, Nathan Brown, and Julian Blagg . MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation. Journal of Chemical Information and Modeling 2015, 55 (6) , 1169-1180. https://doi.org/10.1021/acs.jcim.5b00073
  271. Robert P. Sheridan . The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity. Journal of Chemical Information and Modeling 2015, 55 (6) , 1098-1107. https://doi.org/10.1021/acs.jcim.5b00110
  272. Alex M. Clark, Krishna Dole, Anna Coulon-Spektor, Andrew McNutt, George Grass, Joel S. Freundlich, Robert C. Reynolds, and Sean Ekins . Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets. Journal of Chemical Information and Modeling 2015, 55 (6) , 1231-1245. https://doi.org/10.1021/acs.jcim.5b00143
  273. Abhinav Nath, Diana E. Schlamadinger, Elizabeth Rhoades, and Andrew D. Miranker . Structure-Based Small Molecule Modulation of a Pre-Amyloid State: Pharmacological Enhancement of IAPP Membrane-Binding and Toxicity. Biochemistry 2015, 54 (22) , 3555-3564. https://doi.org/10.1021/acs.biochem.5b00052
  274. Péter Englert and Péter Kovács . Efficient Heuristics for Maximum Common Substructure Search. Journal of Chemical Information and Modeling 2015, 55 (5) , 941-955. https://doi.org/10.1021/acs.jcim.5b00036
  275. Mateusz Maciejewski, Anne Mai Wassermann, Meir Glick, and Eugen Lounkine . Experimental Design Strategy: Weak Reinforcement Leads to Increased Hit Rates and Enhanced Chemical Diversity. Journal of Chemical Information and Modeling 2015, 55 (5) , 956-962. https://doi.org/10.1021/acs.jcim.5b00054
  276. Jed Zaretzki, Kevin M. Boehm, and S. Joshua Swamidass . Improved Prediction of CYP-Mediated Metabolism with Chemical Fingerprints. Journal of Chemical Information and Modeling 2015, 55 (5) , 972-982. https://doi.org/10.1021/ci5005652
  277. Sabine Schultes, Albert J. Kooistra, Henry F. Vischer, Saskia Nijmeijer, Eric E. J. Haaksma, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT3A, Histamine H1, and Histamine H4 Receptors. Journal of Chemical Information and Modeling 2015, 55 (5) , 1030-1044. https://doi.org/10.1021/ci500694c
  278. Renee Fleeman, Travis M. LaVoi, Radleigh G. Santos, Angela Morales, Adel Nefzi, Gregory S. Welmaker, José L. Medina-Franco, Marc A. Giulianotti, Richard A. Houghten, and Lindsey N. Shaw . Combinatorial Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE Pathogens. Journal of Medicinal Chemistry 2015, 58 (8) , 3340-3355. https://doi.org/10.1021/jm501628s
  279. Jean-Louis Reymond . The Chemical Space Project. Accounts of Chemical Research 2015, 48 (3) , 722-730. https://doi.org/10.1021/ar500432k
  280. Edmund Duesbury, John Holliday, and Peter Willett . Maximum Common Substructure-Based Data Fusion in Similarity Searching. Journal of Chemical Information and Modeling 2015, 55 (2) , 222-230. https://doi.org/10.1021/ci5005702
  281. Oscar Méndez-Lucio, Albert J. Kooistra, Chris de Graaf, Andreas Bender, and José L. Medina-Franco . Analyzing Multitarget Activity Landscapes Using Protein–Ligand Interaction Fingerprints: Interaction Cliffs. Journal of Chemical Information and Modeling 2015, 55 (2) , 251-262. https://doi.org/10.1021/ci500721x
  282. Obdulia Rabal, Fares Ibrahim Amr, and Julen Oyarzabal . Novel Scaffold Fingerprint (SFP): Applications in Scaffold Hopping and Scaffold-Based Selection of Diverse Compounds. Journal of Chemical Information and Modeling 2015, 55 (1) , 1-18. https://doi.org/10.1021/ci500542e
  283. Nadine Schneider, Daniel M. Lowe, Roger A. Sayle, and Gregory A. Landrum . Development of a Novel Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction Classification and Similarity. Journal of Chemical Information and Modeling 2015, 55 (1) , 39-53. https://doi.org/10.1021/ci5006614
  284. Sonny Gan, David A. Cosgrove, Eleanor J. Gardiner, and Valerie J. Gillet . Investigation of the Use of Spectral Clustering for the Analysis of Molecular Data. Journal of Chemical Information and Modeling 2014, 54 (12) , 3302-3319. https://doi.org/10.1021/ci500480b
  285. Miwa Sato and Takatsugu Hirokawa . Extended Template-Based Modeling and Evaluation Method Using Consensus of Binding Mode of GPCRs for Virtual Screening. Journal of Chemical Information and Modeling 2014, 54 (11) , 3153-3161. https://doi.org/10.1021/ci500499j
  286. Anthony R. Bradley, Ian D. Wall, Darren V. S. Green, Charlotte M. Deane, and Brian D. Marsden . OOMMPPAA: A Tool To Aid Directed Synthesis by the Combined Analysis of Activity and Structural Data. Journal of Chemical Information and Modeling 2014, 54 (10) , 2636-2646. https://doi.org/10.1021/ci500245d
  287. Jonathan Alvarsson, Martin Eklund, Ola Engkvist, Ola Spjuth, Lars Carlsson, Jarl E. S. Wikberg, and Tobias Noeske . Ligand-Based Target Prediction with Signature Fingerprints. Journal of Chemical Information and Modeling 2014, 54 (10) , 2647-2653. https://doi.org/10.1021/ci500361u
  288. Antonio de la Vega de León and Jürgen Bajorath . Prediction of Compound Potency Changes in Matched Molecular Pairs Using Support Vector Regression. Journal of Chemical Information and Modeling 2014, 54 (10) , 2654-2663. https://doi.org/10.1021/ci5003944
  289. Philipp Thiel, Lisa Sach-Peltason, Christian Ottmann, and Oliver Kohlbacher . Blocked Inverted Indices for Exact Clustering of Large Chemical Spaces. Journal of Chemical Information and Modeling 2014, 54 (9) , 2395-2401. https://doi.org/10.1021/ci500150t
  290. Karen T. Schomburg and Matthias Rarey . Benchmark Data Sets for Structure-Based Computational Target Prediction. Journal of Chemical Information and Modeling 2014, 54 (8) , 2261-2274. https://doi.org/10.1021/ci500131x
  291. Richard Sherhod, Philip N. Judson, Thierry Hanser, Jonathan D. Vessey, Samuel J. Webb, and Valerie J. Gillet . Emerging Pattern Mining To Aid Toxicological Knowledge Discovery. Journal of Chemical Information and Modeling 2014, 54 (7) , 1864-1879. https://doi.org/10.1021/ci5001828
  292. Sereina Riniker, Yuan Wang, Jeremy L. Jenkins, and Gregory A. Landrum . Using Information from Historical High-Throughput Screens to Predict Active Compounds. Journal of Chemical Information and Modeling 2014, 54 (7) , 1880-1891. https://doi.org/10.1021/ci500190p
  293. Mahendra Awale and Jean-Louis Reymond . Atom Pair 2D-Fingerprints Perceive 3D-Molecular Shape and Pharmacophores for Very Fast Virtual Screening of ZINC and GDB-17. Journal of Chemical Information and Modeling 2014, 54 (7) , 1892-1907. https://doi.org/10.1021/ci500232g
  294. Jérémy Desaphy and Didier Rognan . sc-PDB-Frag: A Database of Protein–Ligand Interaction Patterns for Bioisosteric Replacements. Journal of Chemical Information and Modeling 2014, 54 (7) , 1908-1918. https://doi.org/10.1021/ci500282c
  295. Anne Mai Wassermann, Eugen Lounkine, Laszlo Urban, Steven Whitebread, Shanni Chen, Kevin Hughes, Hongqiu Guo, Elena Kutlina, Alexander Fekete, Martin Klumpp, and Meir Glick . A Screening Pattern Recognition Method Finds New and Divergent Targets for Drugs and Natural Products. ACS Chemical Biology 2014, 9 (7) , 1622-1631. https://doi.org/10.1021/cb5001839
  296. Artem Cherkasov, Eugene N. Muratov, Denis Fourches, Alexandre Varnek, Igor I. Baskin, Mark Cronin, John Dearden, Paola Gramatica, Yvonne C. Martin, Roberto Todeschini, Viviana Consonni, Victor E. Kuz’min, Richard Cramer, Romualdo Benigni, Chihae Yang, James Rathman, Lothar Terfloth, Johann Gasteiger, Ann Richard, and Alexander Tropsha . QSAR Modeling: Where Have You Been? Where Are You Going To?. Journal of Medicinal Chemistry 2014, 57 (12) , 4977-5010. https://doi.org/10.1021/jm4004285
  297. Sabrina Wollenhaupt and Knut Baumann . inSARa: Intuitive and Interactive SAR Interpretation by Reduced Graphs and Hierarchical MCS-Based Network Navigation. Journal of Chemical Information and Modeling 2014, 54 (6) , 1578-1595. https://doi.org/10.1021/ci4007547
  298. Eelke B. Lenselink, Thijs Beuming, Woody Sherman, Herman W. T. van Vlijmen, and Adriaan P. IJzerman . Selecting an Optimal Number of Binding Site Waters To Improve Virtual Screening Enrichments Against the Adenosine A2A Receptor. Journal of Chemical Information and Modeling 2014, 54 (6) , 1737-1746. https://doi.org/10.1021/ci5000455
  299. Hiroshi Yamashita, Tomoyuki Higuchi, and Ryo Yoshida . Atom Environment Kernels on Molecules. Journal of Chemical Information and Modeling 2014, 54 (5) , 1289-1300. https://doi.org/10.1021/ci400403w
  300. Vigneshwaran Namasivayam, Disha Gupta-Ostermann, Jenny Balfer, Kathrin Heikamp, and Jürgen Bajorath . Prediction of Compounds in Different Local Structure–Activity Relationship Environments Using Emerging Chemical Patterns. Journal of Chemical Information and Modeling 2014, 54 (5) , 1301-1310. https://doi.org/10.1021/ci500147b
  301. Yasmin Shamsudin Khan, Hugo Gutiérrez-de-Terán, Lars Boukharta, and Johan Åqvist . Toward an Optimal Docking and Free Energy Calculation Scheme in Ligand Design with Application to COX-1 Inhibitors. Journal of Chemical Information and Modeling 2014, 54 (5) , 1488-1499. https://doi.org/10.1021/ci500151f
  302. Jeremy M. Beck and Clayton Springer . Quantitative Structure–Activity Relationship Models of Chemical Transformations from Matched Pairs Analyses. Journal of Chemical Information and Modeling 2014, 54 (4) , 1226-1234. https://doi.org/10.1021/ci500012n
  303. Mats Eriksson, Hongming Chen, Lars Carlsson, J. Willem M. Nissink, John G. Cumming, and Ingemar Nilsson . Beyond the Scope of Free-Wilson Analysis. 2: Can Distance Encoded R-Group Fingerprints Provide Interpretable Nonlinear Models?. Journal of Chemical Information and Modeling 2014, 54 (4) , 1117-1128. https://doi.org/10.1021/ci500075q
  304. Robert P. Sheridan . Global Quantitative Structure–Activity Relationship Models vs Selected Local Models as Predictors of Off-Target Activities for Project Compounds. Journal of Chemical Information and Modeling 2014, 54 (4) , 1083-1092. https://doi.org/10.1021/ci500084w
  305. Gerald Maggiora, Martin Vogt, Dagmar Stumpfe, and Jürgen Bajorath . Molecular Similarity in Medicinal Chemistry. Journal of Medicinal Chemistry 2014, 57 (8) , 3186-3204. https://doi.org/10.1021/jm401411z
  306. Ruifeng Liu and Anders Wallqvist . Merging Applicability Domains for in Silico Assessment of Chemical Mutagenicity. Journal of Chemical Information and Modeling 2014, 54 (3) , 793-800. https://doi.org/10.1021/ci500016v
  307. Marko Toplak, Rok Močnik, Matija Polajnar, Zoran Bosnić, Lars Carlsson, Catrin Hasselgren, Janez Demšar, Scott Boyer, Blaž Zupan, and Jonna Stålring . Assessment of Machine Learning Reliability Methods for Quantifying the Applicability Domain of QSAR Regression Models. Journal of Chemical Information and Modeling 2014, 54 (2) , 431-441. https://doi.org/10.1021/ci4006595
  308. Shilva Kayastha, Dilyana Dimova, Preeti Iyer, Martin Vogt, and Jürgen Bajorath . Large-Scale Assessment of Activity Landscape Feature Probabilities of Bioactive Compounds. Journal of Chemical Information and Modeling 2014, 54 (2) , 442-450. https://doi.org/10.1021/ci400677b
  309. Alexios Koutsoukas, Shardul Paricharak, Warren R. J. D. Galloway, David R. Spring, Adriaan P. IJzerman, Robert C. Glen, David Marcus, and Andreas Bender . How Diverse Are Diversity Assessment Methods? A Comparative Analysis and Benchmarking of Molecular Descriptor Space. Journal of Chemical Information and Modeling 2014, 54 (1) , 230-242. https://doi.org/10.1021/ci400469u
  310. Tina M. Kouri, Mahendra Awale, James K. Slyby, Jean-Louis Reymond, and Dinesh P. Mehta . “Social” Network of Isomers Based on Bond Count Distance: Algorithms. Journal of Chemical Information and Modeling 2014, 54 (1) , 57-68. https://doi.org/10.1021/ci4005173
  311. Dagmar Stumpfe, Ye Hu, Dilyana Dimova, and Jürgen Bajorath . Recent Progress in Understanding Activity Cliffs and Their Utility in Medicinal Chemistry. Journal of Medicinal Chemistry 2014, 57 (1) , 18-28. https://doi.org/10.1021/jm401120g
  312. Janosch Achenbach, Franca-Maria Klingler, René Blöcher, Daniel Moser, Ann-Kathrin Häfner, Carmen B. Rödl, Simon Kretschmer, Björn Krüger, Frank Löhr, Holger Stark, Bettina Hofmann, Dieter Steinhilber, and Ewgenij Proschak . Exploring the Chemical Space of Multitarget Ligands Using Aligned Self-Organizing Maps. ACS Medicinal Chemistry Letters 2013, 4 (12) , 1169-1172. https://doi.org/10.1021/ml4002562
  313. Arno Knorr, Aurelien Monge, Markus Stueber, André Stratmann, Daniel Arndt, Elyette Martin, and Pavel Pospisil . Computer-Assisted Structure Identification (CASI)—An Automated Platform for High-Throughput Identification of Small Molecules by Two-Dimensional Gas Chromatography Coupled to Mass Spectrometry. Analytical Chemistry 2013, 85 (23) , 11216-11224. https://doi.org/10.1021/ac4011952
  314. Dong-Sheng Cao, Yi-Zeng Liang, Jun Yan, Gui-Shan Tan, Qing-Song Xu, and Shao Liu . PyDPI: Freely Available Python Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies. Journal of Chemical Information and Modeling 2013, 53 (11) , 3086-3096. https://doi.org/10.1021/ci400127q
  315. Zhi-Luo Deng, Cai-Xia Du, Xiao Li, Ben Hu, Zheng-Kun Kuang, Rong Wang, Shi-Yu Feng, Hong-Yu Zhang, and De-Xin Kong . Exploring the Biologically Relevant Chemical Space for Drug Discovery. Journal of Chemical Information and Modeling 2013, 53 (11) , 2820-2828. https://doi.org/10.1021/ci400432a
  316. Sereina Riniker, Nikolas Fechner, and Gregory A. Landrum . Heterogeneous Classifier Fusion for Ligand-Based Virtual Screening: Or, How Decision Making by Committee Can Be a Good Thing. Journal of Chemical Information and Modeling 2013, 53 (11) , 2829-2836. https://doi.org/10.1021/ci400466r
  317. Anne Mai Wassermann, Peter S. Kutchukian, Eugen Lounkine, Tiffany Luethi, Jacques Hamon, Michael T. Bocker, Hasnain A. Malik, Sandra W. Cowan-Jacob, and Meir Glick . Efficient Search of Chemical Space: Navigating from Fragments to Structurally Diverse Chemotypes. Journal of Medicinal Chemistry 2013, 56 (21) , 8879-8891. https://doi.org/10.1021/jm401309q
  318. Guy Haskin Fernald and Russ B. Altman . Using Molecular Features of Xenobiotics to Predict Hepatic Gene Expression Response. Journal of Chemical Information and Modeling 2013, 53 (10) , 2765-2773. https://doi.org/10.1021/ci3005868
  319. Jamel Meslamani, Ricky Bhajun, Francois Martz, and Didier Rognan . Computational Profiling of Bioactive Compounds Using a Target-Dependent Composite Workflow. Journal of Chemical Information and Modeling 2013, 53 (9) , 2322-2333. https://doi.org/10.1021/ci400303n
  320. Jenny Balfer, Martin Vogt, and Jürgen Bajorath . Searching for Closely Related Ligands with Different Mechanisms of Action Using Machine Learning and Mapping Algorithms. Journal of Chemical Information and Modeling 2013, 53 (9) , 2252-2274. https://doi.org/10.1021/ci400359n
  321. Dilyana Dimova, Dagmar Stumpfe, and Jürgen Bajorath . Quantifying the Fingerprint Descriptor Dependence of Structure–Activity Relationship Information on a Large Scale. Journal of Chemical Information and Modeling 2013, 53 (9) , 2275-2281. https://doi.org/10.1021/ci4004078
  322. Alexios Koutsoukas, Robert Lowe, Yasaman KalantarMotamedi, Hamse Y. Mussa, Werner Klaffke, John B. O. Mitchell, Robert C. Glen, and Andreas Bender . In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naïve Bayes and Parzen-Rosenblatt Window. Journal of Chemical Information and Modeling 2013, 53 (8) , 1957-1966. https://doi.org/10.1021/ci300435j
  323. Xin Yan, Jiabo Li, Zhihong Liu, Minghao Zheng, Hu Ge, and Jun Xu . Enhancing Molecular Shape Comparison by Weighted Gaussian Functions. Journal of Chemical Information and Modeling 2013, 53 (8) , 1967-1978. https://doi.org/10.1021/ci300601q
  324. Igor V. Tetko, Sergii Novotarskyi, Iurii Sushko, Vladimir Ivanov, Alexander E. Petrenko, Reiner Dieden, Florence Lebon, and Benoit Mathieu . Development of Dimethyl Sulfoxide Solubility Models Using 163 000 Molecules: Using a Domain Applicability Metric to Select More Reliable Predictions. Journal of Chemical Information and Modeling 2013, 53 (8) , 1990-2000. https://doi.org/10.1021/ci400213d
  325. Mikko J. Vainio, Thierry Kogej, Florian Raubacher, and Jens Sadowski . Scaffold Hopping by Fragment Replacement. Journal of Chemical Information and Modeling 2013, 53 (7) , 1825-1835. https://doi.org/10.1021/ci4001019
  326. Kathrin Heikamp and Jürgen Bajorath . Comparison of Confirmed Inactive and Randomly Selected Compounds as Negative Training Examples in Support Vector Machine-Based Virtual Screening. Journal of Chemical Information and Modeling 2013, 53 (7) , 1595-1601. https://doi.org/10.1021/ci4002712
  327. Martin Vogt, Preeti Iyer, Gerald M. Maggiora, and Jürgen Bajorath . Conditional Probabilities of Activity Landscape Features for Individual Compounds. Journal of Chemical Information and Modeling 2013, 53 (7) , 1602-1612. https://doi.org/10.1021/ci400288r
  328. Xiaozhang Zheng, Paul Bauer, Timm Baumeister, Alexandre J. Buckmelter, Maureen Caligiuri, Karl H. Clodfelter, Bingsong Han, Yen-Ching Ho, Nikolai Kley, Jian Lin, Dominic J. Reynolds, Geeta Sharma, Chase C. Smith, Zhongguo Wang, Peter S. Dragovich, Angela Oh, Weiru Wang, Mark Zak, Janet Gunzner-Toste, Guiling Zhao, Po-wai Yuen, and Kenneth W. Bair . Structure-Based Identification of Ureas as Novel Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors. Journal of Medicinal Chemistry 2013, 56 (12) , 4921-4937. https://doi.org/10.1021/jm400186h
  329. Akira Shiraishi, Satoshi Niijima, J. B. Brown, Masahiko Nakatsui, and Yasushi Okuno . Chemical Genomics Approach for GPCR–Ligand Interaction Prediction and Extraction of Ligand Binding Determinants. Journal of Chemical Information and Modeling 2013, 53 (6) , 1253-1262. https://doi.org/10.1021/ci300515z
  330. Hongming Chen, Lars Carlsson, Mats Eriksson, Peter Varkonyi, Ulf Norinder, and Ingemar Nilsson . Beyond the Scope of Free-Wilson Analysis: Building Interpretable QSAR Models with Machine Learning Algorithms. Journal of Chemical Information and Modeling 2013, 53 (6) , 1324-1336. https://doi.org/10.1021/ci4001376
  331. José L. Medina-Franco, Bruce S. Edwards, Clemencia Pinilla, Jon R. Appel, Marc A. Giulianotti, Radleigh G. Santos, Austin B. Yongye, Larry A. Sklar, and Richard A. Houghten . Rapid Scanning Structure–Activity Relationships in Combinatorial Data Sets: Identification of Activity Switches. Journal of Chemical Information and Modeling 2013, 53 (6) , 1475-1485. https://doi.org/10.1021/ci400192y
  332. Mark Zak, Christopher A. Hurley, Stuart I. Ward, Philippe Bergeron, Kathy Barrett, Mercedesz Balazs, Wade S. Blair, Richard Bull, Paroma Chakravarty, Christine Chang, Peter Crackett, Gauri Deshmukh, Jason DeVoss, Peter S. Dragovich, Charles Eigenbrot, Charles Ellwood, Simon Gaines, Nico Ghilardi, Paul Gibbons, Stefan Gradl, Peter Gribling, Chris Hamman, Eric Harstad, Peter Hewitt, Adam Johnson, Tony Johnson, Jane R. Kenny, Michael F. T. Koehler, Pawan Bir Kohli, Sharada Labadie, Wyne P. Lee, Jiangpeng Liao, Marya Liimatta, Rohan Mendonca, Raman Narukulla, Rebecca Pulk, Austin Reeve, Scott Savage, Steven Shia, Micah Steffek, Savita Ubhayakar, Anne van Abbema, Ignacio Aliagas, Barbara Avitabile-Woo, Yisong Xiao, Jing Yang, and Janusz J. Kulagowski . Identification of C-2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2. Journal of Medicinal Chemistry 2013, 56 (11) , 4764-4785. https://doi.org/10.1021/jm4004895
  333. Tobias Girschick, Pedro R. Almeida, Stefan Kramer, and Jonna Stålring . Similarity Boosted Quantitative Structure–Activity Relationship—A Systematic Study of Enhancing Structural Descriptors by Molecular Similarity. Journal of Chemical Information and Modeling 2013, 53 (5) , 1017-1025. https://doi.org/10.1021/ci300182p
  334. Faisal Saeed, Naomie Salim, and Ammar Abdo . Consensus Methods for Combining Multiple Clusterings of Chemical Structures. Journal of Chemical Information and Modeling 2013, 53 (5) , 1026-1034. https://doi.org/10.1021/ci300442u
  335. Andreas Bergner and Serge P. Parel . Hit Expansion Approaches Using Multiple Similarity Methods and Virtualized Query Structures. Journal of Chemical Information and Modeling 2013, 53 (5) , 1057-1066. https://doi.org/10.1021/ci400059p
  336. Sarah R. Langdon, Isaac M. Westwood, Rob L. M. van Montfort, Nathan Brown, and Julian Blagg . Scaffold-Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitors. Journal of Chemical Information and Modeling 2013, 53 (5) , 1100-1112. https://doi.org/10.1021/ci400100c
  337. Michelle Lynn Hall, William L. Jorgensen, and Lewis Whitehead . Automated Ligand- and Structure-Based Protocol for in Silico Prediction of Human Serum Albumin Binding. Journal of Chemical Information and Modeling 2013, 53 (4) , 907-922. https://doi.org/10.1021/ci3006098
  338. Kathrin Heikamp and Jürgen Bajorath . Prediction of Compounds with Closely Related Activity Profiles Using Weighted Support Vector Machine Linear Combinations. Journal of Chemical Information and Modeling 2013, 53 (4) , 791-801. https://doi.org/10.1021/ci400090t
  339. Matthew Merski and Brian K. Shoichet . The Impact of Introducing a Histidine into an Apolar Cavity Site on Docking and Ligand Recognition. Journal of Medicinal Chemistry 2013, 56 (7) , 2874-2884. https://doi.org/10.1021/jm301823g
  340. Fazlin Mohd Fauzi, Alexios Koutsoukas, Robert Lowe, Kalpana Joshi, Tai-Ping Fan, Robert C. Glen, and Andreas Bender . Chemogenomics Approaches to Rationalizing the Mode-of-Action of Traditional Chinese and Ayurvedic Medicines. Journal of Chemical Information and Modeling 2013, 53 (3) , 661-673. https://doi.org/10.1021/ci3005513
  341. Jérémy Desaphy, Eric Raimbaud, Pierre Ducrot, and Didier Rognan . Encoding Protein–Ligand Interaction Patterns in Fingerprints and Graphs. Journal of Chemical Information and Modeling 2013, 53 (3) , 623-637. https://doi.org/10.1021/ci300566n
  342. Ye Hu and Jürgen Bajorath . Introduction of Target Cliffs as a Concept To Identify and Describe Complex Molecular Selectivity Patterns. Journal of Chemical Information and Modeling 2013, 53 (3) , 545-552. https://doi.org/10.1021/ci300602m
  343. Anne Mai Wassermann, Eugen Lounkine, and Meir Glick . Bioturbo Similarity Searching: Combining Chemical and Biological Similarity To Discover Structurally Diverse Bioactive Molecules. Journal of Chemical Information and Modeling 2013, 53 (3) , 692-703. https://doi.org/10.1021/ci300607r
  344. Aurelie Bornot, Udo Bauer, Alastair Brown, Mike Firth, Caroline Hellawell, and Ola Engkvist . Systematic Exploration of Dual-Acting Modulators from a Combined Medicinal Chemistry and Biology Perspective. Journal of Medicinal Chemistry 2013, 56 (3) , 1197-1210. https://doi.org/10.1021/jm301653f
  345. Stephan C. Schürer and Steven M. Muskal . Kinome-wide Activity Modeling from Diverse Public High-Quality Data Sets. Journal of Chemical Information and Modeling 2013, 53 (1) , 27-38. https://doi.org/10.1021/ci300403k
  346. Lars Ruddigkeit, Lorenz C. Blum, and Jean-Louis Reymond . Visualization and Virtual Screening of the Chemical Universe Database GDB-17. Journal of Chemical Information and Modeling 2013, 53 (1) , 56-65. https://doi.org/10.1021/ci300535x
  347. Peter Willett . Combination of Similarity Rankings Using Data Fusion. Journal of Chemical Information and Modeling 2013, 53 (1) , 1-10. https://doi.org/10.1021/ci300547g
  348. Hans-Christian Ehrlich, Andrea Volkamer, and Matthias Rarey . Searching for Substructures in Fragment Spaces. Journal of Chemical Information and Modeling 2012, 52 (12) , 3181-3189. https://doi.org/10.1021/ci300283a
  349. Dušica Vidović, Steven M. Muskal, and Stephan C. Schürer . Novel Kinase Inhibitors by Reshuffling Ligand Functionalities Across the Human Kinome. Journal of Chemical Information and Modeling 2012, 52 (12) , 3107-3115. https://doi.org/10.1021/ci3003842
  350. Francesco Sirci, Enade P. Istyastono, Henry F. Vischer, Albert J. Kooistra, Saskia Nijmeijer, Martien Kuijer, Maikel Wijtmans, Raimund Mannhold, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Virtual Fragment Screening: Discovery of Histamine H3 Receptor Ligands Using Ligand-Based and Protein-Based Molecular Fingerprints. Journal of Chemical Information and Modeling 2012, 52 (12) , 3308-3324. https://doi.org/10.1021/ci3004094
  351. Roberto Todeschini, Viviana Consonni, Hua Xiang, John Holliday, Massimo Buscema, and Peter Willett . Similarity Coefficients for Binary Chemoinformatics Data: Overview and Extended Comparison Using Simulated and Real Data Sets. Journal of Chemical Information and Modeling 2012, 52 (11) , 2884-2901. https://doi.org/10.1021/ci300261r
  352. José L. Medina-Franco . Scanning Structure–Activity Relationships with Structure–Activity Similarity and Related Maps: From Consensus Activity Cliffs to Selectivity Switches. Journal of Chemical Information and Modeling 2012, 52 (10) , 2485-2493. https://doi.org/10.1021/ci300362x
  353. Ruifeng Liu, Gregory Tawa, and Anders Wallqvist . Locally Weighted Learning Methods for Predicting Dose-Dependent Toxicity with Application to the Human Maximum Recommended Daily Dose. Chemical Research in Toxicology 2012, 25 (10) , 2216-2226. https://doi.org/10.1021/tx300279f
  354. Yanyan Diao, Weiqiang Lu, Huangtao Jin, Junsheng Zhu, Le Han, Minghao Xu, Rui Gao, Xu Shen, Zhenjiang Zhao, Xiaofeng Liu, Yufang Xu, Jin Huang, and Honglin Li . Discovery of Diverse Human Dihydroorotate Dehydrogenase Inhibitors as Immunosuppressive Agents by Structure-Based Virtual Screening. Journal of Medicinal Chemistry 2012, 55 (19) , 8341-8349. https://doi.org/10.1021/jm300630p
  355. Kyaw-Zeyar Myint, Lirong Wang, Qin Tong, and Xiang-Qun Xie . Molecular Fingerprint-Based Artificial Neural Networks QSAR for Ligand Biological Activity Predictions. Molecular Pharmaceutics 2012, 9 (10) , 2912-2923. https://doi.org/10.1021/mp300237z
  356. Dagmar Stumpfe and Jürgen Bajorath . Frequency of Occurrence and Potency Range Distribution of Activity Cliffs in Bioactive Compounds. Journal of Chemical Information and Modeling 2012, 52 (9) , 2348-2353. https://doi.org/10.1021/ci300288f
  357. Gerard J. P. van Westen, Olaf O. van den Hoven, Rianne van der Pijl, Thea Mulder-Krieger, Henk de Vries, Jörg K. Wegner, Adriaan P. IJzerman, Herman W. T. van Vlijmen, and Andreas Bender . Identifying Novel Adenosine Receptor Ligands by Simultaneous Proteochemometric Modeling of Rat and Human Bioactivity Data. Journal of Medicinal Chemistry 2012, 55 (16) , 7010-7020. https://doi.org/10.1021/jm3003069
  358. Paula M. Petrone, Benjamin Simms, Florian Nigsch, Eugen Lounkine, Peter Kutchukian, Allen Cornett, Zhan Deng, John W. Davies, Jeremy L. Jenkins, and Meir Glick . Rethinking Molecular Similarity: Comparing Compounds on the Basis of Biological Activity. ACS Chemical Biology 2012, 7 (8) , 1399-1409. https://doi.org/10.1021/cb3001028
  359. Mikko J. Vainio, Thierry Kogej, and Florian Raubacher . Automated Recycling of Chemistry for Virtual Screening and Library Design. Journal of Chemical Information and Modeling 2012, 52 (7) , 1777-1786. https://doi.org/10.1021/ci300157m
  360. Ye Hu and Jürgen Bajorath . Extending the Activity Cliff Concept: Structural Categorization of Activity Cliffs and Systematic Identification of Different Types of Cliffs in the ChEMBL Database. Journal of Chemical Information and Modeling 2012, 52 (7) , 1806-1811. https://doi.org/10.1021/ci300274c
  361. Huifen Chen, Bryan K. Chan, Jason Drummond, Anthony A. Estrada, Janet Gunzner-Toste, Xingrong Liu, Yichin Liu, John Moffat, Daniel Shore, Zachary K. Sweeney, Thuy Tran, Shumei Wang, Guiling Zhao, Haitao Zhu, and Daniel J. Burdick . Discovery of Selective LRRK2 Inhibitors Guided by Computational Analysis and Molecular Modeling. Journal of Medicinal Chemistry 2012, 55 (11) , 5536-5545. https://doi.org/10.1021/jm300452p
  362. Oliver Korb, Tjelvar S. G. Olsson, Simon J. Bowden, Richard J. Hall, Marcel L. Verdonk, John W. Liebeschuetz, and Jason C. Cole . Potential and Limitations of Ensemble Docking. Journal of Chemical Information and Modeling 2012, 52 (5) , 1262-1274. https://doi.org/10.1021/ci2005934
  363. Markus Hartenfeller, Martin Eberle, Peter Meier, Cristina Nieto-Oberhuber, Karl-Heinz Altmann, Gisbert Schneider, Edgar Jacoby, and Steffen Renner . Probing the Bioactivity-Relevant Chemical Space of Robust Reactions and Common Molecular Building Blocks. Journal of Chemical Information and Modeling 2012, 52 (5) , 1167-1178. https://doi.org/10.1021/ci200618n
  364. Guoping Hu, Guanglin Kuang, Wen Xiao, Weihua Li, Guixia Liu, and Yun Tang . Performance Evaluation of 2D Fingerprint and 3D Shape Similarity Methods in Virtual Screening. Journal of Chemical Information and Modeling 2012, 52 (5) , 1103-1113. https://doi.org/10.1021/ci300030u
  365. Prachee Avasthi, Aaron Marley, Henry Lin, Elisabet Gregori-Puigjane, Brian K. Shoichet, Mark von Zastrow, and Wallace F. Marshall . A Chemical Screen Identifies Class A G-Protein Coupled Receptors As Regulators of Cilia. ACS Chemical Biology 2012, 7 (5) , 911-919. https://doi.org/10.1021/cb200349v
  366. Ramzi Nasr, Rares Vernica, Chen Li, and Pierre Baldi . Speeding Up Chemical Searches Using the Inverted Index: The Convergence of Chemoinformatics and Text Search Methods. Journal of Chemical Information and Modeling 2012, 52 (4) , 891-900. https://doi.org/10.1021/ci200552r
  367. Tomohiro Sato, Hitomi Yuki, Daisuke Takaya, Shunta Sasaki, Akiko Tanaka, and Teruki Honma . Application of Support Vector Machine to Three-Dimensional Shape-Based Virtual Screening Using Comprehensive Three-Dimensional Molecular Shape Overlay with Known Inhibitors. Journal of Chemical Information and Modeling 2012, 52 (4) , 1015-1026. https://doi.org/10.1021/ci200562p
  368. Satoshi Niijima, Akira Shiraishi, and Yasushi Okuno . Dissecting Kinase Profiling Data to Predict Activity and Understand Cross-Reactivity of Kinase Inhibitors. Journal of Chemical Information and Modeling 2012, 52 (4) , 901-912. https://doi.org/10.1021/ci200607f
  369. Jamel Meslamani, Jiabo Li, Jon Sutter, Adrian Stevens, Hugues-Olivier Bertrand, and Didier Rognan . Protein–Ligand-Based Pharmacophores: Generation and Utility Assessment in Computational Ligand Profiling. Journal of Chemical Information and Modeling 2012, 52 (4) , 943-955. https://doi.org/10.1021/ci300083r
  370. Dagmar Stumpfe and Jürgen Bajorath . Exploring Activity Cliffs in Medicinal Chemistry. Journal of Medicinal Chemistry 2012, 55 (7) , 2932-2942. https://doi.org/10.1021/jm201706b
  371. Raman Sharma, Alexandre S. Lawrenson, Nicholas E. Fisher, Ashley J. Warman, Alison E. Shone, Alasdair Hill, Alison Mbekeani, Chandrakala Pidathala, Richard K. Amewu, Suet Leung, Peter Gibbons, David W. Hong, Paul Stocks, Gemma L. Nixon, James Chadwick, Joanne Shearer, Ian Gowers, David Cronk, Serge P. Parel, Paul M. O'Neill, Stephen A. Ward, Giancarlo A. Biagini, and Neil G. Berry . Identification of Novel Antimalarial Chemotypes via Chemoinformatic Compound Selection Methods for a High-Throughput Screening Program against the Novel Malarial Target, PfNDH2: Increasing Hit Rate via Virtual Screening Methods. Journal of Medicinal Chemistry 2012, 55 (7) , 3144-3154. https://doi.org/10.1021/jm3001482
  372. Sichao Wang, Youyong Li, Junmei Wang, Lei Chen, Liling Zhang, Huidong Yu, and Tingjun Hou . ADMET Evaluation in Drug Discovery. 12. Development of Binary Classification Models for Prediction of hERG Potassium Channel Blockage. Molecular Pharmaceutics 2012, 9 (4) , 996-1010. https://doi.org/10.1021/mp300023x
  373. Tammy Biniashvili, Ehud Schreiber, and Yossef Kliger . Improving Classical Substructure-Based Virtual Screening to Handle Extrapolation Challenges. Journal of Chemical Information and Modeling 2012, 52 (3) , 678-685. https://doi.org/10.1021/ci200472s
  374. Bin Chen, Robert P. Sheridan, Viktor Hornak, and Johannes H. Voigt . Comparison of Random Forest and Pipeline Pilot Naïve Bayes in Prospective QSAR Predictions. Journal of Chemical Information and Modeling 2012, 52 (3) , 792-803. https://doi.org/10.1021/ci200615h
  375. Chandrakala Pidathala, Richard Amewu, Bénédicte Pacorel, Gemma L. Nixon, Peter Gibbons, W. David Hong, Suet C. Leung, Neil G. Berry, Raman Sharma, Paul A. Stocks, Abhishek Srivastava, Alison E. Shone, Sitthivut Charoensutthivarakul, Lee Taylor, Olivier Berger, Alison Mbekeani, Alasdair Hill, Nicholas E. Fisher, Ashley J. Warman, Giancarlo A. Biagini, Stephen A. Ward, and Paul M. O’Neill . Identification, Design and Biological Evaluation of Bisaryl Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2). Journal of Medicinal Chemistry 2012, 55 (5) , 1831-1843. https://doi.org/10.1021/jm201179h
  376. Suet C. Leung, Peter Gibbons, Richard Amewu, Gemma L. Nixon, Chandrakala Pidathala, W. David Hong, Bénédicte Pacorel, Neil G. Berry, Raman Sharma, Paul A. Stocks, Abhishek Srivastava, Alison E. Shone, Sitthivut Charoensutthivarakul, Lee Taylor, Olivier Berger, Alison Mbekeani, Alasdair Hill, Nicholas E. Fisher, Ashley J. Warman, Giancarlo A. Biagini, Stephen A. Ward, and Paul M. O’Neill . Identification, Design and Biological Evaluation of Heterocyclic Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2). Journal of Medicinal Chemistry 2012, 55 (5) , 1844-1857. https://doi.org/10.1021/jm201184h
  377. Lionel Colliandre, Vincent Le Guilloux, Stephane Bourg, and Luc Morin-Allory . Visual Characterization and Diversity Quantification of Chemical Libraries: 2. Analysis and Selection of Size-Independent, Subspace-Specific Diversity Indices. Journal of Chemical Information and Modeling 2012, 52 (2) , 327-342. https://doi.org/10.1021/ci200535y
  378. Dagmar Stumpfe and Jürgen Bajorath . Assessing the Confidence Level of Public Domain Compound Activity Data and the Impact of Alternative Potency Measurements on SAR Analysis. Journal of Chemical Information and Modeling 2011, 51 (12) , 3131-3137. https://doi.org/10.1021/ci2004434
  379. Eugen Lounkine, Florian Nigsch, Jeremy L. Jenkins, and Meir Glick . Activity-Aware Clustering of High Throughput Screening Data and Elucidation of Orthogonal Structure–Activity Relationships. Journal of Chemical Information and Modeling 2011, 51 (12) , 3158-3168. https://doi.org/10.1021/ci2004994
  380. Chris de Graaf, Albert J. Kooistra, Henry F. Vischer, Vsevolod Katritch, Martien Kuijer, Mitsunori Shiroishi, So Iwata, Tatsuro Shimamura, Raymond C. Stevens, Iwan J. P. de Esch, and Rob Leurs . Crystal Structure-Based Virtual Screening for Fragment-like Ligands of the Human Histamine H1 Receptor. Journal of Medicinal Chemistry 2011, 54 (23) , 8195-8206. https://doi.org/10.1021/jm2011589
  381. Pu Liu, Dimitris K. Agrafiotis, and Dmitrii N. Rassokhin . Power Keys: A Novel Class of Topological Descriptors Based on Exhaustive Subgraph Enumeration and their Application in Substructure Searching. Journal of Chemical Information and Modeling 2011, 51 (11) , 2843-2851. https://doi.org/10.1021/ci200282z
  382. N. Yi Mok and Ruth Brenk . Mining the ChEMBL Database: An Efficient Chemoinformatics Workflow for Assembling an Ion Channel-Focused Screening Library. Journal of Chemical Information and Modeling 2011, 51 (10) , 2449-2454. https://doi.org/10.1021/ci200260t
  383. Martin Vogt and Jürgen Bajorath . Introduction of the Conditional Correlated Bernoulli Model of Similarity Value Distributions and its Application to the Prospective Prediction of Fingerprint Search Performance. Journal of Chemical Information and Modeling 2011, 51 (10) , 2496-2506. https://doi.org/10.1021/ci2003472
  384. Imran S. Haque, Vijay S. Pande, and W. Patrick Walters . Anatomy of High-Performance 2D Similarity Calculations. Journal of Chemical Information and Modeling 2011, 51 (9) , 2345-2351. https://doi.org/10.1021/ci200235e
  385. Kathrin Heikamp and Jürgen Bajorath . How Do 2D Fingerprints Detect Structurally Diverse Active Compounds? Revealing Compound Subset-Specific Fingerprint Features through Systematic Selection. Journal of Chemical Information and Modeling 2011, 51 (9) , 2254-2265. https://doi.org/10.1021/ci200275m
  386. José L. Medina-Franco, Austin B. Yongye, Jaime Pérez-Villanueva, Richard A. Houghten, and Karina Martínez-Mayorga . Multitarget Structure–Activity Relationships Characterized by Activity-Difference Maps and Consensus Similarity Measure. Journal of Chemical Information and Modeling 2011, 51 (9) , 2427-2439. https://doi.org/10.1021/ci200281v
  387. Pu Liu, Dimitris K. Agrafiotis, Dmitrii N. Rassokhin, and Eric Yang . Accelerating Chemical Database Searching Using Graphics Processing Units. Journal of Chemical Information and Modeling 2011, 51 (8) , 1807-1816. https://doi.org/10.1021/ci200164g
  388. Kathrin Heikamp and Jürgen Bajorath . Large-Scale Similarity Search Profiling of ChEMBL Compound Data Sets. Journal of Chemical Information and Modeling 2011, 51 (8) , 1831-1839. https://doi.org/10.1021/ci200199u
  389. Jamel Meslamani and Didier Rognan . Enhancing the Accuracy of Chemogenomic Models with a Three-Dimensional Binding Site Kernel. Journal of Chemical Information and Modeling 2011, 51 (7) , 1593-1603. https://doi.org/10.1021/ci200166t
  390. Lakshmi B. Akella and Lisa A. Marcaurelle . Application of a Sparse Matrix Design Strategy to the Synthesis of DOS Libraries. ACS Combinatorial Science 2011, 13 (4) , 357-364. https://doi.org/10.1021/co200020j
  391. Ji-Xia Ren, Lin-Li Li, Ren-Lin Zheng, Huan-Zhang Xie, Zhi-Xing Cao, Shan Feng, You-Li Pan, Xin Chen, Yu-Quan Wei, and Sheng-Yong Yang . Discovery of Novel Pim-1 Kinase Inhibitors by a Hierarchical Multistage Virtual Screening Approach Based on SVM Model, Pharmacophore, and Molecular Docking. Journal of Chemical Information and Modeling 2011, 51 (6) , 1364-1375. https://doi.org/10.1021/ci100464b
  392. Austin B. Yongye, Kendall Byler, Radleigh Santos, Karina Martínez-Mayorga, Gerald M. Maggiora, and José L. Medina-Franco . Consensus Models of Activity Landscapes with Multiple Chemical, Conformer, and Property Representations. Journal of Chemical Information and Modeling 2011, 51 (6) , 1259-1270. https://doi.org/10.1021/ci200081k
  393. Preeti Iyer, Dagmar Stumpfe, and Jürgen Bajorath . Molecular Mechanism-Based Network-like Similarity Graphs Reveal Relationships between Different Types of Receptor Ligands and Structural Changes that Determine Agonistic, Inverse-Agonistic, and Antagonistic Effects. Journal of Chemical Information and Modeling 2011, 51 (6) , 1281-1286. https://doi.org/10.1021/ci2001378
  394. Yoshihiro Yamanishi, Edouard Pauwels, Hiroto Saigo, and Véronique Stoven . Extracting Sets of Chemical Substructures and Protein Domains Governing Drug-Target Interactions. Journal of Chemical Information and Modeling 2011, 51 (5) , 1183-1194. https://doi.org/10.1021/ci100476q
  395. Alessio Andronico, Arlo Randall, Ryan W. Benz, and Pierre Baldi . Data-Driven High-Throughput Prediction of the 3-D Structure of Small Molecules: Review and Progress. Journal of Chemical Information and Modeling 2011, 51 (4) , 760-776. https://doi.org/10.1021/ci100223t
  396. Peter Ripphausen, Britta Nisius, Mathias Wawer, and Jürgen Bajorath . Rationalizing the Role of SAR Tolerance for Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling 2011, 51 (4) , 837-842. https://doi.org/10.1021/ci200064c
  397. Melvin J. Yu . Natural Product-Like Virtual Libraries: Recursive Atom-Based Enumeration. Journal of Chemical Information and Modeling 2011, 51 (3) , 541-557. https://doi.org/10.1021/ci1002087
  398. Verena Schattel, Georg Hinselmann, Andreas Jahn, Andreas Zell, and Stefan Laufer . Modeling and Benchmark Data Set for the Inhibition of c-Jun N-terminal Kinase-3. Journal of Chemical Information and Modeling 2011, 51 (3) , 670-679. https://doi.org/10.1021/ci100410h
  399. Steven L. Swann, Scott P. Brown, Steven W. Muchmore, Hetal Patel, Philip Merta, John Locklear, and Philip J. Hajduk . A Unified, Probabilistic Framework for Structure- and Ligand-Based Virtual Screening. Journal of Medicinal Chemistry 2011, 54 (5) , 1223-1232. https://doi.org/10.1021/jm1013677
  400. Mathias Wawer and Jürgen Bajorath . Extracting SAR Information from a Large Collection of Anti-Malarial Screening Hits by NSG-SPT Analysis. ACS Medicinal Chemistry Letters 2011, 2 (3) , 201-206. https://doi.org/10.1021/ml100240z
  401. Dilyana Dimova, Mathias Wawer, Anne Mai Wassermann, and Jürgen Bajorath . Design of Multitarget Activity Landscapes That Capture Hierarchical Activity Cliff Distributions. Journal of Chemical Information and Modeling 2011, 51 (2) , 258-266. https://doi.org/10.1021/ci100477m
  402. Satoshi Niijima, Hiroaki Yabuuchi, and Yasushi Okuno. Cross-Target View to Feature Selection: Identification of Molecular Interaction Features in Ligand−Target Space. Journal of Chemical Information and Modeling 2011, 51 (1) , 15-24. https://doi.org/10.1021/ci1001394
  403. Rabab Al Jishi and Peter Willett. The Journal of Chemical Documentation and the Journal of Chemical Information and Computer Sciences: Publication and Citation Statistics. Journal of Chemical Information and Modeling 2010, 50 (11) , 1915-1923. https://doi.org/10.1021/ci100338j
  404. Anders E. Berglund and Richard D. Head. PZIM: A Method for Similarity Searching Using Atom Environments and 2D Alignment. Journal of Chemical Information and Modeling 2010, 50 (10) , 1790-1795. https://doi.org/10.1021/ci1002075
  405. Ramzi Nasr, Daniel S. Hirschberg and Pierre Baldi. Hashing Algorithms and Data Structures for Rapid Searches of Fingerprint Vectors. Journal of Chemical Information and Modeling 2010, 50 (8) , 1358-1368. https://doi.org/10.1021/ci100132g
  406. Shifa Zhong, Kai Zhang, Dong Wang, Huichun Zhang. Shedding light on “Black Box” machine learning models for predicting the reactivity of HO radicals toward organic compounds. Chemical Engineering Journal 2021, 405 , 126627. https://doi.org/10.1016/j.cej.2020.126627
  407. Xuhan Liu, Adriaan P. IJzerman, Gerard J. P. van Westen. Computational Approaches for De Novo Drug Design: Past, Present, and Future. 2021,,, 139-165. https://doi.org/10.1007/978-1-0716-0826-5_6
  408. Tianyu Zhang, Liwei Zhang, Philip R. O. Payne, Fuhai Li. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models. 2021,,, 223-238. https://doi.org/10.1007/978-1-0716-0849-4_12
  409. Jie-Jiun Chang, David Shan-Hill Wong, Chen-Hsuan Huang, Jia-Lin Kang, Hsuan-Hao Hsu, Shang-Tai Lin. Towards a universal digital chemical space for pure component properties prediction. Fluid Phase Equilibria 2021, 527 , 112829. https://doi.org/10.1016/j.fluid.2020.112829
  410. Niranjan Kumar, Rakesh Srivastava, Amresh Prakash, Andrew M. Lynn. Virtual screening and free energy estimation for identifying Mycobacterium tuberculosis flavoenzyme DprE1 inhibitors. Journal of Molecular Graphics and Modelling 2021, 102 , 107770. https://doi.org/10.1016/j.jmgm.2020.107770
  411. Nils M. Kriege, Fredrik D. Johansson, Christopher Morris. A survey on graph kernels. Applied Network Science 2020, 5 (1) https://doi.org/10.1007/s41109-019-0195-3
  412. Pavlo V. Zadorozhnii, Vadym V. Kiselev, Aleksandr V. Kharchenko. In silico toxicity evaluation of Salubrinal and its analogues. European Journal of Pharmaceutical Sciences 2020, 155 , 105538. https://doi.org/10.1016/j.ejps.2020.105538
  413. Ming-Xiao Zhu, Heng-Gao Song, Qiu-Cheng Yu, Ji-Ming Chen, Hong-Yu Zhang. Machine-learning-driven discovery of polymers molecular structures with high thermal conductivity. International Journal of Heat and Mass Transfer 2020, 162 , 120381. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120381
  414. Shivananda Kandagalla, Sharath Belenahalli Shekarappa, Hrvoje Rimac, Maria A. Grishina, Vladimir A. Potemkin, Manjunatha Hanumanthappa. Computational insights into the binding mode of curcumin analogues against EP300 HAT domain as potent acetyltransferase inhibitors. Journal of Molecular Graphics and Modelling 2020, 101 , 107756. https://doi.org/10.1016/j.jmgm.2020.107756
  415. J. G. Coen van Hasselt, Rayees Rahman, Jens Hansen, Alan Stern, Jaehee V. Shim, Yuguang Xiong, Amanda Pickard, Gomathi Jayaraman, Bin Hu, Milind Mahajan, James M. Gallo, Joseph Goldfarb, Eric A. Sobie, Marc R. Birtwistle, Avner Schlessinger, Evren U. Azeloglu, Ravi Iyengar. Transcriptomic profiling of human cardiac cells predicts protein kinase inhibitor-associated cardiotoxicity. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18396-7
  416. Phyo Phyo Kyaw Zin, Gavin J. Williams, Sean Ekins. Cheminformatics Analysis and Modeling with MacrolactoneDB. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-63192-4
  417. Lun K. Tsou, Shiu-Hwa Yeh, Shau-Hua Ueng, Chun-Ping Chang, Jen-Shin Song, Mine-Hsine Wu, Hsiao-Fu Chang, Sheng-Ren Chen, Chuan Shih, Chiung-Tong Chen, Yi-Yu Ke. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-73681-1
  418. Liam Wilbraham, Denisa Smajli, Isabelle Heath-Apostolopoulos, Martijn A. Zwijnenburg. Mapping the optoelectronic property space of small aromatic molecules. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0256-7
  419. Kan Hatakeyama-Sato, Kenichi Oyaizu. Integrating multiple materials science projects in a single neural network. Communications Materials 2020, 1 (1) https://doi.org/10.1038/s43246-020-00052-8
  420. Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, Michał Warchoł. Mol-CycleGAN: a generative model for molecular optimization. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-019-0404-1
  421. Adrian Voicu, Narcis Duteanu, Mirela Voicu, Daliborca Vlad, Victor Dumitrascu. The rcdk and cluster R packages applied to drug candidate selection. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-019-0405-0
  422. M. Withnall, E. Lindelöf, O. Engkvist, H. Chen. Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-019-0407-y
  423. Andrea Morger, Miriam Mathea, Janosch H. Achenbach, Antje Wolf, Roland Buesen, Klaus-Juergen Schleifer, Robert Landsiedel, Andrea Volkamer. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00422-x
  424. Noé Sturm, Andreas Mayr, Thanh Le Van, Vladimir Chupakhin, Hugo Ceulemans, Joerg Wegner, Jose-Felipe Golib-Dzib, Nina Jeliazkova, Yves Vandriessche, Stanislav Böhm, Vojtech Cima, Jan Martinovic, Nigel Greene, Tom Vander Aa, Thomas J. Ashby, Sepp Hochreiter, Ola Engkvist, Günter Klambauer, Hongming Chen. Industry-scale application and evaluation of deep learning for drug target prediction. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00428-5
  425. Raquel Rodríguez-Pérez, Filip Miljković, Jürgen Bajorath. Assessing the information content of structural and protein–ligand interaction representations for the classification of kinase inhibitor binding modes via machine learning and active learning. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00434-7
  426. Ryosuke Kojima, Shoichi Ishida, Masateru Ohta, Hiroaki Iwata, Teruki Honma, Yasushi Okuno. kGCN: a graph-based deep learning framework for chemical structures. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00435-6
  427. Javed Iqbal, Martin Vogt, Jürgen Bajorath. Activity landscape image analysis using convolutional neural networks. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00436-5
  428. Milan Voršilák, Michal Kolář, Ivan Čmelo, Daniel Svozil. SYBA: Bayesian estimation of synthetic accessibility of organic compounds. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00439-2
  429. C. Škuta, I. Cortés-Ciriano, W. Dehaen, P. Kříž, G. J. P. van Westen, I. V. Tetko, A. Bender, D. Svozil. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00443-6
  430. Isidro Cortés-Ciriano, Ctibor Škuta, Andreas Bender, Daniel Svozil. QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00444-5
  431. Alice Capecchi, Daniel Probst, Jean-Louis Reymond. One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00445-4
  432. Maha A. Thafar, Rawan S. Olayan, Haitham Ashoor, Somayah Albaradei, Vladimir B. Bajic, Xin Gao, Takashi Gojobori, Magbubah Essack. DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00447-2
  433. Laurianne David, Amol Thakkar, Rocío Mercado, Ola Engkvist. Molecular representations in AI-driven drug discovery: a review and practical guide. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00460-5
  434. Bowen Tang, Skyler T. Kramer, Meijuan Fang, Yingkun Qiu, Zhen Wu, Dong Xu. A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-0414-z
  435. Daniel Probst, Jean-Louis Reymond. Visualization of very large high-dimensional data sets as minimum spanning trees. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-0416-x
  436. Haoyang Hu, Zhihong Yuan. Hard-threshold neural network-based prediction of organic synthetic outcomes. BMC Chemical Engineering 2020, 2 (1) https://doi.org/10.1186/s42480-020-00030-4
  437. Ammar Abdo, Eissa Ghaleb, Naser K. A. Alajmi, Maude Pupin. Monomer structure fingerprints: an extension of the monomer composition version for peptide databases. Journal of Computer-Aided Molecular Design 2020, 34 (11) , 1147-1156. https://doi.org/10.1007/s10822-020-00336-8
  438. Cecile Valsecchi, Francesca Grisoni, Stefano Motta, Laura Bonati, Davide Ballabio. NURA: A curated dataset of nuclear receptor modulators. Toxicology and Applied Pharmacology 2020, 407 , 115244. https://doi.org/10.1016/j.taap.2020.115244
  439. Daniela Braz dos Santos, José Teófilo Moreira-Filho, Amanda de Oliveira Melo, Josiel Araújo Lemes, Luciana Damacena Silva, Thiago Lopes Rocha, Carolina Horta Andrade, Bruno Junior Neves, José Clecildo Barreto Bezerra. In silico -driven identification of novel molluscicides effective against Biomphalaria glabrata (Say, 1818). New Journal of Chemistry 2020, 44 (39) , 16948-16958. https://doi.org/10.1039/D0NJ03314F
  440. Ting-Fu Chen, Yu-Chuan Chang, Yi Hsiao, Ko-Han Lee, Yu-Chun Hsiao, Yu-Hsiang Lin, Yi-Chin Ethan Tu, Hsuan-Cheng Huang, Chien-Yu Chen, Hsueh-Fen Juan. DockCoV2: a drug database against SARS-CoV-2. Nucleic Acids Research 2020, 20 https://doi.org/10.1093/nar/gkaa861
  441. Noorain Khalifa, Leela Sarath Kumar Konda, Rajendra Kristam. Machine learning-based QSAR models to predict sodium ion channel (Na v 1.5) blockers. Future Medicinal Chemistry 2020, 1 https://doi.org/10.4155/fmc-2020-0156
  442. Tuan Le, Robin Winter, Frank Noé, Djork-Arné Clevert. Neuraldecipher – reverse-engineering extended-connectivity fingerprints (ECFPs) to their molecular structures. Chemical Science 2020, 11 (38) , 10378-10389. https://doi.org/10.1039/D0SC03115A
  443. Dimitar Yonchev, Jürgen Bajorath. DeepCOMO: from structure-activity relationship diagnostics to generative molecular design using the compound optimization monitor methodology. Journal of Computer-Aided Molecular Design 2020, 8 https://doi.org/10.1007/s10822-020-00349-3
  444. Niklas Julian Lentelink, Stefan Palkovits. Transfer Learning as Tool to Enhance Predictions of Molecular Properties Based on 2D Projections. Advanced Theory and Simulations 2020, 3 (10) , 2000148. https://doi.org/10.1002/adts.202000148
  445. Raquel Rodríguez-Pérez, Jürgen Bajorath. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. Journal of Computer-Aided Molecular Design 2020, 34 (10) , 1013-1026. https://doi.org/10.1007/s10822-020-00314-0
  446. Bruno David, Antonio Grondin, Philippe Schambel, Marc Vitorino, Denis Zeyer. Plant natural fragments, an innovative approach for drug discovery. Phytochemistry Reviews 2020, 19 (5) , 1141-1156. https://doi.org/10.1007/s11101-019-09612-4
  447. Christopher M. Childs, Oğulcan Canbek, Tia M. Kirby, Cheng Zhang, Jiangnan Zheng, Connor Szeto, Barnabás Póczos, Kimberly E. Kurtis, Newell R. Washburn. Cheminformatics for accelerated design of chemical admixtures. Cement and Concrete Research 2020, 136 , 106173. https://doi.org/10.1016/j.cemconres.2020.106173
  448. Yotsawat Pomyen, Kwanjeera Wanichthanarak, Patcha Poungsombat, Johannes Fahrmann, Dmitry Grapov, Sakda Khoomrung. Deep Metabolome: Applications of deep learning in metabolomics. Computational and Structural Biotechnology Journal 2020, https://doi.org/10.1016/j.csbj.2020.09.033
  449. Xiaoqin Tan, Xiangrui Jiang, Yang He, Feisheng Zhong, Xutong Li, Zhaoping Xiong, Zhaojun Li, Xiaohong Liu, Chen Cui, Qingjie Zhao, Yuanchao Xie, Feipu Yang, Chunhui Wu, Jingshan Shen, Mingyue Zheng, Zhen Wang, Hualiang Jiang. Automated design and optimization of multitarget schizophrenia drug candidates by deep learning. European Journal of Medicinal Chemistry 2020, 204 , 112572. https://doi.org/10.1016/j.ejmech.2020.112572
  450. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl cis-5-octenoate, CAS Registry Number 41654-15-3. Food and Chemical Toxicology 2020, 144 , 111382. https://doi.org/10.1016/j.fct.2020.111382
  451. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-methylpentanoic acid, CAS Registry Number 646-07-1. Food and Chemical Toxicology 2020, 144 , 111456. https://doi.org/10.1016/j.fct.2020.111456
  452. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl trans-2-decenoate, CAS Registry Number 7367-88-6. Food and Chemical Toxicology 2020, 144 , 111461. https://doi.org/10.1016/j.fct.2020.111461
  453. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl 2-methylbutyrate, CAS Registry Number 10032-15-2. Food and Chemical Toxicology 2020, 144 , 111463. https://doi.org/10.1016/j.fct.2020.111463
  454. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyl butyrate, CAS Registry Number 109-21-7. Food and Chemical Toxicology 2020, 144 , 111464. https://doi.org/10.1016/j.fct.2020.111464
  455. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, decanoic acid, CAS Registry Number 334-48-5. Food and Chemical Toxicology 2020, 144 , 111465. https://doi.org/10.1016/j.fct.2020.111465
  456. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 3-methylthiopropionate, CAS Registry Number 13327-56-5. Food and Chemical Toxicology 2020, 144 , 111469. https://doi.org/10.1016/j.fct.2020.111469
  457. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, phenylethyl anthranilate, CAS Registry Number 133-18-6. Food and Chemical Toxicology 2020, 144 , 111470. https://doi.org/10.1016/j.fct.2020.111470
  458. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 2,6,6-trimethylcyclohex-2-ene-1-carboxylate, CAS Registry Number 28043-10-9. Food and Chemical Toxicology 2020, 144 , 111471. https://doi.org/10.1016/j.fct.2020.111471
  459. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl (E)hex-3-enoate, CAS registry number 26553-46-8. Food and Chemical Toxicology 2020, 144 , 111474. https://doi.org/10.1016/j.fct.2020.111474
  460. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, pentyl acetate, CAS Registry Number 628-63-7. Food and Chemical Toxicology 2020, 144 , 111481. https://doi.org/10.1016/j.fct.2020.111481
  461. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclododecaneethanol, β-methyl-, CAS Registry Number 118562-73-5. Food and Chemical Toxicology 2020, 144 , 111485. https://doi.org/10.1016/j.fct.2020.111485
  462. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,2-dimethyl-3-methyl-3-butenyl propanoate, CAS Registry Number 104468-21-5. Food and Chemical Toxicology 2020, 144 , 111489. https://doi.org/10.1016/j.fct.2020.111489
  463. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-(m-tert-butylphenyl)-2-methylpropionaldehyde, CAS Registry Number 62518-65-4. Food and Chemical Toxicology 2020, 144 , 111496. https://doi.org/10.1016/j.fct.2020.111496
  464. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cuminic aldehyde, CAS Registry Number 122-03-2. Food and Chemical Toxicology 2020, 144 , 111498. https://doi.org/10.1016/j.fct.2020.111498
  465. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, benzyl benzoate, CAS Registry Number 120-51-4. Food and Chemical Toxicology 2020, 144 , 111500. https://doi.org/10.1016/j.fct.2020.111500
  466. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-phenylbutanal, CAS Registry Number 16251-77-7. Food and Chemical Toxicology 2020, 144 , 111528. https://doi.org/10.1016/j.fct.2020.111528
  467. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, β-naphthyl anthranilate, CAS Registry Number 63449-68-3. Food and Chemical Toxicology 2020, 144 , 111531. https://doi.org/10.1016/j.fct.2020.111531
  468. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-methylpentanoic acid, CAS Registry Number 105-43-1. Food and Chemical Toxicology 2020, 144 , 111534. https://doi.org/10.1016/j.fct.2020.111534
  469. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 9-decenoic acid, CAS Registry Number 14436-32-9. Food and Chemical Toxicology 2020, 144 , 111541. https://doi.org/10.1016/j.fct.2020.111541
  470. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-octen-3-one, CAS Registry Number 4312-99-6. Food and Chemical Toxicology 2020, 144 , 111542. https://doi.org/10.1016/j.fct.2020.111542
  471. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, pyridine, 4-decyl-, CAS Registry Number 1815-99-2. Food and Chemical Toxicology 2020, 144 , 111543. https://doi.org/10.1016/j.fct.2020.111543
  472. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cis-4-decenol, CAS Registry Number 57074-37-0. Food and Chemical Toxicology 2020, 144 , 111545. https://doi.org/10.1016/j.fct.2020.111545
  473. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,4-dimethylcyclohexylmethyl acetate, CAS Registry Number 67634-22-4. Food and Chemical Toxicology 2020, 144 , 111547. https://doi.org/10.1016/j.fct.2020.111547
  474. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-oxaspiro[4.5]deca-3,6-diene, 6-ethyl-2,10,10-trimethyl-, CAS Registry Number 79893-63-3. Food and Chemical Toxicology 2020, 144 , 111548. https://doi.org/10.1016/j.fct.2020.111548
  475. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, nonane, CAS Registry Number 111-84-2. Food and Chemical Toxicology 2020, 144 , 111608. https://doi.org/10.1016/j.fct.2020.111608
  476. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, S-1-methylethyl 3-methylbut-2-enethioate, CAS Registry Number 34365-79-2. Food and Chemical Toxicology 2020, 144 , 111609. https://doi.org/10.1016/j.fct.2020.111609
  477. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyl methacrylate, CAS Registry Number 97-88-1. Food and Chemical Toxicology 2020, 144 , 111613. https://doi.org/10.1016/j.fct.2020.111613
  478. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl formate, CAS Registry Number 542-55-2. Food and Chemical Toxicology 2020, 144 , 111614. https://doi.org/10.1016/j.fct.2020.111614
  479. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-hepten-1-ol, (3Z)-, CAS Registry Number 1708-81-2. Food and Chemical Toxicology 2020, 144 , 111617. https://doi.org/10.1016/j.fct.2020.111617
  480. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, CAS Registry Number 3658-77-3. Food and Chemical Toxicology 2020, 144 , 111620. https://doi.org/10.1016/j.fct.2020.111620
  481. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-(5,6,7,8-tetrahydro-2-naphthalenyl)ethanone, CAS Registry Number 774-55-0. Food and Chemical Toxicology 2020, 144 , 111629. https://doi.org/10.1016/j.fct.2020.111629
  482. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, eugenyl acetate, CAS Registry Number 93-28-7. Food and Chemical Toxicology 2020, 144 , 111630. https://doi.org/10.1016/j.fct.2020.111630
  483. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl hexanoate, CAS Registry Number 6378-65-0. Food and Chemical Toxicology 2020, 144 , 111635. https://doi.org/10.1016/j.fct.2020.111635
  484. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 3(2-furyl)propanoate, CAS Registry Number 10031-90-0. Food and Chemical Toxicology 2020, 144 , 111637. https://doi.org/10.1016/j.fct.2020.111637
  485. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-nonanol, 2,4,6,8-tetramethyl-,acetate, CAS Registry Number 68922-14-5. Food and Chemical Toxicology 2020, 144 , 111640. https://doi.org/10.1016/j.fct.2020.111640
  486. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 10-undecenoate, CAS Registry Number 692-86-4. Food and Chemical Toxicology 2020, 144 , 111655. https://doi.org/10.1016/j.fct.2020.111655
  487. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclohexaneethyl acetate, CAS Registry Number 21722-83-8. Food and Chemical Toxicology 2020, 144 , 111656. https://doi.org/10.1016/j.fct.2020.111656
  488. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-ethoxy-4-methylphenol, CAS Registry Number 2563-07-7. Food and Chemical Toxicology 2020, 144 , 111657. https://doi.org/10.1016/j.fct.2020.111657
  489. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,4-cineole, CAS Registry Number 470-67-7. Food and Chemical Toxicology 2020, 144 , 111659. https://doi.org/10.1016/j.fct.2020.111659
  490. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 3-nonenoate, CAS Registry Number 13481-87-3. Food and Chemical Toxicology 2020, 144 , 111660. https://doi.org/10.1016/j.fct.2020.111660
  491. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyric acid, CAS Registry Number 79-31-2. Food and Chemical Toxicology 2020, 144 , 111673. https://doi.org/10.1016/j.fct.2020.111673
  492. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3,6-dihydro-4-methyl-2-phenyl-2H-pyran, CAS Registry number 60335-71-9. Food and Chemical Toxicology 2020, 144 , 111678. https://doi.org/10.1016/j.fct.2020.111678
  493. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, nonanoic acid, CAS Registry Number 112-05-0. Food and Chemical Toxicology 2020, 144 , 111683. https://doi.org/10.1016/j.fct.2020.111683
  494. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-isobutyl-α-methyl hydrocinnamaldehyde, CAS Registry Number 6658-48-6. Food and Chemical Toxicology 2020, 144 , 111686. https://doi.org/10.1016/j.fct.2020.111686
  495. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-3,6-octadienal, CAS registry number 55722-59-3. Food and Chemical Toxicology 2020, 144 , 111696. https://doi.org/10.1016/j.fct.2020.111696
  496. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-phenylpropionaldehyde, CAS Registry Number 93-53-8. Food and Chemical Toxicology 2020, 144 , 111697. https://doi.org/10.1016/j.fct.2020.111697
  497. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 5-phenylhex-3-en-2-one, CAS Registry Number 60405-50-7. Food and Chemical Toxicology 2020, , 111780. https://doi.org/10.1016/j.fct.2020.111780
  498. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O’Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment,decane, CAS Registry Number 124-18-5. Food and Chemical Toxicology 2020, , 111804. https://doi.org/10.1016/j.fct.2020.111804
  499. Dachuan Zhang, Shuyu Ouyang, Minqing Cai, Haoyang Zhang, Shaozhen Ding, Dongliang Liu, Pengli Cai, Yingying Le, Qian-Nan Hu. FADB-China: A molecular-level food adulteration database in China based on molecular fingerprints and similarity algorithms prediction expansion. Food Chemistry 2020, 327 , 127010. https://doi.org/10.1016/j.foodchem.2020.127010
  500. José Jiménez-Luna, Francesca Grisoni, Gisbert Schneider. Drug discovery with explainable artificial intelligence. Nature Machine Intelligence 2020, 2 (10) , 573-584. https://doi.org/10.1038/s42256-020-00236-4
  501. Daniel Marchand, Abhinav Jain, Albert Glensk, W. A. Curtin. Machine learning for metallurgy I. A neural-network potential for Al-Cu. Physical Review Materials 2020, 4 (10) https://doi.org/10.1103/PhysRevMaterials.4.103601
  502. Markus Stricker, Binglun Yin, Eleanor Mak, W. A. Curtin. Machine learning for metallurgy II. A neural-network potential for magnesium. Physical Review Materials 2020, 4 (10) https://doi.org/10.1103/PhysRevMaterials.4.103602
  503. Alice Capecchi, Jean-Louis Reymond. Assigning the Origin of Microbial Natural Products by Chemical Space Map and Machine Learning. Biomolecules 2020, 10 (10) , 1385. https://doi.org/10.3390/biom10101385
  504. Daiki Ito, Raku Shirasawa, Yoichiro Iino, Shigetaka Tomiya, Gouhei Tanaka, . Estimation and prediction of ellipsoidal molecular shapes in organic crystals based on ellipsoid packing. PLOS ONE 2020, 15 (9) , e0239933. https://doi.org/10.1371/journal.pone.0239933
  505. Thomas Blaschke, Christian Feldmann, Jürgen Bajorath. Prediction of Promiscuity Cliffs Using Machine Learning. Molecular Informatics 2020, 21 https://doi.org/10.1002/minf.202000196
  506. Natalie S. Eyke, William H. Green, Klavs F. Jensen. Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening. Reaction Chemistry & Engineering 2020, 5 (10) , 1963-1972. https://doi.org/10.1039/D0RE00232A
  507. Yanyi Chu, Xiaoqi Shan, Tianhang Chen, Mingming Jiang, Yanjing Wang, Qiankun Wang, Dennis Russell Salahub, Yi Xiong, Dong-Qing Wei. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Briefings in Bioinformatics 2020, 310 https://doi.org/10.1093/bib/bbaa205
  508. Jan‐Joris Devogelaer, Hugo Meekes, Paul Tinnemans, Elias Vlieg, René Gelder. Co‐crystal Prediction by Artificial Neural Networks. Angewandte Chemie 2020, 17 https://doi.org/10.1002/ange.202009467
  509. Jan‐Joris Devogelaer, Hugo Meekes, Paul Tinnemans, Elias Vlieg, René Gelder. Co‐crystal Prediction by Artificial Neural Networks. Angewandte Chemie International Edition 2020, 17 https://doi.org/10.1002/anie.202009467
  510. Subha Mondal, Suvankar Banerjee, Sk. Abdul Amin, Tarun Jha. Structural analysis of arylsulfonamide-based carboxylic acid derivatives: a QSAR study to identify the structural contributors toward their MMP-9 inhibition. Structural Chemistry 2020, 37 https://doi.org/10.1007/s11224-020-01635-4
  511. Guang Chen, Zhiqiang Shen, Ying Li. A machine-learning-assisted study of the permeability of small drug-like molecules across lipid membranes. Physical Chemistry Chemical Physics 2020, 22 (35) , 19687-19696. https://doi.org/10.1039/D0CP03243C
  512. Kaycee Low, Rika Kobayashi, Ekaterina I. Izgorodina. The effect of descriptor choice in machine learning models for ionic liquid melting point prediction. The Journal of Chemical Physics 2020, 153 (10) , 104101. https://doi.org/10.1063/5.0016289
  513. Jike Wang, Dongsheng Cao, Cunchen Tang, Xi Chen, Huiyong Sun, Tingjun Hou, . Fast and accurate prediction of partial charges using Atom-Path-Descriptor-based machine learning. Bioinformatics 2020, 40 https://doi.org/10.1093/bioinformatics/btaa566
  514. Hui Zhang, Chen Shen, Ru‐Zhuo Liu, Jun Mao, Chun‐Tao Liu, Bo Mu. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method. Journal of Applied Toxicology 2020, 40 (9) , 1198-1209. https://doi.org/10.1002/jat.3975
  515. Sivakumar Prasanth Kumar, Chirag N. Patel, Rakesh M. Rawal, Himanshu A. Pandya. Energetic contributions of amino acid residues and its cross‐talk to delineate ligand‐binding mechanism. Proteins: Structure, Function, and Bioinformatics 2020, 88 (9) , 1207-1225. https://doi.org/10.1002/prot.25894
  516. Dagmar Stumpfe, Huabin Hu, Jürgen Bajorath. Advances in exploring activity cliffs. Journal of Computer-Aided Molecular Design 2020, 34 (9) , 929-942. https://doi.org/10.1007/s10822-020-00315-z
  517. Hui Zhang, Jun Mao, Hua-Zhao Qi, Huan-Zhang Xie, Chen Shen, Chun-Tao Liu, Lan Ding. Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique. Food and Chemical Toxicology 2020, 143 , 111513. https://doi.org/10.1016/j.fct.2020.111513
  518. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O’Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-phenyl-3-buten-2-ol, CAS Registry Number 17488-65-2. Food and Chemical Toxicology 2020, , 111711. https://doi.org/10.1016/j.fct.2020.111711
  519. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methylpropyl pentanoate, CAS Registry Number 10588-10-0. Food and Chemical Toxicology 2020, , 111730. https://doi.org/10.1016/j.fct.2020.111730
  520. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, pentanoic acid, 2-methylbutyl ester, CAS Registry Number 55590-83-5. Food and Chemical Toxicology 2020, , 111732. https://doi.org/10.1016/j.fct.2020.111732
  521. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-decanone, CAS Registry Number 693-54-9. Food and Chemical Toxicology 2020, , 111735. https://doi.org/10.1016/j.fct.2020.111735
  522. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, M. Kumar, A. Lapczynski, M. Lavelle, I. Lee, D.C. Liebler, H. Moustakas, M. Na, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, T.W. Schultz, D. Selechnik, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura. RIFM fragrance ingredient safety assessment, 2-propanol, 1,1′,1′,1'-(1,2-ethanediyldinitrilo)tetrakis-, CAS Registry Number 102-60-3. Food and Chemical Toxicology 2020, , 111737. https://doi.org/10.1016/j.fct.2020.111737
  523. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, undecane, CAS Registry Number 1120-21-4. Food and Chemical Toxicology 2020, , 111745. https://doi.org/10.1016/j.fct.2020.111745
  524. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3,5-dimethylcyclohex-3-ene-1-methyl acetate, CAS Registry Number 67634-25-7. Food and Chemical Toxicology 2020, , 111746. https://doi.org/10.1016/j.fct.2020.111746
  525. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, dodecane, CAS Registry Number 112-40-3. Food and Chemical Toxicology 2020, , 111759. https://doi.org/10.1016/j.fct.2020.111759
  526. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-furanmethanethiol formate, CAS Registry Number 59020-90-5. Food and Chemical Toxicology 2020, , 111760. https://doi.org/10.1016/j.fct.2020.111760
  527. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ω-pentadecalactone, CAS Registry Number 106-02-5. Food and Chemical Toxicology 2020, , 111762. https://doi.org/10.1016/j.fct.2020.111762
  528. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, pyridine, 4-ethenyl-, reaction products with 3a,4,7,7a-tetrahydrodimethyl-4,7-methano-1H-indene, CAS Registry Number 125352-06-9. Food and Chemical Toxicology 2020, , 111764. https://doi.org/10.1016/j.fct.2020.111764
  529. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, M. Kumar, A. Lapczynski, M. Lavelle, I. Lee, D.C. Liebler, H. Moustakas, M. Na, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, T.W. Schultz, D. Selechnik, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura. RIFM fragrance ingredient safety assessment, carbonic acid, 2-hydroxypropyl (1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl ester, CAS Registry Number 260781-16-6. Food and Chemical Toxicology 2020, , 111765. https://doi.org/10.1016/j.fct.2020.111765
  530. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, propenylguaethol, CAS Registry Number 94-86-0. Food and Chemical Toxicology 2020, , 111776. https://doi.org/10.1016/j.fct.2020.111776
  531. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl methacrylate, CAS Registry Number 97-63-2. Food and Chemical Toxicology 2020, , 111779. https://doi.org/10.1016/j.fct.2020.111779
  532. Daisuke Takaya, Hideaki Niwa, Junko Mikuni, Kana Nakamura, Noriko Handa, Akiko Tanaka, Shigeyuki Yokoyama, Teruki Honma. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. Journal of Molecular Graphics and Modelling 2020, 99 , 107599. https://doi.org/10.1016/j.jmgm.2020.107599
  533. Sangwon Lee, Sungbo Hwang, Myungwon Seo, Ki Beom Shin, Kwang Hoe Kim, Gun Wook Park, Jin Young Kim, Jong Shin Yoo, Kyoung Tai No. BMDMS-NP: A comprehensive ESI-MS/MS spectral library of natural compounds. Phytochemistry 2020, 177 , 112427. https://doi.org/10.1016/j.phytochem.2020.112427
  534. Franco Lombardo, Jörg Bentzien, Giuliano Berellini, Ingo Muegge. In Silico Models of Human PK Parameters. Prediction of Volume of Distribution Using an Extensive Data Set and a Reduced Number of Parameters. Journal of Pharmaceutical Sciences 2020, https://doi.org/10.1016/j.xphs.2020.08.023
  535. Felix Strieth-Kalthoff, Frederik Sandfort, Marwin H. S. Segler, Frank Glorius. Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chemical Society Reviews 2020, 49 (17) , 6154-6168. https://doi.org/10.1039/C9CS00786E
  536. Milad Salem, Aminollah Khormali, Arash Keshavarzi Arshadi, Julia Webb, Jiann-Shiun Yuan. TranScreen: Transfer Learning on Graph-Based Anti-Cancer Virtual Screening Model. Big Data and Cognitive Computing 2020, 4 (3) , 16. https://doi.org/10.3390/bdcc4030016
  537. Javed Iqbal, Martin Vogt, Jürgen Bajorath. Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data. Molecules 2020, 25 (17) , 3952. https://doi.org/10.3390/molecules25173952
  538. Andreas H. Göller, Lara Kuhnke, Floriane Montanari, Anne Bonin, Sebastian Schneckener, Antonius ter Laak, Jörg Wichard, Mario Lobell, Alexander Hillisch. Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discovery Today 2020, 25 (9) , 1702-1709. https://doi.org/10.1016/j.drudis.2020.07.001
  539. Shunsuke Tamura, Tomoyuki Miyao, KIMITO FUNATSU. Ligand‐based Activity Cliff Prediction Models with Applicability Domain. Molecular Informatics 2020, https://doi.org/10.1002/minf.202000103
  540. Carlos Oliver, Vincent Mallet, Roman Sarrazin Gendron, Vladimir Reinharz, William L Hamilton, Nicolas Moitessier, Jérôme Waldispühl. Augmented base pairing networks encode RNA-small molecule binding preferences. Nucleic Acids Research 2020, 48 (14) , 7690-7699. https://doi.org/10.1093/nar/gkaa583
  541. Gabriel H. S. Dreiman, Magda Bictash, Paul V. Fish, Lewis Griffin, Fredrik Svensson. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding. SLAS DISCOVERY: Advancing the Science of Drug Discovery 2020, 32 , 247255522094949. https://doi.org/10.1177/2472555220949495
  542. Yanjuan Jia, Lei Chen, Jian-Peng Zhou, Min Liu. iMPT-FRAKEL: A Simple Multi-label Web-server that Only Uses Fingerprints to Identify which Metabolic Pathway Types Compounds can Participate In. The Open Bioinformatics Journal 2020, 13 (1) , 83-91. https://doi.org/10.2174/1875036202013010083
  543. Ataberk Donmez, Ahmet Sureyya Rifaioglu, Aybar Acar, Tunca Doğan, Rengul Cetin-Atalay, Volkan Atalay, . iBioProVis: interactive visualization and analysis of compound bioactivity space. Bioinformatics 2020, 36 (14) , 4227-4230. https://doi.org/10.1093/bioinformatics/btaa496
  544. Koki Muraoka, Watcharop Chaikittisilp, Tatsuya Okubo. Multi-objective de novo molecular design of organic structure-directing agents for zeolites using nature-inspired ant colony optimization. Chemical Science 2020, 11 (31) , 8214-8223. https://doi.org/10.1039/D0SC03075A
  545. Heather L. Ciallella, Daniel P. Russo, Lauren M. Aleksunes, Fabian A. Grimm, Hao Zhu. Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches. Laboratory Investigation 2020, 276 https://doi.org/10.1038/s41374-020-00477-2
  546. Byungju Lee, Jaekyun Yoo, Kisuk Kang. Predicting the chemical reactivity of organic materials using a machine-learning approach. Chemical Science 2020, 11 (30) , 7813-7822. https://doi.org/10.1039/D0SC01328E
  547. Pieter P. Plehiers, Connor W. Coley, Hanyu Gao, Florence H. Vermeire, Maarten R. Dobbelaere, Christian V. Stevens, Kevin M. Van Geem, William H. Green. Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components. Frontiers in Chemical Engineering 2020, 2 https://doi.org/10.3389/fceng.2020.00005
  548. Xin Li, Shuo‐Qing Zhang, Li‐Cheng Xu, Xin Hong. Predicting Regioselectivity in Radical C−H Functionalization of Heterocycles through Machine Learning. Angewandte Chemie 2020, 132 (32) , 13355-13361. https://doi.org/10.1002/ange.202000959
  549. Xin Li, Shuo‐Qing Zhang, Li‐Cheng Xu, Xin Hong. Predicting Regioselectivity in Radical C−H Functionalization of Heterocycles through Machine Learning. Angewandte Chemie International Edition 2020, 59 (32) , 13253-13259. https://doi.org/10.1002/anie.202000959
  550. Yi-Yu Ke, Tzu-Ting Peng, Teng-Kuang Yeh, Wen-Zheng Huang, Shao-En Chang, Szu-Huei Wu, Hui-Chen Hung, Tsu-An Hsu, Shiow-Ju Lee, Jeng-Shin Song, Wen-Hsing Lin, Tung-Jung Chiang, Jiunn-Horng Lin, Huey-Kang Sytwu, Chiung-Tong Chen. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomedical Journal 2020, 43 (4) , 355-362. https://doi.org/10.1016/j.bj.2020.05.001
  551. Hyunho Kim, Hojung Nam. hERG-Att: Self-attention-based deep neural network for predicting hERG blockers. Computational Biology and Chemistry 2020, 87 , 107286. https://doi.org/10.1016/j.compbiolchem.2020.107286
  552. Stefan Schroedl. Current methods and challenges for deep learning in drug discovery. Drug Discovery Today: Technologies 2020, https://doi.org/10.1016/j.ddtec.2020.07.003
  553. Zhuoying Jiang, Jiajie Hu, Xijin Zhang, Yihang Zhao, Xudong Fan, Shifa Zhong, Huichun Zhang, Xiong Yu. A generalized predictive model for TiO2–Catalyzed photo-degradation rate constants of water contaminants through artificial neural network. Environmental Research 2020, 187 , 109697. https://doi.org/10.1016/j.envres.2020.109697
  554. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-ethylbenzaldehyde, CAS Registry Number 4748-78-1. Food and Chemical Toxicology 2020, , 111700. https://doi.org/10.1016/j.fct.2020.111700
  555. Joel Kowalewski, Anandasankar Ray. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon 2020, 6 (8) , e04639. https://doi.org/10.1016/j.heliyon.2020.e04639
  556. Wiktor Beker, Agnieszka Wołos, Sara Szymkuć, Bartosz A. Grzybowski. Minimal-uncertainty prediction of general drug-likeness based on Bayesian neural networks. Nature Machine Intelligence 2020, 2 (8) , 457-465. https://doi.org/10.1038/s42256-020-0209-y
  557. Eric D. Boittier, Yat Yin Tang, McKenna E. Buckley, Zachariah P. Schuurs, Derek J. Richard, Neha S. Gandhi. Assessing Molecular Docking Tools to Guide Targeted Drug Discovery of CD38 Inhibitors. International Journal of Molecular Sciences 2020, 21 (15) , 5183. https://doi.org/10.3390/ijms21155183
  558. Oliver Snow, Nada Lallous, Martin Ester, Artem Cherkasov. Deep Learning Modeling of Androgen Receptor Responses to Prostate Cancer Therapies. International Journal of Molecular Sciences 2020, 21 (16) , 5847. https://doi.org/10.3390/ijms21165847
  559. Soumitra Samanta, Steve O’Hagan, Neil Swainston, Timothy J. Roberts, Douglas B. Kell. VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder. Molecules 2020, 25 (15) , 3446. https://doi.org/10.3390/molecules25153446
  560. Chaoyi Chang, Andrew J. Medford. Classification of biomass reactions and predictions of reaction energies through machine learning. The Journal of Chemical Physics 2020, 153 (4) , 044126. https://doi.org/10.1063/5.0014828
  561. Timothy E. H. Allen, Andrew J. Wedlake, Elena Gelžinytė, Charles Gong, Jonathan M. Goodman, Steve Gutsell, Paul J. Russell. Neural network activation similarity: a new measure to assist decision making in chemical toxicology. Chemical Science 2020, 11 (28) , 7335-7348. https://doi.org/10.1039/D0SC01637C
  562. Dionisio A. Olmedo, José L. Medina-Franco. Chemoinformatic Approach: The Case of Natural Products of Panama. 2020,,https://doi.org/10.5772/intechopen.87779
  563. João D. Ferreira, Francisco M. Couto. Semantic Similarity in Cheminformatics. 2020,,https://doi.org/10.5772/intechopen.89032
  564. Darren V. S. Green, Stephen Pickett, Chris Luscombe, Stefan Senger, David Marcus, Jamel Meslamani, David Brett, Adam Powell, Jonathan Masson. BRADSHAW: a system for automated molecular design. Journal of Computer-Aided Molecular Design 2020, 34 (7) , 747-765. https://doi.org/10.1007/s10822-019-00234-8
  565. Matthew C. Robinson, Robert C. Glen, Alpha A. Lee. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction. Journal of Computer-Aided Molecular Design 2020, 34 (7) , 717-730. https://doi.org/10.1007/s10822-019-00274-0
  566. Janaina Cruz Pereira, Samer S. Daher, Kimberley M. Zorn, Matthew Sherwood, Riccardo Russo, Alexander L. Perryman, Xin Wang, Madeleine J. Freundlich, Sean Ekins, Joel S. Freundlich. Machine Learning Platform to Discover Novel Growth Inhibitors of Neisseria gonorrhoeae. Pharmaceutical Research 2020, 37 (7) https://doi.org/10.1007/s11095-020-02876-y
  567. Alexander V. Finko, Dmitry A. Skvortsov, Dimitri N. Laikov, Gleb M. Averochkin, Egor A. Dlin, Marina A. Kalinina, Vladimir A. Aladinskiy, Nataliya S. Vorobyeva, Andrei V. Mironov, Elena K. Beloglazkina, Nikolay V. Zyk, Yan A. Ivanenkov, Alexander G. Majouga. Synthesis and biological activity of 5-aryliden-2-thiohydantoin S-aryl derivatives. Bioorganic Chemistry 2020, 100 , 103900. https://doi.org/10.1016/j.bioorg.2020.103900
  568. Jie Shen, Christos A. Nicolaou. Molecular property prediction: recent trends in the era of artificial intelligence. Drug Discovery Today: Technologies 2020, https://doi.org/10.1016/j.ddtec.2020.05.001
  569. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-propylphenol, CAS Registry Number 621-27-2. Food and Chemical Toxicology 2020, 141 , 111334. https://doi.org/10.1016/j.fct.2020.111334
  570. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, amyl valerate, CAS Registry Number 2173-56-0. Food and Chemical Toxicology 2020, 141 , 111335. https://doi.org/10.1016/j.fct.2020.111335
  571. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-methyldecalactone, CAS Registry Number 7011-83-8. Food and Chemical Toxicology 2020, 141 , 111336. https://doi.org/10.1016/j.fct.2020.111336
  572. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cinnamyl alcohol, CAS Registry Number 104-54-1. Food and Chemical Toxicology 2020, 141 , 111337. https://doi.org/10.1016/j.fct.2020.111337
  573. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-isopropylbenzyl alcohol, CAS Registry Number 536-60-7. Food and Chemical Toxicology 2020, 141 , 111338. https://doi.org/10.1016/j.fct.2020.111338
  574. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, dihydro-4-methyl-5-pentylfuran-2(3H)-one, CAS Registry Number 33673-62-0. Food and Chemical Toxicology 2020, 141 , 111340. https://doi.org/10.1016/j.fct.2020.111340
  575. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl isovalerate, CAS Registry Number 10032-13-0. Food and Chemical Toxicology 2020, 141 , 111341. https://doi.org/10.1016/j.fct.2020.111341
  576. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, acetic acid, (1-oxopropoxy)-, 1-(3,3-dimethylcyclohexyl)ethyl ester, CAS Registry Number 236391-76-7. Food and Chemical Toxicology 2020, 141 , 111342. https://doi.org/10.1016/j.fct.2020.111342
  577. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, amyl butyrate, CAS Registry Number 540-18-1. Food and Chemical Toxicology 2020, 141 , 111343. https://doi.org/10.1016/j.fct.2020.111343
  578. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4H-1,3-benzodioxin, hexahydro-4-methyl-2-(phenylmethyl)-, CAS Registry Number 1373821-23-8. Food and Chemical Toxicology 2020, 141 , 111379. https://doi.org/10.1016/j.fct.2020.111379
  579. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, benzyl cinnamate, CAS Registry Number 103-41-3. Food and Chemical Toxicology 2020, 141 , 111381. https://doi.org/10.1016/j.fct.2020.111381
  580. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, lauric acid, CAS Registry Number 143-07-7. Food and Chemical Toxicology 2020, 141 , 111383. https://doi.org/10.1016/j.fct.2020.111383
  581. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 5,9-dimethyl-4,8-decadienal, CAS Registry Number 762-26-5. Food and Chemical Toxicology 2020, 141 , 111384. https://doi.org/10.1016/j.fct.2020.111384
  582. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, S-2-butyl 3-methylbutanethioate, CAS Registry Number 2432-91-9. Food and Chemical Toxicology 2020, 141 , 111421. https://doi.org/10.1016/j.fct.2020.111421
  583. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, dipropyl disulfide, CAS Registry Number 629-19-6. Food and Chemical Toxicology 2020, 141 , 111423. https://doi.org/10.1016/j.fct.2020.111423
  584. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-(p-tert-butylphenyl)-2-methylpropanol (Lysmerol), CAS Registry Number 56107-04-1. Food and Chemical Toxicology 2020, 141 , 111425. https://doi.org/10.1016/j.fct.2020.111425
  585. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, S-isopropyl 3-methylthiobutyrate, CAS Registry Number 34322-06-0. Food and Chemical Toxicology 2020, 141 , 111428. https://doi.org/10.1016/j.fct.2020.111428
  586. Sebastian Raschka, Benjamin Kaufman. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods 2020, https://doi.org/10.1016/j.ymeth.2020.06.016
  587. Wanrong Gu, Guohua Wang, Ziye Zhang, Yijun Mao, Xianfen Xie, Yichen He. High Accuracy Drug-Target Protein Interaction Prediction Method based on DBN. 2020,,, 58-62. https://doi.org/10.1109/ICPICS50287.2020.9202120
  588. Xia Xiao, Chao Shang, Jinbo Bi, Sanguthevar Rajasekaran. Predicting Outcomes of Chemical Reactions: A Seq2Seq Approach with Multi-view Attention and Edge Embedding. 2020,,, 1-8. https://doi.org/10.1109/IJCNN48605.2020.9206874
  589. Changwon Suh, Clyde Fare, James A. Warren, Edward O. Pyzer-Knapp. Evolving the Materials Genome: How Machine Learning Is Fueling the Next Generation of Materials Discovery. Annual Review of Materials Research 2020, 50 (1) , 1-25. https://doi.org/10.1146/annurev-matsci-082019-105100
  590. Hafez Eslami Manoochehri, Mehrdad Nourani. Drug-target interaction prediction using semi-bipartite graph model and deep learning. BMC Bioinformatics 2020, 21 (S4) https://doi.org/10.1186/s12859-020-3518-6
  591. Debby D Wang, Mengxu Zhu, Hong Yan. Computationally predicting binding affinity in protein–ligand complexes: free energy-based simulations and machine learning-based scoring functions. Briefings in Bioinformatics 2020, 98 https://doi.org/10.1093/bib/bbaa107
  592. Clyde Fare, Lukas Turcani, Edward O. Pyzer-Knapp. Powerful, transferable representations for molecules through intelligent task selection in deep multitask networks. Physical Chemistry Chemical Physics 2020, 22 (23) , 13041-13048. https://doi.org/10.1039/D0CP02319A
  593. Kei Terayama, Masato Sumita, Ryo Tamura, Daniel T. Payne, Mandeep K. Chahal, Shinsuke Ishihara, Koji Tsuda. Pushing property limits in materials discovery via boundless objective-free exploration. Chemical Science 2020, 11 (23) , 5959-5968. https://doi.org/10.1039/D0SC00982B
  594. Sridhar Sreeramulu, Christian Richter, Till Kuehn, Kamal Azzaoui, Marcel Jules José Blommers, Rebecca Del Conte, Marco Fragai, Nils Trieloff, Peter Schmieder, Marc Nazaré, Edgar Specker, Vladimir Ivanov, Hartmut Oschkinat, Lucia Banci, Harald Schwalbe. NMR quality control of fragment libraries for screening. Journal of Biomolecular NMR 2020, 12 https://doi.org/10.1007/s10858-020-00327-9
  595. Jen-Hao Chen, Yufeng Jane Tseng. Different molecular enumeration influences in deep learning: an example using aqueous solubility. Briefings in Bioinformatics 2020, 49 https://doi.org/10.1093/bib/bbaa092
  596. Shojiro Shibayama, Gilles Marcou, Dragos Horvath, Igor I. Baskin, Kimito Funatsu, Alexandre Varnek. Application of the mol2vec Technology to Large‐size Data Visualization and Analysis. Molecular Informatics 2020, 39 (6) , 1900170. https://doi.org/10.1002/minf.201900170
  597. Vishwesh Venkatraman. Evaluation of Molecular Fingerprints for Determining Dye Aggregation on Semiconductor Surfaces. Molecular Informatics 2020, https://doi.org/10.1002/minf.202000062
  598. Frederik Sandfort, Felix Strieth-Kalthoff, Marius Kühnemund, Christian Beecks, Frank Glorius. A Structure-Based Platform for Predicting Chemical Reactivity. Chem 2020, 6 (6) , 1379-1390. https://doi.org/10.1016/j.chempr.2020.02.017
  599. Ke Li, Xiaohong Liu, Sixiu Liu, Yulong An, Yanfang Shen, Qingxia Sun, Xiaodong Shi, Wenji Su, Weiren Cui, Zhiqiang Duan, Letian Kuai, Hongfang Yang, Alexander L. Satz, Kaixian Chen, Hualiang Jiang, Mingyue Zheng, Xuanjia Peng, Xiaojie Lu. Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering. iScience 2020, 23 (6) , 101142. https://doi.org/10.1016/j.isci.2020.101142
  600. Hui Zhang, Chun-Tao Liu, Jun Mao, Chen Shen, Rui-Ling Xie, Bo Mu. Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach. Toxicology in Vitro 2020, 65 , 104812. https://doi.org/10.1016/j.tiv.2020.104812
  601. Mingjian Jiang, Zhen Li, Shugang Zhang, Shuang Wang, Xiaofeng Wang, Qing Yuan, Zhiqiang Wei. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020, 10 (35) , 20701-20712. https://doi.org/10.1039/D0RA02297G
  602. Guillaume Lambard, Ekaterina Gracheva. SMILES-X: autonomous molecular compounds characterization for small datasets without descriptors. Machine Learning: Science and Technology 2020, 1 (2) , 025004. https://doi.org/10.1088/2632-2153/ab57f3
  603. Ganesh Sivaraman, Nicholas E Jackson, Benjamin Sanchez-Lengeling, Álvaro Vázquez-Mayagoitia, Alán Aspuru-Guzik, Venkatram Vishwanath, Juan J de Pablo. A machine learning workflow for molecular analysis: application to melting points. Machine Learning: Science and Technology 2020, 1 (2) , 025015. https://doi.org/10.1088/2632-2153/ab8aa3
  604. Elena Zavyalova, Askar Turashev, Anastasia Novoseltseva, Valeriia Legatova, Olga Antipova, Ekaterina Savchenko, Sonja Balk, Andrey Golovin, Galina Pavlova, Alexey Kopylov. Pyrene-Modified DNA Aptamers with High Affinity to Wild-Type EGFR and EGFRvIII. Nucleic Acid Therapeutics 2020, 30 (3) , 175-187. https://doi.org/10.1089/nat.2019.0830
  605. Adrien H Cerdan, Marion Sisquellas, Gilberto Pereira, Diego E Barreto Gomes, Jean-Pierre Changeux, Marco Cecchini, . The Glycine Receptor Allosteric Ligands Library (GRALL). Bioinformatics 2020, 36 (11) , 3379-3384. https://doi.org/10.1093/bioinformatics/btaa170
  606. Zhen-Hao Guo, Zhu-Hong You, Yan-Bin Wang, De-Shuang Huang, Hai-Cheng Yi, Zhan-Heng Chen. Bioentity2vec: Attribute- and behavior-driven representation for predicting multi-type relationships between bioentities. GigaScience 2020, 9 (6) https://doi.org/10.1093/gigascience/giaa032
  607. Viet-Khoa Tran-Nguyen, Didier Rognan. Benchmarking Data Sets from PubChem BioAssay Data: Current Scenario and Room for Improvement. International Journal of Molecular Sciences 2020, 21 (12) , 4380. https://doi.org/10.3390/ijms21124380
  608. José Jiménez-Luna, Alberto Cuzzolin, Giovanni Bolcato, Mattia Sturlese, Stefano Moro. A Deep-Learning Approach toward Rational Molecular Docking Protocol Selection. Molecules 2020, 25 (11) , 2487. https://doi.org/10.3390/molecules25112487
  609. Kwang-Eun Choi, Anand Balupuri, Nam Sook Kang. The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis. Molecules 2020, 25 (11) , 2615. https://doi.org/10.3390/molecules25112615
  610. Bo Zhou, Xian Zhao, Jing Lu, Zuntao Sun, Min Liu, Yilu Zhou, Rongzhi Liu, Yihua Wang. Relating Substructures and Side Effects of Drugs with Chemical-chemical Interactions. Combinatorial Chemistry & High Throughput Screening 2020, 23 (4) , 285-294. https://doi.org/10.2174/1386207322666190702102752
  611. Jingang Che, Lei Chen, Zi-Han Guo, Shuaiqun Wang, Aorigele. Drug Target Group Prediction with Multiple Drug Networks. Combinatorial Chemistry & High Throughput Screening 2020, 23 (4) , 274-284. https://doi.org/10.2174/1386207322666190702103927
  612. Pascal Friederich, Gabriel dos Passos Gomes, Riccardo De Bin, Alán Aspuru-Guzik, David Balcells. Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex. Chemical Science 2020, 11 (18) , 4584-4601. https://doi.org/10.1039/D0SC00445F
  613. Siqi Liang, Haiyuan Yu, . Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach. Bioinformatics 2020, 60 https://doi.org/10.1093/bioinformatics/btaa495
  614. Raymond Lui, Davy Guan, Slade Matthews. A comparison of molecular representations for lipophilicity quantitative structure–property relationships with results from the SAMPL6 logP Prediction Challenge. Journal of Computer-Aided Molecular Design 2020, 34 (5) , 523-534. https://doi.org/10.1007/s10822-020-00279-0
  615. Samarjeet Prasad, Bernard R. Brooks. A deep learning approach for the blind logP prediction in SAMPL6 challenge. Journal of Computer-Aided Molecular Design 2020, 34 (5) , 535-542. https://doi.org/10.1007/s10822-020-00292-3
  616. Rithwik Tom, Timothy Rose, Imanuel Bier, Harriet O’Brien, Álvaro Vázquez-Mayagoitia, Noa Marom. Genarris 2.0: A random structure generator for molecular crystals. Computer Physics Communications 2020, 250 , 107170. https://doi.org/10.1016/j.cpc.2020.107170
  617. Nicholas Ball, Judith Madden, Alicia Paini, Miriam Mathea, Andrew David Palmer, Saskia Sperber, Thomas Hartung, Bennard van Ravenzwaay. Key read across framework components and biology based improvements. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2020, 853 , 503172. https://doi.org/10.1016/j.mrgentox.2020.503172
  618. Jae Yong Ryu, Mi Young Lee, Jeong Hyun Lee, Byung Ho Lee, Kwang-Seok Oh, . DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity. Bioinformatics 2020, 36 (10) , 3049-3055. https://doi.org/10.1093/bioinformatics/btaa075
  619. Daniel de Marchi, Amarjit Budhiraja. Augmenting Molecular Images with Vector Representations as a Featurization Technique for Drug Classification. 2020,,, 956-960. https://doi.org/10.1109/ICASSP40776.2020.9053425
  620. Neann Mathai, Johannes Kirchmair. Similarity-Based Methods and Machine Learning Approaches for Target Prediction in Early Drug Discovery: Performance and Scope. International Journal of Molecular Sciences 2020, 21 (10) , 3585. https://doi.org/10.3390/ijms21103585
  621. Bernhard Ellinger, Daniel Pohlmann, Jannis Woens, Felix M. Jäkel, Jeanette Reinshagen, Carol Stocking, Vladimir S. Prassolov, Boris Fehse, Kristoffer Riecken. A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral Vectors and Compatible with Biosafety Level-1. Viruses 2020, 12 (5) , 580. https://doi.org/10.3390/v12050580
  622. Ana L. Chávez‐Hernández, Norberto Sánchez‐Cruz, José L. Medina‐Franco. A Fragment Library of Natural Products and its Comparative Chemoinformatic Characterization. Molecular Informatics 2020, https://doi.org/10.1002/minf.202000050
  623. Kaifu Gao, Duc Duy Nguyen, Vishnu Sresht, Alan M. Mathiowetz, Meihua Tu, Guo-Wei Wei. Are 2D fingerprints still valuable for drug discovery?. Physical Chemistry Chemical Physics 2020, 22 (16) , 8373-8390. https://doi.org/10.1039/D0CP00305K
  624. Benoît Baillif, Joerg Wichard, Oscar Méndez-Lucio, David Rouquié. Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00296
  625. Lukas Friedrich, Ryan Byrne, Aaron Treder, Inderjeet Singh, Christoph Bauer, Thomas Gudermann, Michael Mederos y Schnitzler, Ursula Storch, Gisbert Schneider. Shape Similarity by Fractal Dimensionality: An Application in the de novo Design of (−)‐Englerin A Mimetics. ChemMedChem 2020, 15 (7) , 566-570. https://doi.org/10.1002/cmdc.202000017
  626. S.A. Amin, S. Banerjee, N. Adhikari, T. Jha. Discriminations of active from inactive HDAC8 inhibitors Part II: Bayesian classification study to find molecular fingerprints. SAR and QSAR in Environmental Research 2020, 31 (4) , 245-260. https://doi.org/10.1080/1062936X.2020.1723136
  627. Z. Qin, A. Yan. QSAR studies on hepatitis C virus NS5A protein tetracyclic inhibitors in wild type and mutants by CoMFA and CoMSIA. SAR and QSAR in Environmental Research 2020, 31 (4) , 281-311. https://doi.org/10.1080/1062936X.2020.1740889
  628. Matthew Esparza, Amir Mor, Hanspeter Niederstrasser, Kris White, Alexander White, Ke Zhang, Shengyan Gao, Juan Wang, Jue Liang, Sei Sho, Ramanavelan Sakthivel, Adwait A. Sathe, Chao Xing, Raquel Muñoz-Moreno, Jerry W. Shay, Adolfo García-Sastre, Joseph Ready, Bruce Posner, Beatriz M. A. Fontoura, . Chemical intervention of influenza virus mRNA nuclear export. PLOS Pathogens 2020, 16 (4) , e1008407. https://doi.org/10.1371/journal.ppat.1008407
  629. Hakime Öztürk, Arzucan Özgür, Philippe Schwaller, Teodoro Laino, Elif Ozkirimli. Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discovery Today 2020, 25 (4) , 689-705. https://doi.org/10.1016/j.drudis.2020.01.020
  630. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-cyclohexene-1-carboxylic acid, 2,6,6-trimethyl-, methyl ester, CAS registry number 815580-59-7. Food and Chemical Toxicology 2020, 138 , 111054. https://doi.org/10.1016/j.fct.2019.111054
  631. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-undecalactone, CAS Registry Number 104-67-6. Food and Chemical Toxicology 2020, 138 , 111101. https://doi.org/10.1016/j.fct.2019.111101
  632. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, benzenemethanol, α-methylene-, acetate, CAS Registry Number 2206-94-2. Food and Chemical Toxicology 2020, 138 , 111104. https://doi.org/10.1016/j.fct.2019.111104
  633. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, (±) 3-methyl-γ-decalactone, CAS Registry Number 67663-01-8. Food and Chemical Toxicology 2020, 138 , 111105. https://doi.org/10.1016/j.fct.2019.111105
  634. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl cyclohexadiene (mixture of isomers), CAS Registry Number 30640-46-1. Food and Chemical Toxicology 2020, 138 , 111112. https://doi.org/10.1016/j.fct.2019.111112
  635. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, α-methyl-cyclohexanepropanol, CAS Registry Number 10528-67-3. Food and Chemical Toxicology 2020, 138 , 111113. https://doi.org/10.1016/j.fct.2019.111113
  636. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cis-3-nonen-1-ol, CAS Registry Number 10340-23-5. Food and Chemical Toxicology 2020, 138 , 111119. https://doi.org/10.1016/j.fct.2020.111119
  637. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclopropanecarboxylic acid, (3Z)-3-hexenyl ester, CAS Registry Number 188570-78-7. Food and Chemical Toxicology 2020, 138 , 111172. https://doi.org/10.1016/j.fct.2020.111172
  638. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, dimethyl adipate, CAS Registry Number 627-93-0. Food and Chemical Toxicology 2020, 138 , 111174. https://doi.org/10.1016/j.fct.2020.111174
  639. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-pentanol, CAS Registry Number 6032-29-7. Food and Chemical Toxicology 2020, 138 , 111175. https://doi.org/10.1016/j.fct.2020.111175
  640. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cis-3-hexenyl cis-3-hexenoate, CAS Registry Number 61444-38-0. Food and Chemical Toxicology 2020, 138 , 111176. https://doi.org/10.1016/j.fct.2020.111176
  641. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, β-naphthyl isobutyl ether, CAS Registry Number 2173-57-1. Food and Chemical Toxicology 2020, 138 , 111191. https://doi.org/10.1016/j.fct.2020.111191
  642. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-hydroxyethyl phenoxyacetate, CAS Registry Number 1984-60-7. Food and Chemical Toxicology 2020, 138 , 111192. https://doi.org/10.1016/j.fct.2020.111192
  643. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 3,3-dimethylbicyclo[2.2.1]heptane-2-carboxylate, CAS Registry Number 52557-97-8. Food and Chemical Toxicology 2020, 138 , 111194. https://doi.org/10.1016/j.fct.2020.111194
  644. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 3-hydroxyhexanoate, CAS Registry Number 21188-58-9. Food and Chemical Toxicology 2020, 138 , 111195. https://doi.org/10.1016/j.fct.2020.111195
  645. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl isobutyrate, CAS Registry Number 2349-07-7. Food and Chemical Toxicology 2020, 138 , 111196. https://doi.org/10.1016/j.fct.2020.111196
  646. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isopentylamine, CAS Registry Number 107-85-7. Food and Chemical Toxicology 2020, 138 , 111197. https://doi.org/10.1016/j.fct.2020.111197
  647. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-propyl heptanenitrile, CAS Registry Number 208041-98-9. Food and Chemical Toxicology 2020, 138 , 111198. https://doi.org/10.1016/j.fct.2020.111198
  648. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-cresyl salicylate, CAS Registry Number 607-88-5. Food and Chemical Toxicology 2020, 138 , 111199. https://doi.org/10.1016/j.fct.2020.111199
  649. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-oxaspiro[4.5]deca-3,6-diene, 2,7-dimethyl-10-(1-methylethyl)-, CAS Registry Number 89079-92-5. Food and Chemical Toxicology 2020, 138 , 111200. https://doi.org/10.1016/j.fct.2020.111200
  650. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, decahydrospiro[furan-2(3H),5'-[4,7]methano[5H]indene], CAS Registry Number 68480-11-5. Food and Chemical Toxicology 2020, 138 , 111201. https://doi.org/10.1016/j.fct.2020.111201
  651. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, n-hexyl 2-butenoate, CAS Registry Number 19089-92-0. Food and Chemical Toxicology 2020, 138 , 111224. https://doi.org/10.1016/j.fct.2020.111224
  652. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, formic acid, CAS Registry Number 64-18-6. Food and Chemical Toxicology 2020, 138 , 111225. https://doi.org/10.1016/j.fct.2020.111225
  653. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-hydroxy-3-methyloctanoic acid lactone, CAS Registry Number 39212-23-2. Food and Chemical Toxicology 2020, 138 , 111226. https://doi.org/10.1016/j.fct.2020.111226
  654. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cinnamyl benzoate, CAS Registry Number 5320-75-2. Food and Chemical Toxicology 2020, 138 , 111227. https://doi.org/10.1016/j.fct.2020.111227
  655. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, myrcenol, CAS Registry Number 543-39-5. Food and Chemical Toxicology 2020, 138 , 111232. https://doi.org/10.1016/j.fct.2020.111232
  656. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-2,6-nonadien-1-al, CAS Registry Number 41448-29-7. Food and Chemical Toxicology 2020, 138 , 111234. https://doi.org/10.1016/j.fct.2020.111234
  657. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexanoic acid, CAS Registry Number 142-62-1. Food and Chemical Toxicology 2020, 138 , 111263. https://doi.org/10.1016/j.fct.2020.111263
  658. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 3-hydroxybutyrate, CAS Registry Number 5405-41-4. Food and Chemical Toxicology 2020, 138 , 111264. https://doi.org/10.1016/j.fct.2020.111264
  659. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, α,2,2,3-tetramethylcyclopent-3-ene-1-butyraldehyde, CAS Registry Number 65114-03-6. Food and Chemical Toxicology 2020, 138 , 111265. https://doi.org/10.1016/j.fct.2020.111265
  660. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-(5,5-dimethyl-1-cyclohexen-1-yl)pent-4-en-1-one, CAS Registry Number 56973-85-4. Food and Chemical Toxicology 2020, 138 , 111266. https://doi.org/10.1016/j.fct.2020.111266
  661. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methyl-3-(p-isopropylphenyl)propionaldehyde, CAS Registry Number 103-95-7. Food and Chemical Toxicology 2020, 138 , 111267. https://doi.org/10.1016/j.fct.2020.111267
  662. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 3-hydroxyhexanoate, CAS Registry Number 2305-25-1. Food and Chemical Toxicology 2020, 138 , 111269. https://doi.org/10.1016/j.fct.2020.111269
  663. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclopentanol, 2-methyl-5-(1-methylethyl)-, 1-propanoate, CAS Registry Number 1245725-35-2. Food and Chemical Toxicology 2020, 138 , 111270. https://doi.org/10.1016/j.fct.2020.111270
  664. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octanoic acid, CAS Registry Number 124-07-2. Food and Chemical Toxicology 2020, 138 , 111271. https://doi.org/10.1016/j.fct.2020.111271
  665. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-(3,7-dimethyl-2,6-octadienyl)cyclopentanone, CAS Registry Number 68133-79-9. Food and Chemical Toxicology 2020, 138 , 111272. https://doi.org/10.1016/j.fct.2020.111272
  666. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 5-methyl-3-heptanone, CAS Registry Number 541-85-5. Food and Chemical Toxicology 2020, 138 , 111273. https://doi.org/10.1016/j.fct.2020.111273
  667. D. A. Beshnova, C. Carolan, V. G. Grigorenko, M. Yu. Rubtsova, E. Gbekor, J. Lewis, V. S. Lamzin, A. M. Egorov. Scaffold Hopping Computational Approach for Searching Novel β-Lactamase Inhibitors. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2020, 14 (2) , 127-135. https://doi.org/10.1134/S199075082002002X
  668. Noreen F. Rizvi, John P. Santa Maria, Ali Nahvi, Joel Klappenbach, Daniel J. Klein, Patrick J. Curran, Matthew P. Richards, Chad Chamberlin, Peter Saradjian, Julja Burchard, Rodrigo Aguilar, Jeannie T. Lee, Peter J. Dandliker, Graham F. Smith, Peter Kutchukian, Elliott B. Nickbarg. Targeting RNA with Small Molecules: Identification of Selective, RNA-Binding Small Molecules Occupying Drug-Like Chemical Space. SLAS DISCOVERY: Advancing the Science of Drug Discovery 2020, 25 (4) , 384-396. https://doi.org/10.1177/2472555219885373
  669. Shonosuke Harada, Hirotaka Akita, Masashi Tsubaki, Yukino Baba, Ichigaku Takigawa, Yoshihiro Yamanishi, Hisashi Kashima. Dual graph convolutional neural network for predicting chemical networks. BMC Bioinformatics 2020, 21 (S3) https://doi.org/10.1186/s12859-020-3378-0
  670. Maryam Bagherian, Renaid B Kim, Cheng Jiang, Maureen A Sartor, Harm Derksen, Kayvan Najarian. Coupled matrix–matrix and coupled tensor–matrix completion methods for predicting drug–target interactions. Briefings in Bioinformatics 2020, 18 https://doi.org/10.1093/bib/bbaa025
  671. Ahmet Sureyya Rifaioglu, Esra Nalbat, Volkan Atalay, Maria Jesus Martin, Rengul Cetin-Atalay, Tunca Doğan. DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chemical Science 2020, 11 (9) , 2531-2557. https://doi.org/10.1039/C9SC03414E
  672. Bruno Junior Neves, Jonathan Paulo Agnes, Marcelo do Nascimento Gomes, Marcio Roberto Henriques Donza, Rosângela Mayer Gonçalves, Marina Delgobo, Lauro Ribeiro de Souza Neto, Mario Roberto Senger, Floriano Paes Silva-Junior, Sabrina Baptista Ferreira, Alfeu Zanotto-Filho, Carolina Horta Andrade. Efficient identification of novel anti-glioma lead compounds by machine learning models. European Journal of Medicinal Chemistry 2020, 189 , 111981. https://doi.org/10.1016/j.ejmech.2019.111981
  673. Sk Abdul Amin, Nilanjan Adhikari, Tarun Jha. Exploration of histone deacetylase 8 inhibitors through classification QSAR study: Part II. Journal of Molecular Structure 2020, 1204 , 127529. https://doi.org/10.1016/j.molstruc.2019.127529
  674. Shuo Gu, Lu-hua Lai. Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach. Acta Pharmacologica Sinica 2020, 41 (3) , 432-438. https://doi.org/10.1038/s41401-019-0306-9
  675. Michael Moret, Lukas Friedrich, Francesca Grisoni, Daniel Merk, Gisbert Schneider. Generative molecular design in low data regimes. Nature Machine Intelligence 2020, 2 (3) , 171-180. https://doi.org/10.1038/s42256-020-0160-y
  676. Dimitar Yonchev, Jürgen Bajorath. Integrating computational lead optimization diagnostics with analog design and candidate selection. Future Science OA 2020, 6 (3) , FSO451. https://doi.org/10.2144/fsoa-2019-0131
  677. Akinori Saeki, Kakaraparthi Kranthiraja. A high throughput molecular screening for organic electronics via machine learning: present status and perspective. Japanese Journal of Applied Physics 2020, 59 (SD) , SD0801. https://doi.org/10.7567/1347-4065/ab4f39
  678. Duc Duy Nguyen, Zixuan Cang, Guo-Wei Wei. A review of mathematical representations of biomolecular data. Physical Chemistry Chemical Physics 2020, 22 (8) , 4343-4367. https://doi.org/10.1039/C9CP06554G
  679. Jincai Yang, Cheng Shen, Niu Huang. Predicting or Pretending: Artificial Intelligence for Protein-Ligand Interactions Lack of Sufficiently Large and Unbiased Datasets. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.00069
  680. Bruno J. Neves, Rodolpho C. Braga, Vinicius M. Alves, Marília N. N. Lima, Gustavo C. Cassiano, Eugene N. Muratov, Fabio T. M. Costa, Carolina Horta Andrade, . Deep Learning-driven research for drug discovery: Tackling Malaria. PLOS Computational Biology 2020, 16 (2) , e1007025. https://doi.org/10.1371/journal.pcbi.1007025
  681. Lauro Ribeiro de Souza Neto, José Teófilo Moreira-Filho, Bruno Junior Neves, Rocío Lucía Beatriz Riveros Maidana, Ana Carolina Ramos Guimarães, Nicholas Furnham, Carolina Horta Andrade, Floriano Paes Silva. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00093
  682. Hyun Kil Shin, Myung-Gyun Kang, Daeui Park, Tamina Park, Seokjoo Yoon. Development of Prediction Models for Drug-Induced Cholestasis, Cirrhosis, Hepatitis, and Steatosis Based on Drug and Drug Metabolite Structures. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.00067
  683. Chi Chen, Yunxing Zuo, Weike Ye, Xiangguo Li, Zhi Deng, Shyue Ping Ong. A Critical Review of Machine Learning of Energy Materials. Advanced Energy Materials 2020, 10 (8) , 1903242. https://doi.org/10.1002/aenm.201903242
  684. Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M. Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann, Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory, George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, James J. Collins. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180 (4) , 688-702.e13. https://doi.org/10.1016/j.cell.2020.01.021
  685. Yu Wei, Mukuo Wang, Yang Li, Zhangyong Hong, Dongmei Li, Jianping Lin. Identification of new potent A1 adenosine receptor antagonists using a multistage virtual screening approach. European Journal of Medicinal Chemistry 2020, 187 , 111936. https://doi.org/10.1016/j.ejmech.2019.111936
  686. Hsiang-Yuan Yeh, Chia-Ter Chao, Yi-Pei Lai, Huei-Wen Chen. Predicting the Associations between Meridians and Chinese Traditional Medicine Using a Cost-Sensitive Graph Convolutional Neural Network. International Journal of Environmental Research and Public Health 2020, 17 (3) , 740. https://doi.org/10.3390/ijerph17030740
  687. Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, O. Anatole von Lilienfeld. FCHL revisited: Faster and more accurate quantum machine learning. The Journal of Chemical Physics 2020, 152 (4) , 044107. https://doi.org/10.1063/1.5126701
  688. Arash Keshavarzi Arshadi, Milad Salem, Jennifer Collins, Jiann Shiun Yuan, Debopam Chakrabarti. DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials. Frontiers in Pharmacology 2020, 10 https://doi.org/10.3389/fphar.2019.01526
  689. Ryan-Rhys Griffiths, José Miguel Hernández-Lobato. Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chemical Science 2020, 11 (2) , 577-586. https://doi.org/10.1039/C9SC04026A
  690. Hideyuki Jippo, Tatsuru Matsuo, Ryota Kikuchi, Daisuke Fukuda, Azuma Matsuura, Mari Ohfuchi. Graph Classification of Molecules Using Force Field Atom and Bond Types. Molecular Informatics 2020, 39 (1-2) , 1800155. https://doi.org/10.1002/minf.201800155
  691. Hongshuai Wang, Yujin Ji, Youyong Li. Simulation and design of energy materials accelerated by machine learning. WIREs Computational Molecular Science 2020, 10 (1) https://doi.org/10.1002/wcms.1421
  692. Chao Shen, Junjie Ding, Zhe Wang, Dongsheng Cao, Xiaoqin Ding, Tingjun Hou. From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. WIREs Computational Molecular Science 2020, 10 (1) https://doi.org/10.1002/wcms.1429
  693. Andrea Mauri. alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints. 2020,,, 801-820. https://doi.org/10.1007/978-1-0716-0150-1_32
  694. Hiqmet Kamberaj. Molecular Mechanics. 2020,,, 281-312. https://doi.org/10.1007/978-3-030-35702-3_7
  695. Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl. Message Passing Neural Networks. 2020,,, 199-214. https://doi.org/10.1007/978-3-030-40245-7_10
  696. Daniel Schwalbe-Koda, Rafael Gómez-Bombarelli. Generative Models for Automatic Chemical Design. 2020,,, 445-467. https://doi.org/10.1007/978-3-030-40245-7_21
  697. Roberto Todeschini, Viviana Consonni, Davide Ballabio, Francesca Grisoni. Chemometrics for QSAR Modeling. 2020,,, 599-634. https://doi.org/10.1016/B978-0-12-409547-2.14703-1
  698. Hansaim Lim, Lei Xie. Machine learning strategies for identifying repurposed drugs for cancer therapy. 2020,,, 55-79. https://doi.org/10.1016/B978-0-12-819668-7.00003-8
  699. Michiyoshi Takata, Bin-Le Lin, Mianqiang Xue, Yasuyuki Zushi, Akihiko Terada, Masaaki Hosomi. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory. Chemosphere 2020, 238 , 124604. https://doi.org/10.1016/j.chemosphere.2019.124604
  700. Naiem T. Issa, Vasileios Stathias, Stephan Schürer, Sivanesan Dakshanamurthy. Machine and deep learning approaches for cancer drug repurposing. Seminars in Cancer Biology 2020, https://doi.org/10.1016/j.semcancer.2019.12.011
  701. Amol Thakkar, Thierry Kogej, Jean-Louis Reymond, Ola Engkvist, Esben Jannik Bjerrum. Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chemical Science 2020, 11 (1) , 154-168. https://doi.org/10.1039/C9SC04944D
  702. Sk. Abdul Amin, Kalyan Ghosh, Dipayan Mondal, Tarun Jha, Shovanlal Gayen. Exploring indole derivatives as myeloid cell leukaemia-1 (Mcl-1) inhibitors with multi-QSAR approach: a novel hope in anti-cancer drug discovery. New Journal of Chemistry 2020, 35 https://doi.org/10.1039/D0NJ03863F
  703. Ruihan Zhang, Xiaoli Li, Xingjie Zhang, Huayan Qin, Weilie Xiao. Machine learning approaches for elucidating the biological effects of natural products. Natural Product Reports 2020, 8 https://doi.org/10.1039/D0NP00043D
  704. Jonathan Fine, Judy Kuan-Yu Liu, Armen Beck, Kawthar Z. Alzarieni, Xin Ma, Victoria M. Boulos, Hilkka I. Kenttämaa, Gaurav Chopra. Graph-based machine learning interprets and predicts diagnostic isomer-selective ion–molecule reactions in tandem mass spectrometry. Chemical Science 2020, 15 https://doi.org/10.1039/D0SC02530E
  705. Jonas Verhellen, Jeriek Van den Abeele. Illuminating elite patches of chemical space. Chemical Science 2020, 2 https://doi.org/10.1039/D0SC03544K
  706. Jing-Wei Liang, Ming-Yang Wang, Shan Wang, Shi-Long Li, Wan-Qiu Li, Fan-Hao Meng. Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model. Journal of Enzyme Inhibition and Medicinal Chemistry 2020, 35 (1) , 235-244. https://doi.org/10.1080/14756366.2019.1693702
  707. Shuang Wang, Zhen Li, Shugang Zhang, Mingjian Jiang, Xiaofeng Wang, Zhiqiang Wei. Molecular Property Prediction Based on a Multichannel Substructure Graph. IEEE Access 2020, 8 , 18601-18614. https://doi.org/10.1109/ACCESS.2020.2968535
  708. Martin Vogt, Jürgen Bajorath. ccbmlib – a Python package for modeling Tanimoto similarity value distributions. F1000Research 2020, 9 , 100. https://doi.org/10.12688/f1000research.22292.1
  709. Kokin Nakajin, Takuya Minami, Masaaki Kawata, Toshio Fujita, Katsumi Murofushi, Hiroshi Uchida, Kazuhiro Omori, Yoshishige Okuno. Prediction of physical properties of thermosetting resin by using machine learning and structural formulas of raw materials. MRS Advances 2020, 5 (29-30) , 1567-1575. https://doi.org/10.1557/adv.2020.266
  710. Yuto Amano, Hiroshi Honda, Ryusuke Sawada, Yuko Nukada, Masayuki Yamane, Naohiro Ikeda, Osamu Morita, Yoshihiro Yamanishi. In silico systems for predicting chemical-induced side effects using known and potential chemical protein interactions, enabling mechanism estimation. The Journal of Toxicological Sciences 2020, 45 (3) , 137-149. https://doi.org/10.2131/jts.45.137
  711. Floriane Montanari, Lara Kuhnke, Antonius Ter Laak, Djork-Arné Clevert. Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks. Molecules 2020, 25 (1) , 44. https://doi.org/10.3390/molecules25010044
  712. Guang Chen, Zhiqiang Shen, Akshay Iyer, Umar Farooq Ghumman, Shan Tang, Jinbo Bi, Wei Chen, Ying Li. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges. Polymers 2020, 12 (1) , 163. https://doi.org/10.3390/polym12010163
  713. Suvankar Banerjee, Sk. Abdul Amin, Nilanjan Adhikari, Tarun Jha. Essential elements regulating HDAC8 inhibition: a classification based structural analysis and enzyme-inhibitor interaction study of hydroxamate based HDAC8 inhibitors. Journal of Biomolecular Structure and Dynamics 2019, 9 , 1-13. https://doi.org/10.1080/07391102.2019.1704881
  714. Xian Zhao, Lei Chen, Zi-Han Guo, Tao Liu. Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks. Current Bioinformatics 2019, 14 (8) , 709-720. https://doi.org/10.2174/1574893614666190220114644
  715. Miaomiao Liu, Ronald J. Quinn. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery. Expert Opinion on Drug Discovery 2019, 14 (12) , 1283-1295. https://doi.org/10.1080/17460441.2019.1653849
  716. Yuwei Yang, Jianing Lu, Chao Yang, Yingkai Zhang. Exploring fragment-based target-specific ranking protocol with machine learning on cathepsin S. Journal of Computer-Aided Molecular Design 2019, 33 (12) , 1095-1105. https://doi.org/10.1007/s10822-019-00247-3
  717. John Boaz Lee, Xiangnan Kong. Learning compact graph representations via an encoder-decoder network. Applied Network Science 2019, 4 (1) https://doi.org/10.1007/s41109-019-0157-9
  718. María Virginia Sabando, Ignacio Ponzoni, Axel J. Soto. Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction. Applied Soft Computing 2019, 85 , 105777. https://doi.org/10.1016/j.asoc.2019.105777
  719. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 2,4-dimethyldioxolane-2-acetate, CAS Registry Number 6290-17-1. Food and Chemical Toxicology 2019, 134 , 110590. https://doi.org/10.1016/j.fct.2019.110590
  720. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-phenylpropionic acid, CAS Registry Number 501-52-0. Food and Chemical Toxicology 2019, 134 , 110601. https://doi.org/10.1016/j.fct.2019.110601
  721. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-heptanol, 2,6-dimethyl-,acetate, CAS Registry Number 10250-45-0. Food and Chemical Toxicology 2019, 134 , 110603. https://doi.org/10.1016/j.fct.2019.110603
  722. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclohexanone, 2-ethyl-4,4-dimethyl-, CAS Registry Number 55739-89-4. Food and Chemical Toxicology 2019, 134 , 110604. https://doi.org/10.1016/j.fct.2019.110604
  723. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyl sulfide, CAS Registry Number 544-40-1. Food and Chemical Toxicology 2019, 134 , 110606. https://doi.org/10.1016/j.fct.2019.110606
  724. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, theaspirane, CAS Registry Number 36431-72-8. Food and Chemical Toxicology 2019, 134 , 110620. https://doi.org/10.1016/j.fct.2019.110620
  725. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, amyl hexanoate, CAS Registry Number 540-07-8. Food and Chemical Toxicology 2019, 134 , 110621. https://doi.org/10.1016/j.fct.2019.110621
  726. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-hexanone, CAS Registry Number 589-38-8. Food and Chemical Toxicology 2019, 134 , 110628. https://doi.org/10.1016/j.fct.2019.110628
  727. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, diphenyl ether, CAS Registry Number 101-84-8. Food and Chemical Toxicology 2019, 134 , 110632. https://doi.org/10.1016/j.fct.2019.110632
  728. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-undecanone, CAS Registry Number 112-12-9. Food and Chemical Toxicology 2019, 134 , 110634. https://doi.org/10.1016/j.fct.2019.110634
  729. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-methoxybenzoic acid, CAS Registry Number 100-09-4. Food and Chemical Toxicology 2019, 134 , 110704. https://doi.org/10.1016/j.fct.2019.110704
  730. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-methyl-2-butenyl acetate, CAS Registry Number 1191-16-8. Food and Chemical Toxicology 2019, 134 , 110705. https://doi.org/10.1016/j.fct.2019.110705
  731. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, stearic acid, CAS Registry Number 57-11-4. Food and Chemical Toxicology 2019, 134 , 110706. https://doi.org/10.1016/j.fct.2019.110706
  732. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, α-methylcinnamaldehyde, CAS Registry Number 101-39-3. Food and Chemical Toxicology 2019, 134 , 110708. https://doi.org/10.1016/j.fct.2019.110708
  733. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isocyclocitral, CAS Registry number 1335-66-6. Food and Chemical Toxicology 2019, 134 , 110709. https://doi.org/10.1016/j.fct.2019.110709
  734. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, α-amylcinnamyl alcohol, CAS Registry Number 101-85-9. Food and Chemical Toxicology 2019, 134 , 110712. https://doi.org/10.1016/j.fct.2019.110712
  735. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl ionone (mixture of isomers), CAS registry number 1335-46-2. Food and Chemical Toxicology 2019, 134 , 110716. https://doi.org/10.1016/j.fct.2019.110716
  736. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-decalactone, CAS Registry Number 706-14-9. Food and Chemical Toxicology 2019, 134 , 110722. https://doi.org/10.1016/j.fct.2019.110722
  737. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,2,6-trimethylcyclohexanone, CAS Registry Number 2408-37-9. Food and Chemical Toxicology 2019, 134 , 110723. https://doi.org/10.1016/j.fct.2019.110723
  738. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4,4a,5,9b-tetrahydroindeno[1,2-d]-1,3-dioxine, CAS Registry Number 18096-62-3. Food and Chemical Toxicology 2019, 134 , 110725. https://doi.org/10.1016/j.fct.2019.110725
  739. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobornyl methyl ether, CAS Registry Number 5331-32-8. Food and Chemical Toxicology 2019, 134 , 110726. https://doi.org/10.1016/j.fct.2019.110726
  740. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-octalactone, CAS Registry Number 104-50-7. Food and Chemical Toxicology 2019, 134 , 110839. https://doi.org/10.1016/j.fct.2019.110839
  741. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-octyldodecan-1-ol, CAS Registry Number 5333-42-6. Food and Chemical Toxicology 2019, 134 , 110840. https://doi.org/10.1016/j.fct.2019.110840
  742. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-tolyl alcohol, CAS Registry Number 589-18-4. Food and Chemical Toxicology 2019, 134 , 110842. https://doi.org/10.1016/j.fct.2019.110842
  743. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methyl-4-phenyl-1,3-dioxolane, CAS Registry Number 33941-99-0. Food and Chemical Toxicology 2019, 134 , 110843. https://doi.org/10.1016/j.fct.2019.110843
  744. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, benzaldehyde, CAS Registry Number 100-52-7. Food and Chemical Toxicology 2019, 134 , 110878. https://doi.org/10.1016/j.fct.2019.110878
  745. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 2-ethyl-3,6,6-trimethylcyclohexenecarboxylate, CAS Registry Number 94333-50-3. Food and Chemical Toxicology 2019, 134 , 110880. https://doi.org/10.1016/j.fct.2019.110880
  746. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, amyl alcohol, CAS Registry Number 71-41-0. Food and Chemical Toxicology 2019, 134 , 110892. https://doi.org/10.1016/j.fct.2019.110892
  747. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octane, 1,1-bis(octyloxy)-, CAS Registry Number 68527-82-2. Food and Chemical Toxicology 2019, 134 , 110893. https://doi.org/10.1016/j.fct.2019.110893
  748. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-dodecalactone, CAS Registry Number 2305-05-7. Food and Chemical Toxicology 2019, 134 , 110895. https://doi.org/10.1016/j.fct.2019.110895
  749. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-heptalactone, CAS Registry Number 105-21-5. Food and Chemical Toxicology 2019, 134 , 110899. https://doi.org/10.1016/j.fct.2019.110899
  750. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 6-methyl-3,5-heptadien-2-one, CAS Registry Number 1604-28-0. Food and Chemical Toxicology 2019, 134 , 110903. https://doi.org/10.1016/j.fct.2019.110903
  751. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, propyl alcohol, CAS Registry Number 71-23-8. Food and Chemical Toxicology 2019, 134 , 110904. https://doi.org/10.1016/j.fct.2019.110904
  752. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-nonalactone, CAS Registry Number 104-61-0. Food and Chemical Toxicology 2019, 134 , 110905. https://doi.org/10.1016/j.fct.2019.110905
  753. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, oxacyclotridecan-2-one, CAS Registry Number 947-05-7. Food and Chemical Toxicology 2019, 134 , 110928. https://doi.org/10.1016/j.fct.2019.110928
  754. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, γ-valerolactone, CAS Registry Number 108-29-2. Food and Chemical Toxicology 2019, 134 , 110950. https://doi.org/10.1016/j.fct.2019.110950
  755. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,4,6-trimethyl-3-cyclohexene-1-methanol, CAS Registry Number 68527-77-5. Food and Chemical Toxicology 2019, 134 , 110951. https://doi.org/10.1016/j.fct.2019.110951
  756. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-cresyl benzoate, CAS Registry Number 614-34-6. Food and Chemical Toxicology 2019, 134 , 110969. https://doi.org/10.1016/j.fct.2019.110969
  757. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isoamyl benzoate, CAS registry number 94-46-2. Food and Chemical Toxicology 2019, 134 , 110970. https://doi.org/10.1016/j.fct.2019.110970
  758. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-octen-3-ol, CAS registry number 3391-86-4. Food and Chemical Toxicology 2019, 134 , 110972. https://doi.org/10.1016/j.fct.2019.110972
  759. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-cyclohexylethanol, CAS Registry Number 1193-81-3. Food and Chemical Toxicology 2019, 134 , 110995. https://doi.org/10.1016/j.fct.2019.110995
  760. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclohexanol, 5-methyl-2-(1-methylethyl)-, acetate, (1a,2a,5b)-, CAS Registry Number 2230-87-7. Food and Chemical Toxicology 2019, 134 , 110998. https://doi.org/10.1016/j.fct.2019.110998
  761. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl alcohol, CAS Registry Number 78-83-1. Food and Chemical Toxicology 2019, 134 , 110999. https://doi.org/10.1016/j.fct.2019.110999
  762. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, alpha-methyl-4-(1-methylethyl)-cyclohexanemethanol, CAS Registry Number 63767-86-2. Food and Chemical Toxicology 2019, 134 , 111001. https://doi.org/10.1016/j.fct.2019.111001
  763. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-tolyl acetate, CAS Registry Number 140-39-6. Food and Chemical Toxicology 2019, 134 , 111002. https://doi.org/10.1016/j.fct.2019.111002
  764. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 2-ethyl-6,6-dimethylcyclohex-2-ene-1-carboxylate, CAS registry number 57934-97-1. Food and Chemical Toxicology 2019, 134 , 111003. https://doi.org/10.1016/j.fct.2019.111003
  765. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butanoic acid, 2-methyl-5-(1-methylethyl)cyclopentyl ester, CAS Registry Number 1266606-26-1. Food and Chemical Toxicology 2019, 134 , 111004. https://doi.org/10.1016/j.fct.2019.111004
  766. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 6-isopropyl-2(1H)-octahydronaphthalenone, CAS Registry Number 34131-98-1. Food and Chemical Toxicology 2019, 134 , 111005. https://doi.org/10.1016/j.fct.2019.111005
  767. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 2-methylthiobutyrate, CAS Registry Number 42075-45-6. Food and Chemical Toxicology 2019, 134 , 111006. https://doi.org/10.1016/j.fct.2019.111006
  768. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl pyruvate, CAS Registry Number 617-35-6. Food and Chemical Toxicology 2019, 134 , 111008. https://doi.org/10.1016/j.fct.2019.111008
  769. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4,7,7-trimethyl-6-thiabicyclo[3.2.1]octane, CAS Registry Number 68398-18-5. Food and Chemical Toxicology 2019, 134 , 111009. https://doi.org/10.1016/j.fct.2019.111009
  770. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl phenylacetate, CAS Registry Number 5421-17-0. Food and Chemical Toxicology 2019, 134 , 111021. https://doi.org/10.1016/j.fct.2019.111021
  771. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hydroxycitronellal dimethyl acetal, CAS Registry Number 141-92-4. Food and Chemical Toxicology 2019, 134 , 111024. https://doi.org/10.1016/j.fct.2019.111024
  772. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-butanone, CAS Registry Number 78-93-3. Food and Chemical Toxicology 2019, 134 , 111025. https://doi.org/10.1016/j.fct.2019.111025
  773. A.M. Api, F. Belmonte, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-hydroxyacetophenone, CAS Registry Number 118-93-4. Food and Chemical Toxicology 2019, 134 , 111026. https://doi.org/10.1016/j.fct.2019.111026
  774. G. Helman, G. Patlewicz, I. Shah. Quantitative prediction of repeat dose toxicity values using GenRA. Regulatory Toxicology and Pharmacology 2019, 109 , 104480. https://doi.org/10.1016/j.yrtph.2019.104480
  775. Rachel H. Clare, Catherine Bardelle, Paul Harper, W. David Hong, Ulf Börjesson, Kelly L. Johnston, Matthew Collier, Laura Myhill, Andrew Cassidy, Darren Plant, Helen Plant, Roger Clark, Darren A. N. Cook, Andrew Steven, John Archer, Paul McGillan, Sitthivut Charoensutthivarakul, Jaclyn Bibby, Raman Sharma, Gemma L. Nixon, Barton E. Slatko, Lindsey Cantin, Bo Wu, Joseph Turner, Louise Ford, Kirsty Rich, Mark Wigglesworth, Neil G. Berry, Paul M. O’Neill, Mark J. Taylor, Stephen A. Ward. Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-018-07826-2
  776. Xiao Luo, Liujia Qian, Yansheng Xiao, Yao Tang, Yang Zhao, Xia Wang, Luyan Gu, Zuhai Lei, Jianming Bao, Jiahui Wu, Tingting He, Fupin Hu, Jing Zheng, Honglin Li, Weiping Zhu, Lei Shao, Xiaojing Dong, Daijie Chen, Xuhong Qian, Youjun Yang. A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-018-08241-3
  777. Xavier Domingo-Almenara, Carlos Guijas, Elizabeth Billings, J. Rafael Montenegro-Burke, Winnie Uritboonthai, Aries E. Aisporna, Emily Chen, H. Paul Benton, Gary Siuzdak. The METLIN small molecule dataset for machine learning-based retention time prediction. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13680-7
  778. Stephen Wu, Yukiko Kondo, Masa-aki Kakimoto, Bin Yang, Hironao Yamada, Isao Kuwajima, Guillaume Lambard, Kenta Hongo, Yibin Xu, Junichiro Shiomi, Christoph Schick, Junko Morikawa, Ryo Yoshida. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj Computational Materials 2019, 5 (1) https://doi.org/10.1038/s41524-019-0203-2
  779. S. Puertas-Martín, J. L. Redondo, P. M. Ortigosa, H. Pérez-Sánchez. OptiPharm: An evolutionary algorithm to compare shape similarity. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-37908-6
  780. Devin Kepchia, Pingxi Xu, Raymond Terryn, Ana Castro, Stephan C. Schürer, Walter S. Leal, Charles W. Luetje. Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-40640-4
  781. Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, Patrick Riley. Optimization of Molecules via Deep Reinforcement Learning. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47148-x
  782. Shuntaro Chiba, Masahito Ohue, Anastasiia Gryniukova, Petro Borysko, Sergey Zozulya, Nobuaki Yasuo, Ryunosuke Yoshino, Kazuyoshi Ikeda, Woong-Hee Shin, Daisuke Kihara, Mitsuo Iwadate, Hideaki Umeyama, Takaaki Ichikawa, Reiji Teramoto, Kun-Yi Hsin, Vipul Gupta, Hiroaki Kitano, Mika Sakamoto, Akiko Higuchi, Nobuaki Miura, Kei Yura, Masahiro Mochizuki, Chandrasekaran Ramakrishnan, A. Mary Thangakani, D. Velmurugan, M. Michael Gromiha, Itsuo Nakane, Nanako Uchida, Hayase Hakariya, Modong Tan, Hironori K. Nakamura, Shogo D. Suzuki, Tomoki Ito, Masahiro Kawatani, Kentaroh Kudoh, Sakurako Takashina, Kazuki Z. Yamamoto, Yoshitaka Moriwaki, Keita Oda, Daisuke Kobayashi, Tatsuya Okuno, Shintaro Minami, George Chikenji, Philip Prathipati, Chioko Nagao, Attayeb Mohsen, Mari Ito, Kenji Mizuguchi, Teruki Honma, Takashi Ishida, Takatsugu Hirokawa, Yutaka Akiyama, Masakazu Sekijima. A prospective compound screening contest identified broader inhibitors for Sirtuin 1. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-55069-y
  783. Woosung Jeon, Dongsup Kim, . FP2VEC: a new molecular featurizer for learning molecular properties. Bioinformatics 2019, 35 (23) , 4979-4985. https://doi.org/10.1093/bioinformatics/btz307
  784. Shoma Kikuchi, Ichigaku Takigawa, Satoshi Oyama, Masahito Kurihara. Learning Relevant Molecular Representations via Self-Attentive Graph Neural Networks. 2019,,, 5364-5369. https://doi.org/10.1109/BigData47090.2019.9006087
  785. BRIGHTER AGYEMANG, WEI-PING WU, MICHAEL Y. KPIEBAAREH, EBENEZER NANOR. Drug-Target Indication Prediction by Integrating End-To-End Learning And Fingerprints. 2019,,, 266-272. https://doi.org/10.1109/ICCWAMTIP47768.2019.9067510
  786. Gisela de A. Umbuzeiro, Anjaina F. Albuquerque, Francine I. Vacchi, Malgorzata Szymczyk, Xinyi Sui, Reza Aalizadeh, Peter C. von der Ohe, Nikolaos S. Thomaidis, Nelson R. Vinueza, Harold S. Freeman. Towards a reliable prediction of the aquatic toxicity of dyes. Environmental Sciences Europe 2019, 31 (1) https://doi.org/10.1186/s12302-019-0258-1
  787. Christoph Ruttkies, Steffen Neumann, Stefan Posch. Improving MetFrag with statistical learning of fragment annotations. BMC Bioinformatics 2019, 20 (1) https://doi.org/10.1186/s12859-019-2954-7
  788. Ryohei Eguchi, Naoaki Ono, Aki Hirai Morita, Tetsuo Katsuragi, Satoshi Nakamura, Ming Huang, Md. Altaf-Ul-Amin, Shigehiko Kanaya. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks. BMC Bioinformatics 2019, 20 (1) https://doi.org/10.1186/s12859-019-2963-6
  789. Geonhee Lee, Chihyun Park, Jaegyoon Ahn. Novel deep learning model for more accurate prediction of drug-drug interaction effects. BMC Bioinformatics 2019, 20 (1) https://doi.org/10.1186/s12859-019-3013-0
  790. Kohei Amano, Tsubasa Matsumoto, Kenichi Tanaka, Kimito Funatsu, Masaaki Kotera. Metabolic disassembler for understanding and predicting the biosynthetic units of natural products. BMC Bioinformatics 2019, 20 (1) https://doi.org/10.1186/s12859-019-3183-9
  791. Nicolas Bosc, Francis Atkinson, Eloy Felix, Anna Gaulton, Anne Hersey, Andrew R. Leach. Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-018-0325-4
  792. Shuangjia Zheng, Xin Yan, Qiong Gu, Yuedong Yang, Yunfei Du, Yutong Lu, Jun Xu. QBMG: quasi-biogenic molecule generator with deep recurrent neural network. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0328-9
  793. Dominique Sydow, Andrea Morger, Maximilian Driller, Andrea Volkamer. TeachOpenCADD: a teaching platform for computer-aided drug design using open source packages and data. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0351-x
  794. Xuhan Liu, Kai Ye, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0355-6
  795. Isidro Cortés-Ciriano, Andreas Bender. KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0364-5
  796. Jeremy R. Ash, Melaine A. Kuenemann, Daniel Rotroff, Alison Motsinger-Reif, Denis Fourches. Cheminformatics approach to exploring and modeling trait-associated metabolite profiles. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0366-3
  797. Miroslav Kratochvíl, Jiří Vondrášek, Jakub Galgonek. Interoperable chemical structure search service. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0367-2
  798. Domenico Gadaleta, Kristijan Vuković, Cosimo Toma, Giovanna J. Lavado, Agnes L. Karmaus, Kamel Mansouri, Nicole C. Kleinstreuer, Emilio Benfenati, Alessandra Roncaglioni. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0383-2
  799. David Ruano-Ordás, Lindsey Burggraaff, Rongfang Liu, Cas van der Horst, Laura H. Heitman, Michael T. M. Emmerich, Jose R. Mendez, Iryna Yevseyeva, Gerard J. P. van Westen. A multiple classifier system identifies novel cannabinoid CB2 receptor ligands. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0389-9
  800. Anna Lovrics, Veronika F. S. Pape, Dániel Szisz, Adrián Kalászi, Petra Heffeter, Csaba Magyar, Gergely Szakács. Identifying new topoisomerase II poison scaffolds by combining publicly available toxicity data and 2D/3D-based virtual screening. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0390-3
  801. Andrew Dalke. The chemfp project. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0398-8
  802. Tânia F. G. G. Cova, Alberto A. C. C. Pais. Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00809
  803. Yinyin Wang, Mohieddin Jafari, Yun Tang, Jing Tang, . Predicting Meridian in Chinese traditional medicine using machine learning approaches. PLOS Computational Biology 2019, 15 (11) , e1007249. https://doi.org/10.1371/journal.pcbi.1007249
  804. Sk. Abdul Amin, Nilanjan Adhikari, Shovanlal Gayen, Tarun Jha. Reliable structural information for rational design of benzoxazole type potential cholesteryl ester transfer protein (CETP) inhibitors through multiple validated modeling techniques. Journal of Biomolecular Structure and Dynamics 2019, 37 (17) , 4528-4541. https://doi.org/10.1080/07391102.2018.1552895
  805. Marilia N. N. Lima, Gustavo C. Cassiano, Kaira C. P. Tomaz, Arthur C. Silva, Bruna K. P. Sousa, Leticia T. Ferreira, Tatyana A. Tavella, Juliana Calit, Daniel Y. Bargieri, Bruno J. Neves, Fabio T. M. Costa, Carolina Horta Andrade. Integrative Multi-Kinase Approach for the Identification of Potent Antiplasmodial Hits. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00773
  806. Maha Thafar, Arwa Bin Raies, Somayah Albaradei, Magbubah Essack, Vladimir B. Bajic. Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00782
  807. Xuan Lin, Zhe Quan, Zhi-Jie Wang, Huang Huang, Xiangxiang Zeng. A novel molecular representation with BiGRU neural networks for learning atom. Briefings in Bioinformatics 2019, 23 https://doi.org/10.1093/bib/bbz125
  808. Laurianne David, Josep Arús-Pous, Johan Karlsson, Ola Engkvist, Esben Jannik Bjerrum, Thierry Kogej, Jan M. Kriegl, Bernd Beck, Hongming Chen. Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.01303
  809. George Helman, Imran Shah, Grace Patlewicz. Transitioning the generalised read-across approach (GenRA) to quantitative predictions: A case study using acute oral toxicity data. Computational Toxicology 2019, 12 , 100097. https://doi.org/10.1016/j.comtox.2019.100097
  810. Pim N.H. Wassenaar, Emiel Rorije, Nicole M.H. Janssen, Willie J.G.M. Peijnenburg, Martina G. Vijver. Chemical similarity to identify potential Substances of Very High Concern – An effective screening method. Computational Toxicology 2019, 12 , 100110. https://doi.org/10.1016/j.comtox.2019.100110
  811. Masahito Ohue, Shogo D. Suzuki, Yutaka Akiyama. Learning-to-rank technique based on ignoring meaningless ranking orders between compounds. Journal of Molecular Graphics and Modelling 2019, 92 , 192-200. https://doi.org/10.1016/j.jmgm.2019.07.009
  812. Bagavathy Shanmugam Karthikeyan, Janani Ravichandran, Karthikeyan Mohanraj, R.P. Vivek-Ananth, Areejit Samal. A curated knowledgebase on endocrine disrupting chemicals and their biological systems-level perturbations. Science of The Total Environment 2019, 692 , 281-296. https://doi.org/10.1016/j.scitotenv.2019.07.225
  813. Bei Wang, Xiaoqing Lyu, Zhi Tang, Yifan Wang. Comparison of Molecule Graph Representation with Similarity Consistency. 2019,,, 1250-1252. https://doi.org/10.1109/BIBM47256.2019.8982931
  814. Chun Jiang Zhu, Tan Zhu, Haining Li, Jinbo Bi, Minghu Song. Accelerating Large-Scale Molecular Similarity Search through Exploiting High Performance Computing. 2019,,, 330-333. https://doi.org/10.1109/BIBM47256.2019.8982950
  815. Rana S. Mahmoud, Ahmed H. Yousef. Using Molecular Fingerprints as Descriptors in Toxicity Prediction: A Survey. 2019,,, 2649-2654. https://doi.org/10.1109/BIBM47256.2019.8982990
  816. Jieying Hu, Ming Huang, Naoaki Ono, Ye Chen-Izu, Leighton T. Izu, Shigehiko Kanaya. Cardiotoxicity Prediction Based on Integreted hERG Database with Molecular Convolution Model. 2019,,, 1500-1503. https://doi.org/10.1109/BIBM47256.2019.8983163
  817. Chenrui Zhang, Xiaoqing Lyu, Yifeng Huang, Zhi Tang, Zhenming Liu. Molecular Graph Generation with Deep Reinforced Multitask Network and Adversarial Imitation Learning. 2019,,, 326-329. https://doi.org/10.1109/BIBM47256.2019.8983277
  818. Zhirui Liao, Ronghui You, Xiaodi Huang, Xiaojun Yao, Tao Huang, Shanfeng Zhu. DeepDock: Enhancing Ligand-protein Interaction Prediction by a Combination of Ligand and Structure Information. 2019,,, 311-317. https://doi.org/10.1109/BIBM47256.2019.8983365
  819. Xin Chen, Xien Liu, Ji Wu. Drug-drug Interaction Prediction with Graph Representation Learning. 2019,,, 354-361. https://doi.org/10.1109/BIBM47256.2019.8983416
  820. Wenbo Sun, Yujie Zheng, Ke Yang, Qi Zhang, Akeel A. Shah, Zhou Wu, Yuyang Sun, Liang Feng, Dongyang Chen, Zeyun Xiao, Shirong Lu, Yong Li, Kuan Sun. Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Science Advances 2019, 5 (11) , eaay4275. https://doi.org/10.1126/sciadv.aay4275
  821. Lee, Kim. In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning. Genes 2019, 10 (11) , 906. https://doi.org/10.3390/genes10110906
  822. Guedes, Aniceto, Andrade, Salvador, Guedes. Chemical Patterns of Proteasome Inhibitors: Lessons Learned from Two Decades of Drug Design. International Journal of Molecular Sciences 2019, 20 (21) , 5326. https://doi.org/10.3390/ijms20215326
  823. Kai Dührkop. Computational methods for small molecule identification. it - Information Technology 2019, 61 (5-6) , 285-292. https://doi.org/10.1515/itit-2019-0033
  824. Ayarivan Puratchikody, Appavoo Umamaheswari, Navabshan Irfan, Dharmarajan Sriram. Molecular Dynamics Studies on COX-2 Protein-tyrosine Analogue Complex and Ligand-based Computational Analysis of Halo-substituted Tyrosine Analogues. Letters in Drug Design & Discovery 2019, 16 (11) , 1211-1232. https://doi.org/10.2174/1570180815666180627123445
  825. Ruifeng Liu, Mohamed Diwan M. AbdulHameed, Anders Wallqvist. Teaching an Old Dog New Tricks: Strategies That Improve Early Recognition in Similarity-Based Virtual Screening. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00701
  826. Miaomiao Liu, Peter Karuso, Yunjiang Feng, Esther Kellenberger, Fei Liu, Can Wang, Ronald J. Quinn. Is it time for artificial intelligence to predict the function of natural products based on 2D-structure. MedChemComm 2019, 10 (10) , 1667-1677. https://doi.org/10.1039/C9MD00128J
  827. Gerhard Hessler, Christoph Grebner, Hans Matter. Computational Approaches for Target Inference. 2019,,, 277-322. https://doi.org/10.1002/9783527818242.ch10
  828. Edward O. Pyzer‐Knapp. Cognitive Chemistry: The Marriage of Machine Learning and Chemistry to Accelerate Materials Discovery. 2019,,, 223-251. https://doi.org/10.1002/9783527802265.ch8
  829. Bowen Li, Srinivas Rangarajan. Designing compact training sets for data-driven molecular property prediction through optimal exploitation and exploration. Molecular Systems Design & Engineering 2019, 4 (5) , 1048-1057. https://doi.org/10.1039/C9ME00078J
  830. P.V. Pogodin, A.A. Lagunin, D.A. Filimonov, M.C. Nicklaus, V.V. Poroikov. Improving (Q)SAR predictions by examining bias in the selection of compounds for experimental testing. SAR and QSAR in Environmental Research 2019, 30 (10) , 759-773. https://doi.org/10.1080/1062936X.2019.1665580
  831. Daniele Padula, Alessandro Troisi. Concurrent Optimization of Organic Donor–Acceptor Pairs through Machine Learning. Advanced Energy Materials 2019, 9 (40) , 1902463. https://doi.org/10.1002/aenm.201902463
  832. Fangping Wan, Yue Zhu, Hailin Hu, Antao Dai, Xiaoqing Cai, Ligong Chen, Haipeng Gong, Tian Xia, Dehua Yang, Ming-Wei Wang, Jianyang Zeng. DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening. Genomics, Proteomics & Bioinformatics 2019, 17 (5) , 478-495. https://doi.org/10.1016/j.gpb.2019.04.003
  833. Huy Ngoc Pham, Trung Hoang Le. Attention-based Multi-Input Deep Learning Architecture for Biological Activity Prediction: An Application in EGFR Inhibitors. 2019,,, 1-9. https://doi.org/10.1109/KSE.2019.8919265
  834. D.A. Beshnova, C. Carolan, V.G. Grigorenko, M.Yu. Rubtsova, E. Gbekor, J. Lewis, V.S. Lamzin, A.M. Egorov. Scaffold hopping computational approach for searching novel β-lactamase inhibitors. Biomeditsinskaya Khimiya 2019, 65 (6) , 468-476. https://doi.org/10.18097/pbmc20196506468
  835. Ennys Gheyouche, Romain Launay, Jean Lethiec, Antoine Labeeuw, Caroline Roze, Alan Amossé, Stéphane Téletchéa. DockNmine, a Web Portal to Assemble and Analyse Virtual and Experimental Interaction Data. International Journal of Molecular Sciences 2019, 20 (20) , 5062. https://doi.org/10.3390/ijms20205062
  836. Sabina Podlewska, Rafał Kurczab. Polypharmacology – a challenge for current drug design approaches. Science, Technology and Innovation 2019, 6 (3) , 19-23. https://doi.org/10.5604/01.3001.0013.5185
  837. Ahmet Sureyya Rifaioglu, Heval Atas, Maria Jesus Martin, Rengul Cetin-Atalay, Volkan Atalay, Tunca Doğan. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Briefings in Bioinformatics 2019, 20 (5) , 1878-1912. https://doi.org/10.1093/bib/bby061
  838. Maria L. Di Paolo, Michael S. Christodoulou, Alessandra M. Calogero, Luca Pinzi, Giulio Rastelli, Daniele Passarella, Graziella Cappelletti, Lisa Dalla Via. 2‐Phenyloxazole‐4‐carboxamide as a Scaffold for Selective Inhibition of Human Monoamine Oxidase B. ChemMedChem 2019, 14 (18) , 1641-1652. https://doi.org/10.1002/cmdc.201900261
  839. Hyuntae Lim, YounJoon Jung. Delfos: deep learning model for prediction of solvation free energies in generic organic solvents. Chemical Science 2019, 10 (36) , 8306-8315. https://doi.org/10.1039/C9SC02452B
  840. Mohammad Atif Faiz Afzal, Aditya Sonpal, Mojtaba Haghighatlari, Andrew J. Schultz, Johannes Hachmann. A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules. Chemical Science 2019, 10 (36) , 8374-8383. https://doi.org/10.1039/C9SC02677K
  841. Sk. Abdul Amin, Nilanjan Adhikari, Tarun Jha. Development of decision trees to discriminate HDAC8 inhibitors and non-inhibitors using recursive partitioning. Journal of Biomolecular Structure and Dynamics 2019, , 1-8. https://doi.org/10.1080/07391102.2019.1661876
  842. Yao Zhang, Alpha A. Lee. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chemical Science 2019, 10 (35) , 8154-8163. https://doi.org/10.1039/C9SC00616H
  843. Suman K. Chakravarti, Sai Radha Mani Alla. Descriptor Free QSAR Modeling Using Deep Learning With Long Short-Term Memory Neural Networks. Frontiers in Artificial Intelligence 2019, 2 https://doi.org/10.3389/frai.2019.00017
  844. Hyeoncheol Cho, Insung S. Choi. Enhanced Deep‐Learning Prediction of Molecular Properties via Augmentation of Bond Topology. ChemMedChem 2019, 14 (17) , 1604-1609. https://doi.org/10.1002/cmdc.201900458
  845. Anton B. Zakharov, Anastasia V. Dyachenko, Vladimir V. Ivanov. Topological characteristics of iterated line graphs in QSAR problem: Octane numbers of saturated hydrocarbons. Journal of Chemometrics 2019, 33 (9) https://doi.org/10.1002/cem.3169
  846. Georgios Drakakis, Isidro Cortés‐Ciriano, Ben Alexander‐Dann, Andreas Bender. Elucidating Compound Mechanism of Action and Predicting Cytotoxicity Using Machine Learning Approaches, Taking Prediction Confidence into Account. Current Protocols in Chemical Biology 2019, 11 (3) https://doi.org/10.1002/cpch.73
  847. Jonathan Cardoso-Silva, Lazaros G. Papageorgiou, Sophia Tsoka. Network-based piecewise linear regression for QSAR modelling. Journal of Computer-Aided Molecular Design 2019, 33 (9) , 831-844. https://doi.org/10.1007/s10822-019-00228-6
  848. Monica Golahalli Seenappa, Katerina Potika, Petros Potikas. Short Paper: Graph Classification with Kernels, Embeddings and Convolutional Neural Networks. 2019,,, 88-93. https://doi.org/10.1109/GC46384.2019.00021
  849. Yuan, Wei, Guan, Jiang, Wang, Zhang, Li. Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network. Molecules 2019, 24 (18) , 3383. https://doi.org/10.3390/molecules24183383
  850. Jun Li, Martin D. Eastgate. Making better decisions during synthetic route design: leveraging prediction to achieve greenness-by-design. Reaction Chemistry & Engineering 2019, 4 (9) , 1595-1607. https://doi.org/10.1039/C9RE00019D
  851. Karol Molga, Ewa P. Gajewska, Sara Szymkuć, Bartosz A. Grzybowski. The logic of translating chemical knowledge into machine-processable forms: a modern playground for physical-organic chemistry. Reaction Chemistry & Engineering 2019, 4 (9) , 1506-1521. https://doi.org/10.1039/C9RE00076C
  852. Arkadii Lin, Bernd Beck, Dragos Horvath, Gilles Marcou, Alexandre Varnek. Diversifying chemical libraries with generative topographic mapping. Journal of Computer-Aided Molecular Design 2019, 58 https://doi.org/10.1007/s10822-019-00215-x
  853. Connor W. Coley, Dale A. Thomas, Justin A. M. Lummiss, Jonathan N. Jaworski, Christopher P. Breen, Victor Schultz, Travis Hart, Joshua S. Fishman, Luke Rogers, Hanyu Gao, Robert W. Hicklin, Pieter P. Plehiers, Joshua Byington, John S. Piotti, William H. Green, A. John Hart, Timothy F. Jamison, Klavs F. Jensen. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019, 365 (6453) , eaax1566. https://doi.org/10.1126/science.aax1566
  854. Huikun Zhang, Spencer S. Ericksen, Ching-pei Lee, Gene E. Ananiev, Nathan Wlodarchak, Peng Yu, Julie C. Mitchell, Anthony Gitter, Stephen J. Wright, F. Michael Hoffmann, Scott A. Wildman, Michael A. Newton, . Predicting kinase inhibitors using bioactivity matrix derived informer sets. PLOS Computational Biology 2019, 15 (8) , e1006813. https://doi.org/10.1371/journal.pcbi.1006813
  855. Davide Ballabio, Francesca Grisoni, Viviana Consonni, Roberto Todeschini. Integrated QSAR Models to Predict Acute Oral Systemic Toxicity. Molecular Informatics 2019, 38 (8-9) , 1800124. https://doi.org/10.1002/minf.201800124
  856. Mahendra Awale, Finton Sirockin, Nikolaus Stiefl, Jean‐Louis Reymond. Medicinal Chemistry Aware Database GDBMedChem. Molecular Informatics 2019, 38 (8-9) , 1900031. https://doi.org/10.1002/minf.201900031
  857. Tomoyuki Miyao, Swarit Jasial, Jürgen Bajorath, Kimito Funatsu. Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships. Journal of Computer-Aided Molecular Design 2019, 33 (8) , 729-743. https://doi.org/10.1007/s10822-019-00218-8
  858. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-heptanone, CAS Registry Number 106-35-4. Food and Chemical Toxicology 2019, 130 , 110452. https://doi.org/10.1016/j.fct.2019.04.022
  859. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3a,4,5,6,7,7a-hexahydro-5-methoxy-4,7-methano-1H-indene, CAS Registry Number 53018-24-9. Food and Chemical Toxicology 2019, 130 , 110454. https://doi.org/10.1016/j.fct.2019.04.024
  860. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl phenylacetate, CAS Registry Number 102-13-6. Food and Chemical Toxicology 2019, 130 , 110455. https://doi.org/10.1016/j.fct.2019.04.025
  861. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, decyl acetate, CAS Registry Number 112-17-4. Food and Chemical Toxicology 2019, 130 , 110456. https://doi.org/10.1016/j.fct.2019.04.026
  862. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. Rifm fragrance ingredient safety assessment, 2-methylpentyl 2-methylvalerate, CAS Registry Number 90397-38-9. Food and Chemical Toxicology 2019, 130 , 110457. https://doi.org/10.1016/j.fct.2019.04.027
  863. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,4-dimethoxy-2-tert-butylbenzene, CAS Registry Number 21112-37-8. Food and Chemical Toxicology 2019, 130 , 110459. https://doi.org/10.1016/j.fct.2019.04.029
  864. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, myristic acid, CAS Registry Number 544-63-8. Food and Chemical Toxicology 2019, 130 , 110460. https://doi.org/10.1016/j.fct.2019.04.030
  865. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl acetate, CAS Registry Number 110-19-0. Food and Chemical Toxicology 2019, 130 , 110488. https://doi.org/10.1016/j.fct.2019.04.058
  866. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclopentanol, 2-(2-hexen-1-yl)-, CAS Registry Number 34686-67-4. Food and Chemical Toxicology 2019, 130 , 110536. https://doi.org/10.1016/j.fct.2019.05.044
  867. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-isopropylacetophenone, CAS Registry Number 645-13-6. Food and Chemical Toxicology 2019, 130 , 110565. https://doi.org/10.1016/j.fct.2019.110565
  868. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclohexyl butyrate, CAS Registry Number 1551-44-6. Food and Chemical Toxicology 2019, 130 , 110566. https://doi.org/10.1016/j.fct.2019.110566
  869. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-methyloctanoic acid, CAS Registry Number 54947-74-9. Food and Chemical Toxicology 2019, 130 , 110569. https://doi.org/10.1016/j.fct.2019.110569
  870. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isovaleric acid, CAS Registry Number 503-74-2. Food and Chemical Toxicology 2019, 130 , 110570. https://doi.org/10.1016/j.fct.2019.110570
  871. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,2,3-trimethylcyclopent-3-enylacetonitrile, CAS Registry Number 15373-31-6. Food and Chemical Toxicology 2019, 130 , 110571. https://doi.org/10.1016/j.fct.2019.110571
  872. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methylbutyric acid, CAS Registry Number 116-53-0. Food and Chemical Toxicology 2019, 130 , 110574. https://doi.org/10.1016/j.fct.2019.110574
  873. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, propanal diethyl acetal, CAS registry number 4744-08-5. Food and Chemical Toxicology 2019, 130 , 110588. https://doi.org/10.1016/j.fct.2019.110588
  874. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, myrtenol, CAS Registry Number 515-00-4. Food and Chemical Toxicology 2019, 130 , 110602. https://doi.org/10.1016/j.fct.2019.110602
  875. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl propionate, CAS Registry Number 540-42-1. Food and Chemical Toxicology 2019, 130 , 110607. https://doi.org/10.1016/j.fct.2019.110607
  876. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl butyrate, CAS Registry Number 2639-63-6. Food and Chemical Toxicology 2019, 130 , 110608. https://doi.org/10.1016/j.fct.2019.110608
  877. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM Fragrance ingredient safety assessment, 4-cyclohexyl-2-methyl-2-butanol, CAS Registry Number 83926-73-2. Food and Chemical Toxicology 2019, 130 , 110609. https://doi.org/10.1016/j.fct.2019.110609
  878. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, linalyl anthranilate, CAS Registry Number 7149-26-0. Food and Chemical Toxicology 2019, 130 , 110610. https://doi.org/10.1016/j.fct.2019.110610
  879. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM Fragrance ingredient safety assessment, cis-3-hexenyl anthranilate, CAS Registry Number 65405-76-7. Food and Chemical Toxicology 2019, 130 , 110611. https://doi.org/10.1016/j.fct.2019.110611
  880. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,1-diethoxyhexane, CAS Registry Number 3658-93-3. Food and Chemical Toxicology 2019, 130 , 110612. https://doi.org/10.1016/j.fct.2019.110612
  881. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 2-methoxybenzyl ether, CAS Registry Number 64988-06-3. Food and Chemical Toxicology 2019, 130 , 110613. https://doi.org/10.1016/j.fct.2019.110613
  882. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 2-methylbutyrate, CAS Registry Number 868-57-5. Food and Chemical Toxicology 2019, 130 , 110614. https://doi.org/10.1016/j.fct.2019.110614
  883. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 3,7-dimethyl-6-octenoate, CAS Registry Number 2270-60-2. Food and Chemical Toxicology 2019, 130 , 110616. https://doi.org/10.1016/j.fct.2019.110616
  884. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,2-dimethoxybenzene, CAS Registry Number 91-16-7. Food and Chemical Toxicology 2019, 130 , 110618. https://doi.org/10.1016/j.fct.2019.110618
  885. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyl 10-undecenoate, CAS Registry Number 109-42-2. Food and Chemical Toxicology 2019, 130 , 110619. https://doi.org/10.1016/j.fct.2019.110619
  886. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl 2-nonenoate, CAS Registry Number 111-79-5. Food and Chemical Toxicology 2019, 130 , 110622. https://doi.org/10.1016/j.fct.2019.110622
  887. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,6,8-trimethylnonan-4-one, CAS Registry Number 123-18-2. Food and Chemical Toxicology 2019, 130 , 110624. https://doi.org/10.1016/j.fct.2019.110624
  888. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,5-dimethylhexyl acetate, CAS Registry Number 67952-57-2. Food and Chemical Toxicology 2019, 130 , 110625. https://doi.org/10.1016/j.fct.2019.110625
  889. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, anisyl phenylacetate, CAS Registry Number 102-17-0. Food and Chemical Toxicology 2019, 130 , 110626. https://doi.org/10.1016/j.fct.2019.110626
  890. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-phenoxyethanol, CAS Registry Number 122-99-6. Food and Chemical Toxicology 2019, 130 , 110629. https://doi.org/10.1016/j.fct.2019.110629
  891. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-tert-butylcyclohexyl propionate, CAS Registry Number 40702-13-4. Food and Chemical Toxicology 2019, 130 , 110630. https://doi.org/10.1016/j.fct.2019.110630
  892. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-octanone, CAS Registry Number 106-68-3. Food and Chemical Toxicology 2019, 130 , 110631. https://doi.org/10.1016/j.fct.2019.110631
  893. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-methylpentyl 2-methylisocrotonate, CAS Registry Number 53082-58-9. Food and Chemical Toxicology 2019, 130 , 110633. https://doi.org/10.1016/j.fct.2019.110633
  894. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, propionic acid, CAS Registry Number 79-09-4. Food and Chemical Toxicology 2019, 130 , 110635. https://doi.org/10.1016/j.fct.2019.110635
  895. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, [2-(cyclohexyloxy)ethyl]benzene, CAS Registry Number 80858-47-5. Food and Chemical Toxicology 2019, 130 , 110636. https://doi.org/10.1016/j.fct.2019.110636
  896. A.M. Api, D. Belsito, S. Biserta, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4,8-dimethyl-4,9-decadienal, CAS Registry Number 71077-31-1. Food and Chemical Toxicology 2019, 130 , 110648. https://doi.org/10.1016/j.fct.2019.110648
  897. Haiping Zhang, Linbu Liao, Yunting Cai, Yuhui Hu, Hao Wang. IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques. Methods 2019, 166 , 57-65. https://doi.org/10.1016/j.ymeth.2019.03.012
  898. Grace Patlewicz, Lucina E. Lizarraga, Diego Rua, David G. Allen, Amber B. Daniel, Suzanne C. Fitzpatrick, Natàlia Garcia-Reyero, John Gordon, Pertti Hakkinen, Angela S. Howard, Agnes Karmaus, Joanna Matheson, Moiz Mumtaz, Andrea-Nicole Richarz, Patricia Ruiz, Louis Scarano, Takashi Yamada, Nicole Kleinstreuer. Exploring current read-across applications and needs among selected U.S. Federal Agencies. Regulatory Toxicology and Pharmacology 2019, 106 , 197-209. https://doi.org/10.1016/j.yrtph.2019.05.011
  899. Céline Brouard, Antoine Bassé, Florence d’Alché-Buc, Juho Rousu. Improved Small Molecule Identification through Learning Combinations of Kernel Regression Models. Metabolites 2019, 9 (8) , 160. https://doi.org/10.3390/metabo9080160
  900. Yun Shi, Mark von Itzstein. How Size Matters: Diversity for Fragment Library Design. Molecules 2019, 24 (15) , 2838. https://doi.org/10.3390/molecules24152838
  901. Fidele Ntie-Kang. Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies. Physical Sciences Reviews 2019, 4 (8) https://doi.org/10.1515/psr-2019-0007
  902. Christiane Ehrt, Tobias Brinkjost, Oliver Koch. Binding site characterization – similarity, promiscuity, and druggability. MedChemComm 2019, 10 (7) , 1145-1159. https://doi.org/10.1039/C9MD00102F
  903. Pavel Sidorov, Stefan Naulaerts, Jérémy Ariey-Bonnet, Eddy Pasquier, Pedro J. Ballester. Predicting Synergism of Cancer Drug Combinations Using NCI-ALMANAC Data. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00509
  904. Jiansheng Wu, Ben Liu, Wallace K B Chan, Weijian Wu, Tao Pang, Haifeng Hu, Shancheng Yan, Xiaoyan Ke, Yang Zhang. Precise modelling and interpretation of bioactivities of ligands targeting G protein-coupled receptors. Bioinformatics 2019, 35 (14) , i324-i332. https://doi.org/10.1093/bioinformatics/btz336
  905. Alex P. Lind, Peter C. Anderson, . Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLOS ONE 2019, 14 (7) , e0219774. https://doi.org/10.1371/journal.pone.0219774
  906. Marija Rakić, Boris Furtula. A novel method for measuring the structure sensitivity of molecular descriptors. Journal of Chemometrics 2019, 33 (7) https://doi.org/10.1002/cem.3138
  907. Gonzalo Cerruela García, Nicolás García-Pedrajas. A nonparametric weighted feature extraction-based method for c-Jun N-terminal kinase-3 inhibitor prediction. Journal of Molecular Graphics and Modelling 2019, 90 , 235-242. https://doi.org/10.1016/j.jmgm.2019.05.006
  908. Joris Tavernier, Jaak Simm, Karl Meerbergen, Joerg Kurt Wegner, Hugo Ceulemans, Yves Moreau. Fast semi-supervised discriminant analysis for binary classification of large data sets. Pattern Recognition 2019, 91 , 86-99. https://doi.org/10.1016/j.patcog.2019.02.015
  909. Patrick Echtenbruck, Michael Emmerich, Boris Naujoks. A Multiobjective Approach to Classification in Drug Discovery. 2019,,, 1-8. https://doi.org/10.1109/CIBCB.2019.8791463
  910. Antonio Peón, Hongjian Li, Ghita Ghislat, Kwong‐Sak Leung, Man‐Hon Wong, Gang Lu, Pedro J. Ballester. MolTarPred: A web tool for comprehensive target prediction with reliability estimation. Chemical Biology & Drug Design 2019, 94 (1) , 1390-1401. https://doi.org/10.1111/cbdd.13516
  911. Ke Liu, Xiangyan Sun, Lei Jia, Jun Ma, Haoming Xing, Junqiu Wu, Hua Gao, Yax Sun, Florian Boulnois, Jie Fan. Chemi-Net: A Molecular Graph Convolutional Network for Accurate Drug Property Prediction. International Journal of Molecular Sciences 2019, 20 (14) , 3389. https://doi.org/10.3390/ijms20143389
  912. Yu Wei, Wei Li, Tengfei Du, Zhangyong Hong, Jianping Lin. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method. International Journal of Molecular Sciences 2019, 20 (14) , 3572. https://doi.org/10.3390/ijms20143572
  913. Weixing Dai, Dianjing Guo. A Ligand-Based Virtual Screening Method Using Direct Quantification of Generalization Ability. Molecules 2019, 24 (13) , 2414. https://doi.org/10.3390/molecules24132414
  914. David Schaller, Stefanie Hagenow, Holger Stark, Gerhard Wolber, . Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. PLOS ONE 2019, 14 (6) , e0218820. https://doi.org/10.1371/journal.pone.0218820
  915. Francesca Grisoni, Daniel Merk, Lukas Friedrich, Gisbert Schneider. Design of Natural‐Product‐Inspired Multitarget Ligands by Machine Learning. ChemMedChem 2019, 14 (12) , 1129-1134. https://doi.org/10.1002/cmdc.201900097
  916. Ingoo Lee, Jongsoo Keum, Hojung Nam, . DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Computational Biology 2019, 15 (6) , e1007129. https://doi.org/10.1371/journal.pcbi.1007129
  917. Elvira Diamantopoulou, Sarah Baxendale, Antonio de la Vega de León, Anzar Asad, Celia J Holdsworth, Leila Abbas, Valerie J Gillet, Giselle R Wiggin, Tanya T Whitfield. Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant. eLife 2019, 8 https://doi.org/10.7554/eLife.44889
  918. Marco Giulini, Raffaello Potestio. A deep learning approach to the structural analysis of proteins. Interface Focus 2019, 9 (3) , 20190003. https://doi.org/10.1098/rsfs.2019.0003
  919. Pascal Friederich, Artem Fediai, Simon Kaiser, Manuel Konrad, Nicole Jung, Wolfgang Wenzel. Toward Design of Novel Materials for Organic Electronics. Advanced Materials 2019, 31 (26) , 1808256. https://doi.org/10.1002/adma.201808256
  920. R. Graepel, B. Ter Braak, S.E. Escher, C. Fisher, I. Gardner, H. Kamp, D. Kroese, M. Leist, M.J. Moné, M. Pastor, B. van de Water. Paradigm shift in safety assessment using new approach methods: The EU-ToxRisk strategy. Current Opinion in Toxicology 2019, 15 , 33-39. https://doi.org/10.1016/j.cotox.2019.03.005
  921. Richard D. Smith, Jordan J. Clark, Aqeel Ahmed, Zachary J. Orban, James B. Dunbar, Heather A. Carlson. Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing. Journal of Molecular Biology 2019, 431 (13) , 2423-2433. https://doi.org/10.1016/j.jmb.2019.05.024
  922. Péter Kovács, Gábor Botka, Árpád Figyelmesi. Automatic generation of Markush structures from specific compounds. World Patent Information 2019, 57 , 59-69. https://doi.org/10.1016/j.wpi.2019.03.006
  923. Thomas M. Kaiser, Pieter B. Burger. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets. Molecules 2019, 24 (11) , 2115. https://doi.org/10.3390/molecules24112115
  924. Michele Montaruli, Domenico Alberga, Fulvio Ciriaco, Daniela Trisciuzzi, Anna Rita Tondo, Giuseppe Felice Mangiatordi, Orazio Nicolotti. Accelerating Drug Discovery by Early Protein Drug Target Prediction Based on a Multi-Fingerprint Similarity Search †. Molecules 2019, 24 (12) , 2233. https://doi.org/10.3390/molecules24122233
  925. Fang Bai, Ding Hong, Yingying Lu, Huanxiang Liu, Cunlu Xu, Xiaojun Yao. Prediction of the Antioxidant Response Elements' Response of Compound by Deep Learning. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00385
  926. Rosalia Pascual, Carmen Almansa, Carlos Plata-Salamán, José Miguel Vela. A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.00519
  927. Liam Wilbraham, Reiner Sebastian Sprick, Kim E. Jelfs, Martijn A. Zwijnenburg. Mapping binary copolymer property space with neural networks. Chemical Science 2019, 10 (19) , 4973-4984. https://doi.org/10.1039/C8SC05710A
  928. Hui Zhang, Ji-Xia Ren, Jin-Xiang Ma, Lan Ding. Development of an in silico prediction model for chemical-induced urinary tract toxicity by using naïve Bayes classifier. Molecular Diversity 2019, 23 (2) , 381-392. https://doi.org/10.1007/s11030-018-9882-8
  929. Nienke Moret, Nicholas A. Clark, Marc Hafner, Yuan Wang, Eugen Lounkine, Mario Medvedovic, Jinhua Wang, Nathanael Gray, Jeremy Jenkins, Peter K. Sorger. Cheminformatics Tools for Analyzing and Designing Optimized Small-Molecule Collections and Libraries. Cell Chemical Biology 2019, 26 (5) , 765-777.e3. https://doi.org/10.1016/j.chembiol.2019.02.018
  930. Mikhail Zaslavskiy, Simon Jégou, Eric W. Tramel, Gilles Wainrib. ToxicBlend: Virtual screening of toxic compounds with ensemble predictors. Computational Toxicology 2019, 10 , 81-88. https://doi.org/10.1016/j.comtox.2019.01.001
  931. David Ruano-Ordás, Iryna Yevseyeva, Vitor Basto Fernandes, José R. Méndez, Michael T.M. Emmerich. Improving the drug discovery process by using multiple classifier systems. Expert Systems with Applications 2019, 121 , 292-303. https://doi.org/10.1016/j.eswa.2018.12.032
  932. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclohexanol,4-(3-methylbutyl)-, CAS Registry Number 830322-14-0. Food and Chemical Toxicology 2019, 127 , S1-S9. https://doi.org/10.1016/j.fct.2018.11.051
  933. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isopropyl butyrate CAS Registry Number 638-11-9. Food and Chemical Toxicology 2019, 127 , S10-S16. https://doi.org/10.1016/j.fct.2018.11.058
  934. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-(4-methylcyclohex-3-enyl)-3-butenyl acetate, CAS Registry Number 6819-19-8. Food and Chemical Toxicology 2019, 127 , S100-S106. https://doi.org/10.1016/j.fct.2018.11.063
  935. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-6-octenoic acid, CAS Registry Number 502-47-6. Food and Chemical Toxicology 2019, 127 , S107-S113. https://doi.org/10.1016/j.fct.2018.11.064
  936. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-ethylbutyl acetate, CAS Registry Number 10031-87-5. Food and Chemical Toxicology 2019, 127 , S23-S30. https://doi.org/10.1016/j.fct.2018.12.007
  937. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-heptanone, CAS Registry Number 123-19-3. Food and Chemical Toxicology 2019, 127 , S31-S39. https://doi.org/10.1016/j.fct.2018.12.048
  938. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isoamyl phenylacetate, CAS Registry Number 102-19-2. Food and Chemical Toxicology 2019, 127 , S40-S47. https://doi.org/10.1016/j.fct.2018.12.049
  939. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl levulinate, CAS Registry Number 539-88-8. Food and Chemical Toxicology 2019, 127 , S48-S54. https://doi.org/10.1016/j.fct.2018.12.050
  940. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, lactoscatone, CAS Registry Number 21280-29-5. Food and Chemical Toxicology 2019, 127 , S55-S62. https://doi.org/10.1016/j.fct.2019.01.022
  941. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3,7-dimethyloctanenitrile, CAS Registry Number 40188-41-8. Food and Chemical Toxicology 2019, 127 , S63-S70. https://doi.org/10.1016/j.fct.2019.01.024
  942. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-octanone, CAS Registry Number 111-13-7. Food and Chemical Toxicology 2019, 127 , S71-S80. https://doi.org/10.1016/j.fct.2019.01.029
  943. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyric acid, CAS Registry Number 107-92-6. Food and Chemical Toxicology 2019, 127 , S81-S89. https://doi.org/10.1016/j.fct.2019.01.030
  944. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-ethyl-5-methoxybicyclo[2.2.1]heptane, CAS registry number 122795-41-9. Food and Chemical Toxicology 2019, 127 , S90-S99. https://doi.org/10.1016/j.fct.2019.01.031
  945. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-methyldodecanonitrile, CAS Registry Number 85351-07-1. Food and Chemical Toxicology 2019, 127 , S114-S122. https://doi.org/10.1016/j.fct.2019.03.009
  946. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cyclohexyl acetate, CAS Registry Number 622-45-7. Food and Chemical Toxicology 2019, 127 , S123-S131. https://doi.org/10.1016/j.fct.2019.03.010
  947. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octyl crotonate, CAS Registry Number 22874-79-9. Food and Chemical Toxicology 2019, 127 , S138-S144. https://doi.org/10.1016/j.fct.2019.03.012
  948. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, m-dimethoxybenzene, CAS Registry Number 151-10-0. Food and Chemical Toxicology 2019, 127 , S145-S151. https://doi.org/10.1016/j.fct.2019.03.013
  949. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl hexanoate, CAS Registry Number 105-79-3. Food and Chemical Toxicology 2019, 127 , S152-S158. https://doi.org/10.1016/j.fct.2019.03.014
  950. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl acetoacetate, CAS Registry Number 141-97-9. Food and Chemical Toxicology 2019, 127 , S165-S171. https://doi.org/10.1016/j.fct.2019.03.016
  951. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl benzoate, CAS Registry Number 93-89-0. Food and Chemical Toxicology 2019, 127 , S172-S178. https://doi.org/10.1016/j.fct.2019.03.017
  952. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 3-phenylpropionate, CAS Registry Number 2021-28-5. Food and Chemical Toxicology 2019, 127 , S179-S186. https://doi.org/10.1016/j.fct.2019.03.018
  953. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-dimethoxybenzene, CAS Registry Number 150-78-7. Food and Chemical Toxicology 2019, 127 , S193-S199. https://doi.org/10.1016/j.fct.2019.03.020
  954. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-menth-8-en-2-one, CAS Registry Number 7764-50-3. Food and Chemical Toxicology 2019, 127 , S200-S207. https://doi.org/10.1016/j.fct.2019.03.021
  955. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-ethyloctanoic acid, CAS Registry Number 16493-80-4. Food and Chemical Toxicology 2019, 127 , S208-S215. https://doi.org/10.1016/j.fct.2019.03.022
  956. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM Fragrance Ingredient Safety Assessment,(E,Z)-2,6-nonadien-1-ol acetate, CAS Registry Number 68555-65-7. Food and Chemical Toxicology 2019, 127 , S216-S223. https://doi.org/10.1016/j.fct.2019.03.023
  957. Shengde Zhang, Yang Li, Zijian Qin, Guipin Tu, Guang Chen, Aixia Yan. SAR study on inhibitors of GIIA secreted phospholipase A 2 using machine learning methods. Chemical Biology & Drug Design 2019, 93 (5) , 666-684. https://doi.org/10.1111/cbdd.13470
  958. Hyang-Mi Lee, Myeong-Sang Yu, Sayada Reemsha Kazmi, Seong Yun Oh, Ki-Hyeong Rhee, Myung-Ae Bae, Byung Ho Lee, Dae-Seop Shin, Kwang-Seok Oh, Hyithaek Ceong, Donghyun Lee, Dokyun Na. Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics 2019, 20 (S10) https://doi.org/10.1186/s12859-019-2814-5
  959. Gabriele Macari, Daniele Toti, Carlo Del Moro, Fabio Polticelli. Fragment-Based Ligand-Protein Contact Statistics: Application to Docking Simulations. International Journal of Molecular Sciences 2019, 20 (10) , 2499. https://doi.org/10.3390/ijms20102499
  960. Samina Kausar, Andre O. Falcao. Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling. Molecules 2019, 24 (9) , 1698. https://doi.org/10.3390/molecules24091698
  961. Akira Shiraishi, Toshimi Okuda, Natsuko Miyasaka, Tomohiro Osugi, Yasushi Okuno, Jun Inoue, Honoo Satake. Repertoires of G protein-coupled receptors for Ciona -specific neuropeptides. Proceedings of the National Academy of Sciences 2019, 116 (16) , 7847-7856. https://doi.org/10.1073/pnas.1816640116
  962. Cheng Shang, Si-Da Huang, Zhi-Pan Liu. Massively parallelization strategy for material simulation using high-dimensional neural network potential. Journal of Computational Chemistry 2019, 40 (10) , 1091-1096. https://doi.org/10.1002/jcc.25636
  963. Maciej Wójcikowski, Michał Kukiełka, Marta M Stepniewska-Dziubinska, Pawel Siedlecki, . Development of a protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions. Bioinformatics 2019, 35 (8) , 1334-1341. https://doi.org/10.1093/bioinformatics/bty757
  964. Chia‐Hsiu Chen, Kenichi Tanaka, Kimito Funatsu. Random Forest Model with Combined Features: A Practical Approach to Predict Liquid‐crystalline Property. Molecular Informatics 2019, 38 (4) , 1800095. https://doi.org/10.1002/minf.201800095
  965. Chun-Wei Tung, Yi-Hui Lin, Shan-Shan Wang. Transfer learning for predicting human skin sensitizers. Archives of Toxicology 2019, 93 (4) , 931-940. https://doi.org/10.1007/s00204-019-02420-x
  966. Christian Kunkel, Christoph Schober, Harald Oberhofer, Karsten Reuter. Knowledge discovery through chemical space networks: the case of organic electronics. Journal of Molecular Modeling 2019, 25 (4) https://doi.org/10.1007/s00894-019-3950-6
  967. Xian Zeng, Zheng Jia, Zhiqiang He, Weihong Chen, Xudong Lu, Huilong Duan, Haomin Li. Measure clinical drug–drug similarity using Electronic Medical Records. International Journal of Medical Informatics 2019, 124 , 97-103. https://doi.org/10.1016/j.ijmedinf.2019.02.003
  968. Kai Dührkop, Markus Fleischauer, Marcus Ludwig, Alexander A. Aksenov, Alexey V. Melnik, Marvin Meusel, Pieter C. Dorrestein, Juho Rousu, Sebastian Böcker. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods 2019, 16 (4) , 299-302. https://doi.org/10.1038/s41592-019-0344-8
  969. Daniel P. Russo, Judy Strickland, Agnes L. Karmaus, Wenyi Wang, Sunil Shende, Thomas Hartung, Lauren M. Aleksunes, Hao Zhu. Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across. Environmental Health Perspectives 2019, 127 (4) , 047001. https://doi.org/10.1289/EHP3614
  970. Cooper, Schürer. Improving the Utility of the Tox21 Dataset by Deep Metadata Annotations and Constructing Reusable Benchmarked Chemical Reference Signatures. Molecules 2019, 24 (8) , 1604. https://doi.org/10.3390/molecules24081604
  971. Fang-Chung Chen. Virtual Screening of Conjugated Polymers for Organic Photovoltaic Devices Using Support Vector Machines and Ensemble Learning. International Journal of Polymer Science 2019, 2019 , 1-7. https://doi.org/10.1155/2019/4538514
  972. Yasunari Matsuzaka, Yoshihiro Uesawa. Optimization of a Deep-Learning Method Based on the Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-Image-Input Technique for Quantitative Structure–Activity Relationship (QSAR) Analysis. Frontiers in Bioengineering and Biotechnology 2019, 7 https://doi.org/10.3389/fbioe.2019.00065
  973. Wiktor Beker, Ewa P. Gajewska, Tomasz Badowski, Bartosz A. Grzybowski. Prediction of Major Regio‐, Site‐, and Diastereoisomers in Diels–Alder Reactions by Using Machine‐Learning: The Importance of Physically Meaningful Descriptors. Angewandte Chemie 2019, 131 (14) , 4563-4567. https://doi.org/10.1002/ange.201806920
  974. Wiktor Beker, Ewa P. Gajewska, Tomasz Badowski, Bartosz A. Grzybowski. Prediction of Major Regio‐, Site‐, and Diastereoisomers in Diels–Alder Reactions by Using Machine‐Learning: The Importance of Physically Meaningful Descriptors. Angewandte Chemie International Edition 2019, 58 (14) , 4515-4519. https://doi.org/10.1002/anie.201806920
  975. Valerie J. Gillet. Applications of Chemoinformatics in Drug Discovery. 2019,,, 17-36. https://doi.org/10.1002/9781119483977.ch2
  976. Abdalkarim Tanina, Alexandre Wohlkönig, Sameh H. Soror, Marion Flipo, Baptiste Villemagne, Hugues Prevet, Benoit Déprez, Martin Moune, Hélène Perée, Franck Meyer, Alain R. Baulard, Nicolas Willand, René Wintjens. A comprehensive analysis of the protein-ligand interactions in crystal structures of Mycobacterium tuberculosis EthR. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (3) , 248-258. https://doi.org/10.1016/j.bbapap.2018.12.003
  977. Markus Follmann, Hans Briem, Andreas Steinmeyer, Alexander Hillisch, Monika H. Schmitt, Helmut Haning, Heinrich Meier. An approach towards enhancement of a screening library: The Next Generation Library Initiative (NGLI) at Bayer — against all odds?. Drug Discovery Today 2019, 24 (3) , 668-672. https://doi.org/10.1016/j.drudis.2018.12.003
  978. Clémence Delalande, Mahendra Awale, Matthias Rubin, Daniel Probst, Lijo C. Ozhathil, Jürg Gertsch, Hugues Abriel, Jean-Louis Reymond. Optimizing TRPM4 inhibitors in the MHFP6 chemical space. European Journal of Medicinal Chemistry 2019, 166 , 167-177. https://doi.org/10.1016/j.ejmech.2019.01.048
  979. Yue-min Bian, Xi-bing He, Yan-kang Jing, Li-rong Wang, Jun-mei Wang, Xiang-Qun Xie. Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacologica Sinica 2019, 40 (3) , 374-386. https://doi.org/10.1038/s41401-018-0071-1
  980. Romualdo Benigni, Chiara Laura Battistelli, Cecilia Bossa, Alessandro Giuliani, Elena Fioravanzo, Arianna Bassan, Mojca Fuart Gatnik, James Rathman, Chihae Yang, Olga Tcheremenskaia. Evaluation of the applicability of existing (Q)SAR models for predicting the genotoxicity of pesticides and similarity analysis related with genotoxicity of pesticides for facilitating of grouping and read across. EFSA Supporting Publications 2019, 16 (3) https://doi.org/10.2903/sp.efsa.2019.EN-1598
  981. Aleix Gimeno, María Ojeda-Montes, Sarah Tomás-Hernández, Adrià Cereto-Massagué, Raúl Beltrán-Debón, Miquel Mulero, Gerard Pujadas, Santiago Garcia-Vallvé. The Light and Dark Sides of Virtual Screening: What Is There to Know?. International Journal of Molecular Sciences 2019, 20 (6) , 1375. https://doi.org/10.3390/ijms20061375
  982. Youjun Xu, Kangjie Lin, Shiwei Wang, Lei Wang, Chenjing Cai, Chen Song, Luhua Lai, Jianfeng Pei. Deep learning for molecular generation. Future Medicinal Chemistry 2019, 11 (6) , 567-597. https://doi.org/10.4155/fmc-2018-0358
  983. Alpha A. Lee, Qingyi Yang, Asser Bassyouni, Christopher R. Butler, Xinjun Hou, Stephen Jenkinson, David A. Price. Ligand biological activity predicted by cleaning positive and negative chemical correlations. Proceedings of the National Academy of Sciences 2019, 116 (9) , 3373-3378. https://doi.org/10.1073/pnas.1810847116
  984. Daniele Padula, Jack D. Simpson, Alessandro Troisi. Combining electronic and structural features in machine learning models to predict organic solar cells properties. Materials Horizons 2019, 6 (2) , 343-349. https://doi.org/10.1039/C8MH01135D
  985. Cleber C. Melo-Filho, Rodolpho C. Braga, Eugene N. Muratov, Caio Haddad Franco, Carolina B. Moraes, Lucio H. Freitas-Junior, Carolina Horta Andrade. Discovery of new potent hits against intracellular Trypanosoma cruzi by QSAR-based virtual screening. European Journal of Medicinal Chemistry 2019, 163 , 649-659. https://doi.org/10.1016/j.ejmech.2018.11.062
  986. Iryna Yevseyeva, Eelke B. Lenselink, Alice de Vries, Adriaan P. IJzerman, André H. Deutz, Michael T.M. Emmerich. Application of portfolio optimization to drug discovery. Information Sciences 2019, 475 , 29-43. https://doi.org/10.1016/j.ins.2018.09.049
  987. Janani Durairaj, Alice Di Girolamo, Harro J. Bouwmeester, Dick de Ridder, Jules Beekwilder, Aalt DJ. van Dijk. An analysis of characterized plant sesquiterpene synthases. Phytochemistry 2019, 158 , 157-165. https://doi.org/10.1016/j.phytochem.2018.10.020
  988. C.L. Mellor, R.L. Marchese Robinson, R. Benigni, D. Ebbrell, S.J. Enoch, J.W. Firman, J.C. Madden, G. Pawar, C. Yang, M.T.D. Cronin. Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use. Regulatory Toxicology and Pharmacology 2019, 101 , 121-134. https://doi.org/10.1016/j.yrtph.2018.11.002
  989. Ya Chen, Conrad Stork, Steffen Hirte, Johannes Kirchmair. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules. Biomolecules 2019, 9 (2) , 43. https://doi.org/10.3390/biom9020043
  990. Suqing Zheng, Wenping Chang, Wenxin Xu, Yong Xu, Fu Lin. e-Sweet: A Machine-Learning Based Platform for the Prediction of Sweetener and Its Relative Sweetness. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00035
  991. Xiuming Li, Xin Yan, Yuedong Yang, Qiong Gu, Huihao Zhou, Yunfei Du, Yutong Lu, Jielou Liao, Jun Xu. LSA: a local-weighted structural alignment tool for pharmaceutical virtual screening. RSC Advances 2019, 9 (7) , 3912-3917. https://doi.org/10.1039/C8RA08915A
  992. Marion Poirier, Mahendra Awale, Matthias A. Roelli, Guy T. Giuffredi, Lars Ruddigkeit, Lasse Evensen, Amandine Stooss, Serafina Calarco, James B. Lorens, Roch-Philippe Charles, Jean-Louis Reymond. Identifying Lysophosphatidic Acid Acyltransferase β (LPAAT-β) as the Target of a Nanomolar Angiogenesis Inhibitor from a Phenotypic Screen Using the Polypharmacology Browser PPB2. ChemMedChem 2019, 14 (2) , 224-236. https://doi.org/10.1002/cmdc.201800554
  993. Elizabeth Sam, Prashanth Athri. Web-based drug repurposing tools: a survey. Briefings in Bioinformatics 2019, 20 (1) , 299-316. https://doi.org/10.1093/bib/bbx125
  994. Benjamin Sanchez‐Lengeling, Loïc M. Roch, José Darío Perea, Stefan Langner, Christoph J. Brabec, Alán Aspuru‐Guzik. A Bayesian Approach to Predict Solubility Parameters. Advanced Theory and Simulations 2019, 2 (1) , 1800069. https://doi.org/10.1002/adts.201800069
  995. Neha Tripathi, Naeem Shaikh, Prasad V. Bharatam, Prabha Garg. HToPred: A Tool for Human Topoisomerase II Inhibitor Prediction. Molecular Informatics 2019, 38 (1-2) , 1800046. https://doi.org/10.1002/minf.201800046
  996. Tsuyoshi Esaki, Reiko Watanabe, Hitoshi Kawashima, Rikiya Ohashi, Yayoi Natsume-Kitatani, Chioko Nagao, Kenji Mizuguchi. Data Curation can Improve the Prediction Accuracy of Metabolic Intrinsic Clearance. Molecular Informatics 2019, 38 (1-2) , 1800086. https://doi.org/10.1002/minf.201800086
  997. Feixiong Cheng. In Silico Oncology Drug Repositioning and Polypharmacology. 2019,,, 243-261. https://doi.org/10.1007/978-1-4939-8868-6_15
  998. Mahendra Awale, Jean-Louis Reymond. Web-Based Tools for Polypharmacology Prediction. 2019,,, 255-272. https://doi.org/10.1007/978-1-4939-8891-4_15
  999. Ryan Byrne, Gisbert Schneider. In Silico Target Prediction for Small Molecules. 2019,,, 273-309. https://doi.org/10.1007/978-1-4939-8891-4_16
  1000. Robert D. Clark, Pankaj R. Daga. Building a Quantitative Structure-Property Relationship (QSPR) Model. 2019,,, 139-159. https://doi.org/10.1007/978-1-4939-9089-4_8
  1001. Jean-Yves Trosset, Christian Cavé. In Silico Drug–Target Profiling. 2019,,, 89-103. https://doi.org/10.1007/978-1-4939-9145-7_6
  1002. Daniel Reker. Cheminformatic Analysis of Natural Product Fragments. 2019,,, 143-175. https://doi.org/10.1007/978-3-030-14632-0_5
  1003. Fabian Mayr, Christian Vieider, Veronika Temml, Hermann Stuppner, Daniela Schuster. Open-Access Activity Prediction Tools for Natural Products. Case Study: hERG Blockers. 2019,,, 177-238. https://doi.org/10.1007/978-3-030-14632-0_6
  1004. Thierry Hanser, Chris Barber, Sébastien Guesné, Jean François Marchaland, Stéphane Werner. Applicability Domain: Towards a More Formal Framework to Express the Applicability of a Model and the Confidence in Individual Predictions. 2019,,, 215-232. https://doi.org/10.1007/978-3-030-16443-0_11
  1005. Gabriel Idakwo, Joseph Luttrell IV, Minjun Chen, Huixiao Hong, Ping Gong, Chaoyang Zhang. A Review of Feature Reduction Methods for QSAR-Based Toxicity Prediction. 2019,,, 119-139. https://doi.org/10.1007/978-3-030-16443-0_7
  1006. Kristina Preuer, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, Thomas Unterthiner. Interpretable Deep Learning in Drug Discovery. 2019,,, 331-345. https://doi.org/10.1007/978-3-030-28954-6_18
  1007. Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Michał Warchoł. Mol-CycleGAN - A Generative Model for Molecular Optimization. 2019,,, 810-816. https://doi.org/10.1007/978-3-030-30493-5_77
  1008. Olivier J.M. Béquignon, Gopal Pawar, Bob van de Water, Mark T.D. Cronin, Gerard J.P. van Westen. Computational Approaches for Drug-Induced Liver Injury (DILI) Prediction: State of the Art and Challenges. 2019,,https://doi.org/10.1016/B978-0-12-801238-3.11535-1
  1009. Daniela Schuster. Fingerprints and Pharmacophores. 2019,,, 619-627. https://doi.org/10.1016/B978-0-12-809633-8.20190-8
  1010. Oliver Koch, Christiane Ehrt, Tobias Brinkjost. Binding Site Comparison – Software and Applications. 2019,,, 650-660. https://doi.org/10.1016/B978-0-12-809633-8.20196-9
  1011. Onur Serçinoğlu, Pemra Ozbek Sarica. In Silico Databases and Tools for Drug Repurposing. 2019,,, 703-742. https://doi.org/10.1016/B978-0-12-816125-8.00024-9
  1012. I. Adlere, S. Sun, A. Zarca, L. Roumen, M. Gozelle, C. Perpiñá Viciano, B. Caspar, M. Arimont, J.P. Bebelman, S.J. Briddon, C. Hoffmann, S.J. Hill, M.J. Smit, H.F. Vischer, M. Wijtmans, C. de Graaf, I.J.P. de Esch, R. Leurs. Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. European Journal of Medicinal Chemistry 2019, 162 , 631-649. https://doi.org/10.1016/j.ejmech.2018.10.060
  1013. Alketa Tarushi, George D. Geromichalos, Dimitris P. Kessissoglou, George Psomas. Manganese coordination compounds of mefenamic acid: In vitro screening and in silico prediction of biological activity. Journal of Inorganic Biochemistry 2019, 190 , 1-14. https://doi.org/10.1016/j.jinorgbio.2018.09.017
  1014. Fangping Wan, Lixiang Hong, An Xiao, Tao Jiang, Jianyang Zeng, . NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 2019, 35 (1) , 104-111. https://doi.org/10.1093/bioinformatics/bty543
  1015. Srikanth Kuthuru, Adam T Szafran, Fabio Stossi, Michael A Mancini, Arvind Rao. Leveraging Image-Derived Phenotypic Measurements for Drug-Target Interaction Predictions. Cancer Informatics 2019, 18 , 117693511985659. https://doi.org/10.1177/1176935119856595
  1016. Takuya Minami, Masaaki Kawata, Toshio Fujita, Katsumi Murofushi, Hiroshi Uchida, Kazuhiro Omori, Yoshishige Okuno. Prediction of repeat unit of optimal polymer by Bayesian optimization. MRS Advances 2019, 4 (19) , 1125-1130. https://doi.org/10.1557/adv.2019.57
  1017. Michiyoshi Takata, Bin-Le Lin, Akihiko Terada, Masaaki Hosomi. Prediction of Fish Acute Ecotoxicity of Inorganic and Ionized Chemical Substances by Machine Learning. Journal of Computer Aided Chemistry 2019, 20 (0) , 104-110. https://doi.org/10.2751/jcac.20.104
  1018. Luca Carlino, Michael S. Christodoulou, Valentina Restelli, Fabiana Caporuscio, Francesca Foschi, Marta S. Semrau, Elisa Costanzi, Annachiara Tinivella, Luca Pinzi, Leonardo Lo Presti, Roberto Battistutta, Paola Storici, Massimo Broggini, Daniele Passarella, Giulio Rastelli. Structure-Activity Relationships of Hexahydrocyclopenta[ c ]quinoline Derivatives as Allosteric Inhibitors of CDK2 and EGFR. ChemMedChem 2018, 13 (24) , 2627-2634. https://doi.org/10.1002/cmdc.201800687
  1019. Niclas Ståhl, Göran Falkman, Alexander Karlsson, Gunnar Mathiason, Jonas Boström. Deep Convolutional Neural Networks for the Prediction of Molecular Properties: Challenges and Opportunities Connected to the Data. Journal of Integrative Bioinformatics 2018, 16 (1) https://doi.org/10.1515/jib-2018-0065
  1020. Yinqiu Xu, Hequan Yao, Kejiang Lin. An overview of neural networks for drug discovery and the inputs used. Expert Opinion on Drug Discovery 2018, 13 (12) , 1091-1102. https://doi.org/10.1080/17460441.2018.1547278
  1021. Liming Chang, Mengwu Xiao, Linlin Yang, Shuai Wang, Sai-Qi Wang, Andreas Bender, Aixi Hu, Zhe-Sheng Chen, Bin Yu, Hong-Min Liu. Discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) that modulates ABCB1-mediated multidrug resistance (MDR). Bioorganic & Medicinal Chemistry 2018, 26 (22) , 5974-5985. https://doi.org/10.1016/j.bmc.2018.10.027
  1022. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3a,4,5,6,7,7a-hexahydro-4,7-methano-1H-inden-5-yl isobutyrate, CAS registry number 67634-20-2. Food and Chemical Toxicology 2018, 122 , S8-S17. https://doi.org/10.1016/j.fct.2018.08.015
  1023. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, bis(hydroxymethyl)tricyclo[5.2.1.02,6]decane, CAS Registry Number 26160-83-8. Food and Chemical Toxicology 2018, 122 , S24-S31. https://doi.org/10.1016/j.fct.2018.08.017
  1024. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, Octyl acetate, CAS Registry Number 112-14-1. Food and Chemical Toxicology 2018, 122 , S32-S40. https://doi.org/10.1016/j.fct.2018.08.018
  1025. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, dihydroterpinyl acetate, CAS registry number 58985-18-5. Food and Chemical Toxicology 2018, 122 , S47-S56. https://doi.org/10.1016/j.fct.2018.08.020
  1026. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, tricyclodecenyl acetate, CAS Registry Number 5413-60-5. Food and Chemical Toxicology 2018, 122 , S57-S67. https://doi.org/10.1016/j.fct.2018.08.021
  1027. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, geranic acid, CAS Registry Number 459-80-3. Food and Chemical Toxicology 2018, 122 , S68-S74. https://doi.org/10.1016/j.fct.2018.08.022
  1028. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4′-methylacetophenone, CAS Registry Number 122-00-9. Food and Chemical Toxicology 2018, 122 , S75-S83. https://doi.org/10.1016/j.fct.2018.08.023
  1029. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexahydro-3H-benzofuran-2-one, CAS Registry Number 6051-03-2. Food and Chemical Toxicology 2018, 122 , S90-S98. https://doi.org/10.1016/j.fct.2018.08.037
  1030. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl formate, CAS Registry Number 629-33-4. Food and Chemical Toxicology 2018, 122 , S99-S108. https://doi.org/10.1016/j.fct.2018.08.038
  1031. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, decanenitrile, CAS Registry Number 1975-78-6. Food and Chemical Toxicology 2018, 122 , S109-S116. https://doi.org/10.1016/j.fct.2018.08.039
  1032. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, cis-3-octenyl propionate, CAS Registry Number 94134-03-9. Food and Chemical Toxicology 2018, 122 , S129-S137. https://doi.org/10.1016/j.fct.2018.08.042
  1033. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methyl-2-pentenoic acid, CAS registry number 16957-70-3. Food and Chemical Toxicology 2018, 122 , S144-S150. https://doi.org/10.1016/j.fct.2018.08.044
  1034. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM Fragrance ingredient safety assessment, 2-nonen-1-ol, CAS registry number 22104-79-6. Food and Chemical Toxicology 2018, 122 , S157-S164. https://doi.org/10.1016/j.fct.2018.08.046
  1035. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl propionate, CAS registry number 2445-76-3. Food and Chemical Toxicology 2018, 122 , S165-S174. https://doi.org/10.1016/j.fct.2018.08.047
  1036. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-ethylhexyl acetate, CAS Registry Number 103-09-3. Food and Chemical Toxicology 2018, 122 , S175-S184. https://doi.org/10.1016/j.fct.2018.08.048
  1037. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl phenylacetate, CAS Registry Number 101-97-3. Food and Chemical Toxicology 2018, 122 , S192-S200. https://doi.org/10.1016/j.fct.2018.08.050
  1038. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methylheptanoic acid, CAS Registry Number 1188-02-9. Food and Chemical Toxicology 2018, 122 , S201-S208. https://doi.org/10.1016/j.fct.2018.08.051
  1039. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, Fenchone, CAS Registry Number 1195-79-5. Food and Chemical Toxicology 2018, 122 , S209-S217. https://doi.org/10.1016/j.fct.2018.08.052
  1040. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methyl-4-phenylbutyraldehyde, CAS Registry Number 40654-82-8. Food and Chemical Toxicology 2018, 122 , S225-S231. https://doi.org/10.1016/j.fct.2018.08.054
  1041. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octyl formate, CAS Registry Number 112-32-3. Food and Chemical Toxicology 2018, 122 , S232-S241. https://doi.org/10.1016/j.fct.2018.08.055
  1042. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, lauryl acetate, CAS Registry Number 112-66-3. Food and Chemical Toxicology 2018, 122 , S242-S250. https://doi.org/10.1016/j.fct.2018.08.056
  1043. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-octyl acetate, CAS Registry Number 4864-61-3. Food and Chemical Toxicology 2018, 122 , S251-S258. https://doi.org/10.1016/j.fct.2018.08.057
  1044. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, diethyl malonate, CAS Registry Number 105-53-3. Food and Chemical Toxicology 2018, 122 , S267-S274. https://doi.org/10.1016/j.fct.2018.08.059
  1045. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4′-tert-butyl-2′,6′-dimethylacetophenone, CAS Registry Number 2040-10-0. Food and Chemical Toxicology 2018, 122 , S275-S282. https://doi.org/10.1016/j.fct.2018.08.072
  1046. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,4,4,7-tetramethylnona-6,8-dien-3-one, CAS Registry Number 81782-89-0. Food and Chemical Toxicology 2018, 122 , S283-S290. https://doi.org/10.1016/j.fct.2018.08.073
  1047. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, tricyclodecanyl acetate, CAS Registry Number 64001-15-6. Food and Chemical Toxicology 2018, 122 , S291-S300. https://doi.org/10.1016/j.fct.2018.08.074
  1048. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-(2,2-dimethoxyethoxy)toluene, CAS Registry Number 6324-78-3. Food and Chemical Toxicology 2018, 122 , S301-S308. https://doi.org/10.1016/j.fct.2018.08.075
  1049. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, terpinyl propionate, CAS Registry Number 80-27-3. Food and Chemical Toxicology 2018, 122 , S316-S326. https://doi.org/10.1016/j.fct.2018.09.003
  1050. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl isobutyrate, CAS Registry Number 97-62-1. Food and Chemical Toxicology 2018, 122 , S327-S335. https://doi.org/10.1016/j.fct.2018.09.004
  1051. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, terpinyl acetate (isomer mixture), CAS Registry number 8007-35-0. Food and Chemical Toxicology 2018, 122 , S362-S371. https://doi.org/10.1016/j.fct.2018.09.031
  1052. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl benzoate, CAS registry number 120-50-3. Food and Chemical Toxicology 2018, 122 , S372-S379. https://doi.org/10.1016/j.fct.2018.09.032
  1053. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octahydro-4,7-methano-1H-indenemethyl acetate, CAS Registry Number 30772-69-1. Food and Chemical Toxicology 2018, 122 , S387-S395. https://doi.org/10.1016/j.fct.2018.09.035
  1054. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octyl butyrate, CAS Registry Number 110-39-4. Food and Chemical Toxicology 2018, 122 , S396-S405. https://doi.org/10.1016/j.fct.2018.09.036
  1055. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3-methyl-5-phenylpentanenitrile, CAS Registry Number 54089-83-7. Food and Chemical Toxicology 2018, 122 , S414-S421. https://doi.org/10.1016/j.fct.2018.09.072
  1056. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isobutyl butyrate, CAS Registry Number 539-90-2. Food and Chemical Toxicology 2018, 122 , S422-S430. https://doi.org/10.1016/j.fct.2018.09.073
  1057. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, acetal, CAS Registry Number 105-57-7. Food and Chemical Toxicology 2018, 122 , S445-S452. https://doi.org/10.1016/j.fct.2018.09.077
  1058. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl phenylacetate, CAS Registry Number 101-41-7. Food and Chemical Toxicology 2018, 122 , S453-S460. https://doi.org/10.1016/j.fct.2018.10.007
  1059. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM Fragrance ingredient safety assessment, 3-ethylhexahydro-2(3H)-benzofuranone, CAS Registry Number 54491-17-7. Food and Chemical Toxicology 2018, 122 , S475-S483. https://doi.org/10.1016/j.fct.2018.10.010
  1060. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, nonyl acetate, CAS Registry Number 143-13-5. Food and Chemical Toxicology 2018, 122 , S491-S500. https://doi.org/10.1016/j.fct.2018.10.012
  1061. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, terpinyl formate, CAS Registry Number 2153-26-6. Food and Chemical Toxicology 2018, 122 , S501-S510. https://doi.org/10.1016/j.fct.2018.10.013
  1062. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, terpinyl isobutyrate, CAS Registry Number 7774-65-4. Food and Chemical Toxicology 2018, 122 , S511-S520. https://doi.org/10.1016/j.fct.2018.10.014
  1063. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3a,4,5,6,7,7a-hexahydro-4,7-methano-1H-inden-5-yl pivalate, CAS Registry Number 68039-45-2. Food and Chemical Toxicology 2018, 122 , S521-S530. https://doi.org/10.1016/j.fct.2018.10.015
  1064. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2,6-nonadien-1-ol, CAS Registry Number 7786-44-9. Food and Chemical Toxicology 2018, 122 , S531-S538. https://doi.org/10.1016/j.fct.2018.10.016
  1065. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, tricyclodecenyl propionate, CAS Registry Number 17511-60-3. Food and Chemical Toxicology 2018, 122 , S539-S548. https://doi.org/10.1016/j.fct.2018.10.017
  1066. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3a,7-methano-3ah-cyclopentacycloocten-3-ol, decahydro-1,1,7-trimethyl-, formate, CAS Registry Number 58096-47-2. Food and Chemical Toxicology 2018, 122 , S549-S557. https://doi.org/10.1016/j.fct.2018.10.018
  1067. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,1-diethoxyheptane, CAS Registry Number 688-82-4. Food and Chemical Toxicology 2018, 122 , S558-S565. https://doi.org/10.1016/j.fct.2018.10.019
  1068. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isophorol, CAS Registry Number 470-99-5. Food and Chemical Toxicology 2018, 122 , S580-S586. https://doi.org/10.1016/j.fct.2018.10.022
  1069. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methylbutyl acetate, CAS Registry Number 624-41-9. Food and Chemical Toxicology 2018, 122 , S587-S595. https://doi.org/10.1016/j.fct.2018.10.034
  1070. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl phenethyl ether, CAS Registry Number 1817-90-9. Food and Chemical Toxicology 2018, 122 , S596-S603. https://doi.org/10.1016/j.fct.2018.10.035
  1071. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 3a,4,5,6,7,7a-hexahydromethoxy-4,7-methano-1H-indene (isomer unspecified), CAS Registry Number 27135-90-6. Food and Chemical Toxicology 2018, 122 , S604-S611. https://doi.org/10.1016/j.fct.2018.10.037
  1072. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 2-methyl-3-pentenoate, CAS Registry Number 1617-23-8. Food and Chemical Toxicology 2018, 122 , S612-S619. https://doi.org/10.1016/j.fct.2018.10.038
  1073. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, guaiyl acetate, CAS Registry Number 134-28-1. Food and Chemical Toxicology 2018, 122 , S626-S632. https://doi.org/10.1016/j.fct.2018.11.002
  1074. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-oxaspiro[4.5]decan-2-one, 8-ethyl-, trans-, CAS Registry Number 91069-40-8. Food and Chemical Toxicology 2018, 122 , S633-S640. https://doi.org/10.1016/j.fct.2018.11.003
  1075. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 4-methylnonanoic acid, CAS Registry Number 45019-28-1. Food and Chemical Toxicology 2018, 122 , S641-S648. https://doi.org/10.1016/j.fct.2018.11.004
  1076. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, pentyl benzoate, CAS Registry Number 2049-96-9. Food and Chemical Toxicology 2018, 122 , S649-S655. https://doi.org/10.1016/j.fct.2018.11.005
  1077. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2(10)-pinen-3-ol, CAS Registry Number 5947-36-4. Food and Chemical Toxicology 2018, 122 , S656-S663. https://doi.org/10.1016/j.fct.2018.11.007
  1078. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl trans-2-butenoate, CAS Registry Number 623-70-1. Food and Chemical Toxicology 2018, 122 , S670-S679. https://doi.org/10.1016/j.fct.2018.11.024
  1079. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyl benzoate, CAS registry number 136-60-7. Food and Chemical Toxicology 2018, 122 , S680-S686. https://doi.org/10.1016/j.fct.2018.11.025
  1080. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl isobutyrate, CAS Registry Number 547-63-7. Food and Chemical Toxicology 2018, 122 , S687-S695. https://doi.org/10.1016/j.fct.2018.11.026
  1081. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 10-undecenoic acid, heptyl ester, CAS Registry Number 68141-27-5. Food and Chemical Toxicology 2018, 122 , S696-S702. https://doi.org/10.1016/j.fct.2018.11.027
  1082. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, linalyl phenylacetate, CAS Registry Number 7143-69-3. Food and Chemical Toxicology 2018, 122 , S703-S713. https://doi.org/10.1016/j.fct.2018.11.028
  1083. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, isononyl acetate (isomer unspecified), CAS Registry Number 40379-24-6. Food and Chemical Toxicology 2018, 122 , S714-S722. https://doi.org/10.1016/j.fct.2018.11.029
  1084. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, pentyl phenylacetate, CAS Registry Number 5137-52-0. Food and Chemical Toxicology 2018, 122 , S723-S729. https://doi.org/10.1016/j.fct.2018.11.031
  1085. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, methyl isovalerate, CAS Registry Number 556-24-1. Food and Chemical Toxicology 2018, 122 , S730-S737. https://doi.org/10.1016/j.fct.2018.11.032
  1086. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, ethyl 2-methylbutyrate, CAS Registry Number 7452-79-1. Food and Chemical Toxicology 2018, 122 , S738-S746. https://doi.org/10.1016/j.fct.2018.11.033
  1087. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, octahydro-4,7-methano-1H-indenemethyl formate, CAS Registry Number 68039-78-1. Food and Chemical Toxicology 2018, 122 , S747-S754. https://doi.org/10.1016/j.fct.2018.11.034
  1088. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methylbutyl butyrate, CAS Registry Number 51115-64-1. Food and Chemical Toxicology 2018, 122 , S762-S770. https://doi.org/10.1016/j.fct.2018.11.036
  1089. A.M. Api, F. Belmonte, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D. O'Brien, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, δ-3-carene, CAS Registry Number 13466-78-9. Food and Chemical Toxicology 2018, 122 , S771-S779. https://doi.org/10.1016/j.fct.2018.11.049
  1090. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexanoic acid, 4-methyl-, CAS Registry Number 1561-11-1. Food and Chemical Toxicology 2018, 122 , S780-S788. https://doi.org/10.1016/j.fct.2018.11.050
  1091. Xian Zhao, Lei Chen, Jing Lu. A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences 2018, 306 , 136-144. https://doi.org/10.1016/j.mbs.2018.09.010
  1092. Hamid R. Noori, Lewis H. Mervin, Vahid Bokharaie, Özlem Durmus, Lisamon Egenrieder, Stefan Fritze, Britta Gruhlke, Giulia Reinhardt, Hans-Hendrik Schabel, Sabine Staudenmaier, Nikos K. Logothetis, Andreas Bender, Rainer Spanagel. Systemic neurotransmitter responses to clinically approved and experimental neuropsychiatric drugs. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07239-1
  1093. Kyungdoc Kim, Seokho Kang, Jiho Yoo, Youngchun Kwon, Youngmin Nam, Dongseon Lee, Inkoo Kim, Youn-Suk Choi, Yongsik Jung, Sangmo Kim, Won-Joon Son, Jhunmo Son, Hyo Sug Lee, Sunghan Kim, Jaikwang Shin, Sungwoo Hwang. Deep-learning-based inverse design model for intelligent discovery of organic molecules. npj Computational Materials 2018, 4 (1) https://doi.org/10.1038/s41524-018-0128-1
  1094. Karthikeyan Mohanraj, Bagavathy Shanmugam Karthikeyan, R. P. Vivek-Ananth, R. P. Bharath Chand, S. R. Aparna, Pattulingam Mangalapandi, Areejit Samal. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-22631-z
  1095. Daniel C. Elton, Zois Boukouvalas, Mark S. Butrico, Mark D. Fuge, Peter W. Chung. Applying machine learning techniques to predict the properties of energetic materials. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-27344-x
  1096. Francesca Grisoni, Daniel Merk, Ryan Byrne, Gisbert Schneider. Scaffold-Hopping from Synthetic Drugs by Holistic Molecular Representation. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-34677-0
  1097. Francesca Grisoni, Daniel Merk, Viviana Consonni, Jan A. Hiss, Sara Giani Tagliabue, Roberto Todeschini, Gisbert Schneider. Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity. Communications Chemistry 2018, 1 (1) https://doi.org/10.1038/s42004-018-0043-x
  1098. Zhe Quan, Xuan Lin, Zhi-Jie Wang, Yan Liu, Fan Wang, Kenli Li. A System for Learning Atoms Based on Long Short-Term Memory Recurrent Neural Networks. 2018,,, 728-733. https://doi.org/10.1109/BIBM.2018.8621313
  1099. Nobuaki Yasuo, Yusuke Nakashima, Masakazu Sekijima. CoDe-DTI: Collaborative Deep Learning-based Drug-Target Interaction Prediction. 2018,,, 792-797. https://doi.org/10.1109/BIBM.2018.8621368
  1100. Qiangrong Jiang, Jiajia Ma. A novel graph kernel on chemical compound classification. Journal of Bioinformatics and Computational Biology 2018, 16 (06) , 1850026. https://doi.org/10.1142/S0219720018500269
  1101. Tadi Venkata Sivakumar, Anirban Bhaduri, Rajasekhara Reddy Duvvuru Muni, Jin Hwan Park, Tae Yong Kim. SimCAL: a flexible tool to compute biochemical reaction similarity. BMC Bioinformatics 2018, 19 (1) https://doi.org/10.1186/s12859-018-2248-5
  1102. Maya Hirohara, Yutaka Saito, Yuki Koda, Kengo Sato, Yasubumi Sakakibara. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinformatics 2018, 19 (S19) https://doi.org/10.1186/s12859-018-2523-5
  1103. Sanjoy Dey, Heng Luo, Achille Fokoue, Jianying Hu, Ping Zhang. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinformatics 2018, 19 (S21) https://doi.org/10.1186/s12859-018-2544-0
  1104. Michael A. Skinnider, Chad W. Johnston, Nishanth J. Merwin, Chris A. Dejong, Nathan A. Magarvey. Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis. BMC Genomics 2018, 19 (1) https://doi.org/10.1186/s12864-018-4435-1
  1105. Julia B. Jasper, Lina Humbeck, Tobias Brinkjost, Oliver Koch. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0264-0
  1106. Rafaela Gladysz, Fabio Mendes Dos Santos, Wilfried Langenaeker, Gert Thijs, Koen Augustyns, Hans De Winter. Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0268-9
  1107. Antonio de la Vega de León, Beining Chen, Valerie J. Gillet. Effect of missing data on multitask prediction methods. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0281-z
  1108. Miroslav Kratochvíl, Jiří Vondrášek, Jakub Galgonek. Sachem: a chemical cartridge for high-performance substructure search. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0282-y
  1109. Yibo Li, Liangren Zhang, Zhenming Liu. Multi-objective de novo drug design with conditional graph generative model. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0287-6
  1110. Obdulia Rabal, Andrea Castellar, Julen Oyarzabal. Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0288-5
  1111. Alexander Kensert, Jonathan Alvarsson, Ulf Norinder, Ola Spjuth. Evaluating parameters for ligand-based modeling with random forest on sparse data sets. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0304-9
  1112. Raghuram Srinivas, Pavel V. Klimovich, Eric C. Larson. Implicit-descriptor ligand-based virtual screening by means of collaborative filtering. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0310-y
  1113. Norberto Sánchez-Cruz, José L. Medina-Franco. Statistical-based database fingerprint: chemical space dependent representation of compound databases. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0311-x
  1114. Daniel Probst, Jean-Louis Reymond. A probabilistic molecular fingerprint for big data settings. Journal of Cheminformatics 2018, 10 (1) https://doi.org/10.1186/s13321-018-0321-8
  1115. Si-Da Huang, Cheng Shang, Pei-Lin Kang, Zhi-Pan Liu. Atomic structure of boron resolved using machine learning and global sampling. Chemical Science 2018, 9 (46) , 8644-8655. https://doi.org/10.1039/C8SC03427C
  1116. Enrico Berardo, Lukas Turcani, Marcin Miklitz, Kim E. Jelfs. An evolutionary algorithm for the discovery of porous organic cages. Chemical Science 2018, 9 (45) , 8513-8527. https://doi.org/10.1039/C8SC03560A
  1117. J. Jesús Naveja, Ulf Norinder, Daniel Mucs, Edgar López-López, Josė L. Medina-Franco. Chemical space, diversity and activity landscape analysis of estrogen receptor binders. RSC Advances 2018, 8 (67) , 38229-38237. https://doi.org/10.1039/C8RA07604A
  1118. Samuel Lampa, Jonathan Alvarsson, Staffan Arvidsson Mc Shane, Arvid Berg, Ernst Ahlberg, Ola Spjuth. Predicting Off-Target Binding Profiles With Confidence Using Conformal Prediction. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.01256
  1119. Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, Koji Tsuda. Population-based De Novo Molecule Generation, Using Grammatical Evolution. Chemistry Letters 2018, 47 (11) , 1431-1434. https://doi.org/10.1246/cl.180665
  1120. Yoshihiro Uesawa. Quantitative structure–activity relationship analysis using deep learning based on a novel molecular image input technique. Bioorganic & Medicinal Chemistry Letters 2018, 28 (20) , 3400-3403. https://doi.org/10.1016/j.bmcl.2018.08.032
  1121. George Helman, Imran Shah, Grace Patlewicz. Extending the Generalised Read-Across approach (GenRA): A systematic analysis of the impact of physicochemical property information on read-across performance. Computational Toxicology 2018, 8 , 34-50. https://doi.org/10.1016/j.comtox.2018.07.001
  1122. Hui Zhang, Jin-Xiang Ma, Chun-Tao Liu, Ji-Xia Ren, Lan Ding. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve Bayes classifier method. Food and Chemical Toxicology 2018, 121 , 593-603. https://doi.org/10.1016/j.fct.2018.09.051
  1123. E. O. Pyzer-Knapp. Bayesian optimization for accelerated drug discovery. IBM Journal of Research and Development 2018, 62 (6) , 2:1-2:7. https://doi.org/10.1147/JRD.2018.2881731
  1124. Adrian Jinich, Avi Flamholz, Haniu Ren, Sung-Jin Kim, Benjamin Sanchez-Lengeling, Charles A. R. Cotton, Elad Noor, Alán Aspuru-Guzik, Arren Bar-Even, . Quantum chemistry reveals thermodynamic principles of redox biochemistry. PLOS Computational Biology 2018, 14 (10) , e1006471. https://doi.org/10.1371/journal.pcbi.1006471
  1125. Brian Hie, Hyunghoon Cho, Bonnie Berger. Realizing private and practical pharmacological collaboration. Science 2018, 362 (6412) , 347-350. https://doi.org/10.1126/science.aat4807
  1126. Jackson A. Buss, Vadim Baidin, Michael A. Welsh, Josué Flores-Kim, Hongbaek Cho, B. McKay Wood, Tsuyoshi Uehara, Suzanne Walker, Daniel Kahne, Thomas G. Bernhardt. Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery. Antimicrobial Agents and Chemotherapy 2018, 63 (1) https://doi.org/10.1128/AAC.01530-18
  1127. Xiaoyu Zhang, Sheng Wang, Feiyun Zhu, Zheng Xu, Yuhong Wang, Junzhou Huang. Seq3seq fingerprint. ACM SIGBIO Newsletter 2018, 8 (1) , 1-10. https://doi.org/10.1145/3284959.3284960
  1128. Gabriel Idakwo, Joseph Luttrell, Minjun Chen, Huixiao Hong, Zhaoxian Zhou, Ping Gong, Chaoyang Zhang. A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health, Part C 2018, 36 (4) , 169-191. https://doi.org/10.1080/10590501.2018.1537118
  1129. Marco Chierici, Marco Giulini, Nicole Bussola, Giuseppe Jurman, Cesare Furlanello. Machine learning models for predicting endocrine disruption potential of environmental chemicals. Journal of Environmental Science and Health, Part C 2018, 36 (4) , 237-251. https://doi.org/10.1080/10590501.2018.1537155
  1130. Feisheng Zhong, Jing Xing, Xutong Li, Xiaohong Liu, Zunyun Fu, Zhaoping Xiong, Dong Lu, Xiaolong Wu, Jihui Zhao, Xiaoqin Tan, Fei Li, Xiaomin Luo, Zhaojun Li, Kaixian Chen, Mingyue Zheng, Hualiang Jiang. Artificial intelligence in drug design. Science China Life Sciences 2018, 61 (10) , 1191-1204. https://doi.org/10.1007/s11427-018-9342-2
  1131. Liming Chang, Mengwu Xiao, Linlin Yang, Shuai Wang, Sai-Qi Wang, Andreas Bender, Aixi Hu, Zhe-Sheng Chen, Bin Yu, Hong-Min Liu. Discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) that modulates ABCB1-mediated multidrug resistance (MDR). Bioorganic & Medicinal Chemistry 2018, 26 (18) , 5006-5017. https://doi.org/10.1016/j.bmc.2018.08.021
  1132. Francesca Grisoni, Viviana Consonni, Marco Vighi. Detecting the bioaccumulation patterns of chemicals through data-driven approaches. Chemosphere 2018, 208 , 273-284. https://doi.org/10.1016/j.chemosphere.2018.05.157
  1133. Hongbin Yang, Lixia Sun, Weihua Li, Guixia Liu, Yun Tang. Identification of Nontoxic Substructures: A New Strategy to Avoid Potential Toxicity Risk. Toxicological Sciences 2018, 165 (2) , 396-407. https://doi.org/10.1093/toxsci/kfy146
  1134. Nikunj M. Shukla, Kei-Ichiro Arimoto, Shiyin Yao, Jun-Bao Fan, Yue Zhang, Fumi Sato-Kaneko, Fitzgerald S. Lao, Tadashi Hosoya, Karen Messer, Minya Pu, Howard B. Cottam, Dennis A. Carson, Tomoko Hayashi, Dong-Er Zhang, Maripat Corr. Identification of Compounds That Prolong Type I Interferon Signaling as Potential Vaccine Adjuvants. SLAS DISCOVERY: Advancing the Science of Drug Discovery 2018, 23 (9) , 960-973. https://doi.org/10.1177/2472555218774308
  1135. Cécile Otten, Jessica Knox, Gwénola Boulday, Mathias Eymery, Marta Haniszewski, Martin Neuenschwander, Silke Radetzki, Ingo Vogt, Kristina Hähn, Coralie De Luca, Cécile Cardoso, Sabri Hamad, Carla Igual Gil, Peter Roy, Corinne Albiges‐Rizo, Eva Faurobert, Jens P Kries, Mónica Campillos, Elisabeth Tournier‐Lasserve, W Brent Derry, Salim Abdelilah‐Seyfried. Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Molecular Medicine 2018, 10 (10) https://doi.org/10.15252/emmm.201809155
  1136. Ingrid Grenet, Yonghua Yin, Jean-Paul Comet. G-Networks to Predict the Outcome of Sensing of Toxicity. Sensors 2018, 18 (10) , 3483. https://doi.org/10.3390/s18103483
  1137. Stephan Böttcher, Angela Di Capua, John W. Blunt, Ronald J. Quinn. Bioinspiration from Marine Scaffolds. 2018,,, 297-321. https://doi.org/10.1002/9783527801718.ch10
  1138. Adam Gonczarek, Jakub M. Tomczak, Szymon Zaręba, Joanna Kaczmar, Piotr Dąbrowski, Michał J. Walczak. Interaction prediction in structure-based virtual screening using deep learning. Computers in Biology and Medicine 2018, 100 , 253-258. https://doi.org/10.1016/j.compbiomed.2017.09.007
  1139. Adriana Port, Magda Bordas, Raquel Enrech, Rosalia Pascual, Martí Rosés, Clara Ràfols, Xavier Subirats, Elisabeth Bosch. Critical comparison of shake-flask, potentiometric and chromatographic methods for lipophilicity evaluation (log P o/w ) of neutral, acidic, basic, amphoteric, and zwitterionic drugs. European Journal of Pharmaceutical Sciences 2018, 122 , 331-340. https://doi.org/10.1016/j.ejps.2018.07.010
  1140. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment 2-methyl-trans-2-butenoic acid, CAS Registry Number 80-59-1. Food and Chemical Toxicology 2018, 118 , S1-S7. https://doi.org/10.1016/j.fct.2018.05.048
  1141. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, nonane, 1,1-diethoxy-, CAS Registry Number 54815-13-3. Food and Chemical Toxicology 2018, 118 , S8-S14. https://doi.org/10.1016/j.fct.2018.05.064
  1142. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, Terpinyl butyrate, CAS Registry Number 2153-28-8. Food and Chemical Toxicology 2018, 118 , S22-S31. https://doi.org/10.1016/j.fct.2018.06.030
  1143. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, butyrophenone, cas Registry Number 495-40-9. Food and Chemical Toxicology 2018, 118 , S32-S40. https://doi.org/10.1016/j.fct.2018.06.031
  1144. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, trans-2-Hexenol, CAS Registry Number 928-95-0. Food and Chemical Toxicology 2018, 118 , S49-S58. https://doi.org/10.1016/j.fct.2018.06.033
  1145. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-Methylvaleric acid, CAS Registry Number 97-61-0. Food and Chemical Toxicology 2018, 118 , S59-S68. https://doi.org/10.1016/j.fct.2018.06.034
  1146. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, hexyl benzoate, CAS Registry Number 6789-88-4. Food and Chemical Toxicology 2018, 118 , S69-S76. https://doi.org/10.1016/j.fct.2018.06.035
  1147. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, butanoic acid, 3a,4,5,6,7,7a-hexahydro-4,7-methano-1H-indenyl ester, CAS Registry Number 113889-23-9. Food and Chemical Toxicology 2018, 118 , S84-S93. https://doi.org/10.1016/j.fct.2018.06.041
  1148. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, 1-Methyl-2-(1-methylpropyl)cyclohexyl acetate, CAS Registry Number 72183-75-6. Food and Chemical Toxicology 2018, 118 , S94-S102. https://doi.org/10.1016/j.fct.2018.06.042
  1149. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, Hexyl acetate, CAS Registry Number 142-92-7. Food and Chemical Toxicology 2018, 118 , S103-S113. https://doi.org/10.1016/j.fct.2018.06.043
  1150. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, 1-Oxaspiro[4.5]decan-2-one, 8-(1-methylethyl)-, trans-, CAS Registry Number 4625-90-5. Food and Chemical Toxicology 2018, 118 , S114-S122. https://doi.org/10.1016/j.fct.2018.06.044
  1151. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1-oxaspiro[4.5]decan-2-one, 8-methyl-, CAS Registry Number 94201-19-1. Food and Chemical Toxicology 2018, 118 , S123-S131. https://doi.org/10.1016/j.fct.2018.06.045
  1152. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 5,9-undecadien-2-ol,6,10-dimethyl-,acetate, CAS Registry Number 91482-37-0. Food and Chemical Toxicology 2018, 118 , S132-S140. https://doi.org/10.1016/j.fct.2018.06.046
  1153. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, 2,6-Dimethylocta-2,4,6-triene, CAS Registry Number 673-84-7. Food and Chemical Toxicology 2018, 118 , S147-S155. https://doi.org/10.1016/j.fct.2018.06.048
  1154. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 1,3-Benzodioxole-5-propanol, α-methyl-, 5-acetate, CAS Registry Number 68844-96-2. Food and Chemical Toxicology 2018, 118 , S170-S177. https://doi.org/10.1016/j.fct.2018.07.006
  1155. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, 4,8-Dimethyl-3-7-nonadien-2-ol, CAS Registry Number 67845-50-5. Food and Chemical Toxicology 2018, 118 , S178-S184. https://doi.org/10.1016/j.fct.2018.07.008
  1156. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM Fragrance ingredient safety assessment, methylheptenol, CAS Registry Number 1335-09-7. Food and Chemical Toxicology 2018, 118 , S185-S192. https://doi.org/10.1016/j.fct.2018.07.009
  1157. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, [2-Isopropoxyethyl]benzene, CAS Registry Number 68039-47-4. Food and Chemical Toxicology 2018, 118 , S193-S200. https://doi.org/10.1016/j.fct.2018.07.037
  1158. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, 2-methylhexanoic acid, CAS Registry Number 4536-23-6. Food and Chemical Toxicology 2018, 118 , S201-S209. https://doi.org/10.1016/j.fct.2018.07.038
  1159. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM fragrance ingredient safety assessment, p-tert-butylacetophenone, CAS Registry Number 943-27-1. Food and Chemical Toxicology 2018, 118 , S210-S217. https://doi.org/10.1016/j.fct.2018.07.039
  1160. A.M. Api, D. Belsito, D. Botelho, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, L. Jones, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, A. Patel, T.M. Penning, G. Ritacco, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura, S. Tsang. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, 2-Methyl-2-hepten-6-ol, CAS Registry Number 1569-60-4. Food and Chemical Toxicology 2018, 118 , S218-S225. https://doi.org/10.1016/j.fct.2018.07.040
  1161. Priyanka Banerjee, Frederic O. Dehnbostel, Robert Preissner. Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00362
  1162. M. Marzo, E. Benfenati. Classification of a Naïve Bayesian Fingerprint model to predict reproductive toxicity $. SAR and QSAR in Environmental Research 2018, 29 (8) , 631-645. https://doi.org/10.1080/1062936X.2018.1499125
  1163. Ruifeng Liu, Michael Madore, Kyle P Glover, Michael G Feasel, Anders Wallqvist. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity. Toxicological Sciences 2018, 164 (2) , 512-526. https://doi.org/10.1093/toxsci/kfy111
  1164. Benjamin Sanchez-Lengeling, Alán Aspuru-Guzik. Inverse molecular design using machine learning: Generative models for matter engineering. Science 2018, 361 (6400) , 360-365. https://doi.org/10.1126/science.aat2663
  1165. John Boaz Lee, Ryan Rossi, Xiangnan Kong. Graph Classification using Structural Attention. 2018,,, 1666-1674. https://doi.org/10.1145/3219819.3219980
  1166. Nadine Schneider, Richard A. Lewis, Nikolas Fechner, Peter Ertl. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity. ChemMedChem 2018, 13 (13) , 1315-1324. https://doi.org/10.1002/cmdc.201700798
  1167. Tomoyuki Miyao, Jürgen Bajorath. Exploring ensembles of bioactive or virtual analogs of X-ray ligands for shape similarity searching. Journal of Computer-Aided Molecular Design 2018, 32 (7) , 759-767. https://doi.org/10.1007/s10822-018-0128-8
  1168. Petro Borysko, Yurii S. Moroz, Oleksandr V. Vasylchenko, Vasyl V. Hurmach, Anastasia Starodubtseva, Natalia Stefanishena, Kateryna Nesteruk, Sergey Zozulya, Ivan S. Kondratov, Oleksandr O. Grygorenko. Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Bioorganic & Medicinal Chemistry 2018, 26 (12) , 3399-3405. https://doi.org/10.1016/j.bmc.2018.05.010
  1169. Jiansheng Wu, Qiuming Zhang, Weijian Wu, Tao Pang, Haifeng Hu, Wallace K B Chan, Xiaoyan Ke, Yang Zhang, . WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Bioinformatics 2018, 34 (13) , 2271-2282. https://doi.org/10.1093/bioinformatics/bty070
  1170. Hakime Öztürk, Elif Ozkirimli, Arzucan Özgür. A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 2018, 34 (13) , i295-i303. https://doi.org/10.1093/bioinformatics/bty287
  1171. Luca Pinzi, Andrew Anighoro, Jürgen Bajorath, Giulio Rastelli. Identification of 4-aryl-1 H -pyrrole[2,3-b]pyridine derivatives for the development of new B-Raf inhibitors. Chemical Biology & Drug Design 2018, 92 (1) , 1382-1386. https://doi.org/10.1111/cbdd.13185
  1172. Sk. Abdul Amin, Nilanjan Adhikari, Tarun Jha. Diverse classes of HDAC8 inhibitors: in search of molecular fingerprints that regulate activity. Future Medicinal Chemistry 2018, 10 (13) , 1589-1602. https://doi.org/10.4155/fmc-2018-0005
  1173. Christopher R. Collins, Geoffrey J. Gordon, O. Anatole von Lilienfeld, David J. Yaron. Constant size descriptors for accurate machine learning models of molecular properties. The Journal of Chemical Physics 2018, 148 (24) , 241718. https://doi.org/10.1063/1.5020441
  1174. Felix A. Faber, Anders S. Christensen, Bing Huang, O. Anatole von Lilienfeld. Alchemical and structural distribution based representation for universal quantum machine learning. The Journal of Chemical Physics 2018, 148 (24) , 241717. https://doi.org/10.1063/1.5020710
  1175. Peter Bjørn Jørgensen, Murat Mesta, Suranjan Shil, Juan Maria García Lastra, Karsten Wedel Jacobsen, Kristian Sommer Thygesen, Mikkel N. Schmidt. Machine learning-based screening of complex molecules for polymer solar cells. The Journal of Chemical Physics 2018, 148 (24) , 241735. https://doi.org/10.1063/1.5023563
  1176. Lothar Terfloth, Johann Gasteiger. Calculation of Structure Descriptors. 2018,,, 349-396. https://doi.org/10.1002/9783527816880.ch10
  1177. Jarosław Tomczak, Giorgi Lekishvili. The Data. 2018,,, 155-183. https://doi.org/10.1002/9783527816880.ch5
  1178. Shogo D. Suzuki, Masahito Ohue, Yutaka Akiyama. PKRank: a novel learning-to-rank method for ligand-based virtual screening using pairwise kernel and RankSVM. Artificial Life and Robotics 2018, 23 (2) , 205-212. https://doi.org/10.1007/s10015-017-0416-8
  1179. Hongbin Huang, Guigui Zhang, Yuquan Zhou, Chenru Lin, Suling Chen, Yutong Lin, Shangkang Mai, Zunnan Huang. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00138
  1180. S. A. Amin, N. Adhikari, S. Bhargava, T. Jha, S. Gayen. Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: new features identified. SAR and QSAR in Environmental Research 2018, 29 (5) , 385-408. https://doi.org/10.1080/1062936X.2018.1447511
  1181. Jaak Simm, Günter Klambauer, Adam Arany, Marvin Steijaert, Jörg Kurt Wegner, Emmanuel Gustin, Vladimir Chupakhin, Yolanda T. Chong, Jorge Vialard, Peter Buijnsters, Ingrid Velter, Alexander Vapirev, Shantanu Singh, Anne E. Carpenter, Roel Wuyts, Sepp Hochreiter, Yves Moreau, Hugo Ceulemans. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery. Cell Chemical Biology 2018, 25 (5) , 611-618.e3. https://doi.org/10.1016/j.chembiol.2018.01.015
  1182. Irene Luque Ruiz, Miguel Ángel Gómez Nieto. A new data representation based on relative measurements and fingerprint patterns for the development of QSAR regression models. Chemometrics and Intelligent Laboratory Systems 2018, 176 , 53-65. https://doi.org/10.1016/j.chemolab.2018.03.007
  1183. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, dodecanal dimethyl acetal, CAS Registry Number 14620-52-1. Food and Chemical Toxicology 2018, 115 , S1-S8. https://doi.org/10.1016/j.fct.2017.11.033
  1184. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3-tert-butylcyclohexyl acetate, CAS Registry Number 31846-06-7. Food and Chemical Toxicology 2018, 115 , S9-S17. https://doi.org/10.1016/j.fct.2017.11.034
  1185. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, (Z)-4-hepten-1-ol, CAS Registry Number 6191-71-5. Food and Chemical Toxicology 2018, 115 , S18-S25. https://doi.org/10.1016/j.fct.2017.11.035
  1186. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, cis-5-octen-1-ol CAS Registry Number 64275-73-6. Food and Chemical Toxicology 2018, 115 , S35-S42. https://doi.org/10.1016/j.fct.2017.11.037
  1187. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S.L.A. Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 4-Hexen-1-ol, (4Z)-, CAS Registry Number 928-91-6. Food and Chemical Toxicology 2018, 115 , S43-S50. https://doi.org/10.1016/j.fct.2017.11.038
  1188. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, Amylcyclohexyl acetate (mixed isomers), CAS Registry Number 67874-72-0. Food and Chemical Toxicology 2018, 115 , S51-S60. https://doi.org/10.1016/j.fct.2017.11.040
  1189. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, l-menthyl lactate, CAS Registry Number 59259-38-0. Food and Chemical Toxicology 2018, 115 , S61-S71. https://doi.org/10.1016/j.fct.2017.11.041
  1190. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, heptanal dimethyl acetal, CAS Registry Number 10032-05-0. Food and Chemical Toxicology 2018, 115 , S72-S79. https://doi.org/10.1016/j.fct.2017.11.043
  1191. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment 2,4-dimethylbenzyl acetate, CAS Registry Number 62346-96-7. Food and Chemical Toxicology 2018, 115 , S80-S89. https://doi.org/10.1016/j.fct.2017.12.012
  1192. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment benzyl 2,2-dimethylpropanoate, CAS Registry Number 2094-69-1. Food and Chemical Toxicology 2018, 115 , S96-S106. https://doi.org/10.1016/j.fct.2017.12.048
  1193. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3-Methylbutanal diethyl acetal, CAS Registry Number 3842-03-3. Food and Chemical Toxicology 2018, 115 , S107-S113. https://doi.org/10.1016/j.fct.2017.12.049
  1194. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment diethyl succinate, CAS Registry Number 123-25-1. Food and Chemical Toxicology 2018, 115 , S114-S123. https://doi.org/10.1016/j.fct.2017.12.050
  1195. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment Dimethyl succinate, CAS Registry Number 106-65-0. Food and Chemical Toxicology 2018, 115 , S124-S132. https://doi.org/10.1016/j.fct.2017.12.056
  1196. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, phenethyl tiglate, CAS Registry Number 55719-85-2. Food and Chemical Toxicology 2018, 115 , S133-S142. https://doi.org/10.1016/j.fct.2017.12.064
  1197. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, dodecanenitrile, CAS Registry Number 2437-25-4. Food and Chemical Toxicology 2018, 115 , S153-S161. https://doi.org/10.1016/j.fct.2018.01.005
  1198. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment phenethyl isovalerate, CAS Registry Number 140-26-1. Food and Chemical Toxicology 2018, 115 , S162-S172. https://doi.org/10.1016/j.fct.2018.01.006
  1199. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, benzyl formate, CAS Registry Number 104-57-4. Food and Chemical Toxicology 2018, 115 , S173-S182. https://doi.org/10.1016/j.fct.2018.01.007
  1200. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, pentanedioic acid, 1,5-dimethyl ester, CAS Registry Number 1119-40-0. Food and Chemical Toxicology 2018, 115 , S190-S198. https://doi.org/10.1016/j.fct.2018.01.009
  1201. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 1,1-diethoxyisooctane, CAS Registry Number 69178-43-4. Food and Chemical Toxicology 2018, 115 , S199-S205. https://doi.org/10.1016/j.fct.2018.01.032
  1202. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment dihydro-β-terpinyl acetate, CAS Registry Number 26252-11-9. Food and Chemical Toxicology 2018, 115 , S206-S213. https://doi.org/10.1016/j.fct.2018.01.037
  1203. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S.L.A. Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT phenylethyl 2-methylbutyrate, CAS Registry Number 24817-51-4. Food and Chemical Toxicology 2018, 115 , S214-S224. https://doi.org/10.1016/j.fct.2018.01.038
  1204. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment 2-Benzylheptanol, CAS Registry Number 92368-90-6. Food and Chemical Toxicology 2018, 115 , S231-S240. https://doi.org/10.1016/j.fct.2018.01.040
  1205. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment cyclohexanecarboxylic acid, CAS Registry Number 98-89-5. Food and Chemical Toxicology 2018, 115 , S248-S255. https://doi.org/10.1016/j.fct.2018.03.026
  1206. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. burton, J. Buschmann, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, S.L.A. Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, G. Sullivan, Y. Thakkar, J. Wahler. RIFM fragrance ingredient safety assessment β-patchoulene, CAS Registry Number 514-51-2. Food and Chemical Toxicology 2018, 115 , S256-S263. https://doi.org/10.1016/j.fct.2018.03.053
  1207. Márton Vass, Albert J. Kooistra, Dehua Yang, Raymond C. Stevens, Ming-Wei Wang, Chris de Graaf. Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends in Pharmacological Sciences 2018, 39 (5) , 494-512. https://doi.org/10.1016/j.tips.2018.02.004
  1208. Kristina Preuer, Richard P I Lewis, Sepp Hochreiter, Andreas Bender, Krishna C Bulusu, Günter Klambauer, . DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics 2018, 34 (9) , 1538-1546. https://doi.org/10.1093/bioinformatics/btx806
  1209. Yankang Jing, Yuemin Bian, Ziheng Hu, Lirong Wang, Xiang-Qun Sean Xie. Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era. The AAPS Journal 2018, 20 (3) https://doi.org/10.1208/s12248-018-0210-0
  1210. Andrea Peña-Castillo, Oscar Méndez-Lucio, John R. Owen, Karina Martínez-Mayorga, José L. Medina-Franco. Chemoinformatics in Food Science. 2018,,, 501-525. https://doi.org/10.1002/9783527806539.ch10
  1211. Chihae Yang, James F. Rathman, Aleksey Tarkhov, Oliver Sacher, Thomas Kleinoeder, Jie Liu, Thomas Magdziarz, Aleksandra Mostraq, Joerg Marusczyk, Darshan Mehta, Christof Schwab, Bruno Bienfait. Chemoinformatics in Modern Regulatory Science. 2018,,, 439-470. https://doi.org/10.1002/9783527806539.ch8
  1212. Roberto Todeschini, Viviana Consonni, Davide Ballabio, Francesca Grisoni. Mapping of Activity through Dichotomic Scores (MADS): A new chemoinformatic approach to detect activity-rich structural regions. Journal of Chemometrics 2018, 32 (4) , e2994. https://doi.org/10.1002/cem.2994
  1213. Xin Zhang, Jason B. Cross, Jan Romero, Alexander Heifetz, Eric Humphries, Katie Hall, Yuchuan Wu, Sabrina Stucka, Jing Zhang, Haoqun Chandonnet, Blaise Lippa, M. Dominic Ryan, J. Christian Baber. In-silico guided discovery of novel CCR9 antagonists. Journal of Computer-Aided Molecular Design 2018, 32 (4) , 573-582. https://doi.org/10.1007/s10822-018-0113-2
  1214. Lucy J Colwell. Statistical and machine learning approaches to predicting protein–ligand interactions. Current Opinion in Structural Biology 2018, 49 , 123-128. https://doi.org/10.1016/j.sbi.2018.01.006
  1215. Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, Gregory P. Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M. Hoffman, Wei Xie, Gail L. Rosen, Benjamin J. Lengerich, Johnny Israeli, Jack Lanchantin, Stephen Woloszynek, Anne E. Carpenter, Avanti Shrikumar, Jinbo Xu, Evan M. Cofer, Christopher A. Lavender, Srinivas C. Turaga, Amr M. Alexandari, Zhiyong Lu, David J. Harris, Dave DeCaprio, Yanjun Qi, Anshul Kundaje, Yifan Peng, Laura K. Wiley, Marwin H. S. Segler, Simina M. Boca, S. Joshua Swamidass, Austin Huang, Anthony Gitter, Casey S. Greene. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface 2018, 15 (141) , 20170387. https://doi.org/10.1098/rsif.2017.0387
  1216. Suqing Zheng, Mengying Jiang, Chengwei Zhao, Rui Zhu, Zhicheng Hu, Yong Xu, Fu Lin. e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00082
  1217. Tao Huang, Ziwan Ning, Dongdong Hu, Man Zhang, Ling Zhao, Chengyuan Lin, Linda L. D. Zhong, Zhijun Yang, Hongxi Xu, Zhaoxiang Bian. Uncovering the Mechanisms of Chinese Herbal Medicine (MaZiRenWan) for Functional Constipation by Focused Network Pharmacology Approach. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00270
  1218. Frieda A. Sorgenfrei, Simone Fulle, Benjamin Merget. Kinome-Wide Profiling Prediction of Small Molecules. ChemMedChem 2018, 13 (6) , 495-499. https://doi.org/10.1002/cmdc.201700180
  1219. Conrad Stork, Johannes Wagner, Nils-Ole Friedrich, Christina de Bruyn Kops, Martin Šícho, Johannes Kirchmair. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters. ChemMedChem 2018, 13 (6) , 564-571. https://doi.org/10.1002/cmdc.201700673
  1220. Christin Rakers, Rifat Ara Najnin, Ahsan Habib Polash, Shunichi Takeda, J.B. Brown. Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families. ChemMedChem 2018, 13 (6) , 511-521. https://doi.org/10.1002/cmdc.201700677
  1221. Albert J. Kooistra, Márton Vass, Ross McGuire, Rob Leurs, Iwan J. P. de Esch, Gert Vriend, Stefan Verhoeven, Chris de Graaf. 3D-e-Chem: Structural Cheminformatics Workflows for Computer-Aided Drug Discovery. ChemMedChem 2018, 13 (6) , 614-626. https://doi.org/10.1002/cmdc.201700754
  1222. Marwin H. S. Segler, Mike Preuss, Mark P. Waller. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555 (7698) , 604-610. https://doi.org/10.1038/nature25978
  1223. Cathy Lester, Allison Reis, Michael Laufersweiler, Shengde Wu, Karen Blackburn. Structure activity relationship (SAR) toxicological assessments: The role of expert judgment. Regulatory Toxicology and Pharmacology 2018, 92 , 390-406. https://doi.org/10.1016/j.yrtph.2017.12.026
  1224. Sara Calhoun, Magdalena Korczynska, Daniel J Wichelecki, Brian San Francisco, Suwen Zhao, Dmitry A Rodionov, Matthew W Vetting, Nawar F Al-Obaidi, Henry Lin, Matthew J O'Meara, David A Scott, John H Morris, Daniel Russel, Steven C Almo, Andrei L Osterman, John A Gerlt, Matthew P Jacobson, Brian K Shoichet, Andrej Sali. Prediction of enzymatic pathways by integrative pathway mapping. eLife 2018, 7 https://doi.org/10.7554/eLife.31097
  1225. Emna Harigua-Souiai, Yosser Zina Abdelkrim, Imen Bassoumi-Jamoussi, Ons Zakraoui, Guillaume Bouvier, Khadija Essafi-Benkhadir, Josette Banroques, Nathan Desdouits, Hélène Munier-Lehmann, Mourad Barhoumi, N. Kyle Tanner, Michael Nilges, Arnaud Blondel, Ikram Guizani, . Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLOS Neglected Tropical Diseases 2018, 12 (1) , e0006160. https://doi.org/10.1371/journal.pntd.0006160
  1226. Lateefat Temitope Afolabi, Faisal Saeed, Haslinda Hashim, Olutomilayo Olayemi Petinrin, . Ensemble learning method for the prediction of new bioactive molecules. PLOS ONE 2018, 13 (1) , e0189538. https://doi.org/10.1371/journal.pone.0189538
  1227. Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jürgen Bajorath, Hongming Chen. Application of Generative Autoencoder in De Novo Molecular Design. Molecular Informatics 2018, 37 (1-2) , 1700123. https://doi.org/10.1002/minf.201700123
  1228. Dino Oglic, Steven A. Oatley, Simon J. F. Macdonald, Thomas Mcinally, Roman Garnett, Jonathan D. Hirst, Thomas Gärtner. Active Search for Computer-aided Drug Design. Molecular Informatics 2018, 37 (1-2) , 1700130. https://doi.org/10.1002/minf.201700130
  1229. Amit Kumar Halder, Ana S. Moura, M. Natália D. S. Cordeiro. Advanced Chemometric Modeling Approaches for the Design of Multitarget Drugs Against Neurodegenerative Diseases. 2018,,, 155-186. https://doi.org/10.1007/7653_2018_14
  1230. J. Jesús Naveja, Fernanda I. Saldívar-González, Norberto Sánchez-Cruz, José L. Medina-Franco. Cheminformatics Approaches to Study Drug Polypharmacology. 2018,,, 3-25. https://doi.org/10.1007/7653_2018_6
  1231. Mark K. Haynes, Matthew Garcia, Ryan Peters, Anna Waller, Pietro Tedesco, Oleg Ursu, Cristian G. Bologa, Radleigh G. Santos, Clemencia Pinilla, Terry H. Wu, Julie A. Lovchik, Tudor I. Oprea, Larry A. Sklar, George P. Tegos. High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems. 2018,,, 293-318. https://doi.org/10.1007/978-1-4939-7454-2_16
  1232. Przemysław Miszta, Jakub Jakowiecki, Ewelina Rutkowska, Maria Turant, Dorota Latek, Sławomir Filipek. Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists. 2018,,, 265-296. https://doi.org/10.1007/978-1-4939-7465-8_12
  1233. Yoshihiro Yamanishi. Linear and Kernel Model Construction Methods for Predicting Drug–Target Interactions in a Chemogenomic Framework. 2018,,, 355-368. https://doi.org/10.1007/978-1-4939-8639-2_12
  1234. Francesca Grisoni, Viviana Consonni, Roberto Todeschini. Impact of Molecular Descriptors on Computational Models. 2018,,, 171-209. https://doi.org/10.1007/978-1-4939-8639-2_5
  1235. Ingrid Grenet, Yonghua Yin, Jean-Paul Comet, Erol Gelenbe. Machine Learning to Predict Toxicity of Compounds. 2018,,, 335-345. https://doi.org/10.1007/978-3-030-01418-6_33
  1236. Patrick Winter, Christian Borgelt, Michael R. Berthold. Learned Feature Generation for Molecules. 2018,,, 380-391. https://doi.org/10.1007/978-3-030-01768-2_31
  1237. Daiki Ito, Raku Shirasawa, Shinnosuke Hattori, Shigetaka Tomiya, Gouhei Tanaka. Prediction of Molecular Packing Motifs in Organic Crystals by Neural Graph Fingerprints. 2018,,, 26-34. https://doi.org/10.1007/978-3-030-04221-9_3
  1238. Yusuke Matsuyama, Takashi Ishida. Stacking Multiple Molecular Fingerprints for Improving Ligand-Based Virtual Screening. 2018,,, 279-288. https://doi.org/10.1007/978-3-319-95933-7_35
  1239. Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, Oghenejokpeme I. Orhobor, Ross D. King. Large-Scale Assessment of Deep Relational Machines. 2018,,, 22-37. https://doi.org/10.1007/978-3-319-99960-9_2
  1240. Ivan Olier, Noureddin Sadawi, G. Richard Bickerton, Joaquin Vanschoren, Crina Grosan, Larisa Soldatova, Ross D. King. Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Machine Learning 2018, 107 (1) , 285-311. https://doi.org/10.1007/s10994-017-5685-x
  1241. Stephanie Kay Ashenden. Screening Library Design. 2018,,, 73-96. https://doi.org/10.1016/bs.mie.2018.09.016
  1242. Ashley Taylor, Bradley C. Doak, Martin J. Scanlon. Design of a Fragment-Screening Library. 2018,,, 97-115. https://doi.org/10.1016/bs.mie.2018.09.018
  1243. Baiqing Li, Chunfeng Ma, Xiaoyong Zhao, Zhigang Hu, Tengfei Du, Xuanming Xu, Zhonghua Wang, Jianping Lin. YaTCM: Yet another Traditional Chinese Medicine Database for Drug Discovery. Computational and Structural Biotechnology Journal 2018, 16 , 600-610. https://doi.org/10.1016/j.csbj.2018.11.002
  1244. Peter S. Kutchukian, Charlie Chang, Sean J. Fox, Erica Cook, Richard Barnard, David Tellers, Huijun Wang, Dante Pertusi, Meir Glick, Robert P. Sheridan, Iain M. Wallace, Anne Mai Wassermann. CHEMGENIE: integration of chemogenomics data for applications in chemical biology. Drug Discovery Today 2018, 23 (1) , 151-160. https://doi.org/10.1016/j.drudis.2017.09.004
  1245. Geun Ho Gu, Petr Plechac, Dionisios G. Vlachos. Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection. Reaction Chemistry & Engineering 2018, 3 (4) , 454-466. https://doi.org/10.1039/C7RE00210F
  1246. Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, Vijay Pande. MoleculeNet: a benchmark for molecular machine learning. Chemical Science 2018, 9 (2) , 513-530. https://doi.org/10.1039/C7SC02664A
  1247. Daniel Merk, Francesca Grisoni, Lukas Friedrich, Elena Gelzinyte, Gisbert Schneider. Scaffold hopping from synthetic RXR modulators by virtual screening and de novo design. MedChemComm 2018, 9 (8) , 1289-1292. https://doi.org/10.1039/C8MD00134K
  1248. Jens-Alexander Fuchs, Francesca Grisoni, Michael Kossenjans, Jan A. Hiss, Gisbert Schneider. Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. MedChemComm 2018, 9 (9) , 1538-1546. https://doi.org/10.1039/C8MD00370J
  1249. Mardochee Reveil, Paulette Clancy. Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation. Molecular Systems Design & Engineering 2018, 3 (3) , 431-441. https://doi.org/10.1039/C8ME00003D
  1250. Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K. Wegner, Hugo Ceulemans, Djork-Arné Clevert, Sepp Hochreiter. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chemical Science 2018, 9 (24) , 5441-5451. https://doi.org/10.1039/C8SC00148K
  1251. Yu Wei, Jinlong Li, Baiqing Li, Chunfeng Ma, Xuanming Xu, Xu Wang, Aqin Liu, Tengfei Du, Zhonghua Wang, Zhangyong Hong, Jianping Lin. . Database 2018,,https://doi.org/10.1093/database/bay117
  1252. Nguyen Anh Vu, Pham Truong Duy, Le Thi Ly. Agraph convolution-based classification model for identifying anticancer metabolites from traditional vietnamese herbal medicine database. 2018,,, 122-126. https://doi.org/10.1145/3184066.3184090
  1253. Xiaoyu Zhang, Sheng Wang, Feiyun Zhu, Zheng Xu, Yuhong Wang, Junzhou Huang. Seq3seq Fingerprint. 2018,,, 404-413. https://doi.org/10.1145/3233547.3233548
  1254. Anna H. C. Vlot, Wilhelmus E. A. de Witte, Meindert Danhof, Piet H. van der Graaf, Gerard J. P. van Westen, Elizabeth C. M. de Lange. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling. The AAPS Journal 2018, 20 (1) https://doi.org/10.1208/s12248-017-0172-7
  1255. Sereina Riniker, Gregory A. Landrum, Floriane Montanari, Santiago D. Villalba, Julie Maier, Johanna M. Jansen, W. Patrick Walters, Anang A. Shelat. . F1000Research 2018,,, 1136. https://doi.org/10.12688/f1000research.11905.2
  1256. Takuya Minami, Yoshishige Okuno. Number Density Descriptor on Extended-Connectivity Fingerprints Combined with Machine Learning Approaches for Predicting Polymer Properties. MRS Advances 2018, 3 (49) , 2975-2980. https://doi.org/10.1557/adv.2018.454
  1257. Nienke Moret, Nicholas A. Clark, Marc Hafner, Yuan Wang, Eugen Lounkine, Mario Medvedovic, Jinhua Wang, Nathanael Gray, Jeremy Jenkins, Peter Sorger. Cheminformatics Tools for Analyzing and Designing Optimized Small Molecule Collections and Libraries. SSRN Electronic Journal 2018, https://doi.org/10.2139/ssrn.3219258
  1258. Nobuaki Yasuo, Keisuke Watanabe, Hideto Hara, Kentaro Rikimaru, Masakazu Sekijima. Predicting Strategies for Lead Optimization via Learning to Rank. IPSJ Transactions on Bioinformatics 2018, 11 (0) , 41-47. https://doi.org/10.2197/ipsjtbio.11.41
  1259. Muhammad Akram, Watcharee Waratchareeyakul, Joerg Haupenthal, Rolf W. Hartmann, Daniela Schuster. Pharmacophore Modeling and in Silico/in Vitro Screening for Human Cytochrome P450 11B1 and Cytochrome P450 11B2 Inhibitors. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00104
  1260. Patric Schyman, Ruifeng Liu, Valmik Desai, Anders Wallqvist. vNN Web Server for ADMET Predictions. Frontiers in Pharmacology 2017, 8 https://doi.org/10.3389/fphar.2017.00889
  1261. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, T.M. Penning, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, isobornyl isovalerate, CAS registry number 7779-73-9. Food and Chemical Toxicology 2017, 110 , S1-S8. https://doi.org/10.1016/j.fct.2016.10.029
  1262. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'brien, R. Parakhia, T.M. Penning, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Isobornyl 2-methylpropionate, CAS Registry Number 85586-67-0. Food and Chemical Toxicology 2017, 110 , S30-S38. https://doi.org/10.1016/j.fct.2017.02.012
  1263. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, l -Cyclocitronellene formate, CAS Registry Number 25225-08-5. Food and Chemical Toxicology 2017, 110 , S49-S58. https://doi.org/10.1016/j.fct.2017.02.035
  1264. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, Isoamyl octanoate, CAS Registry Number 2035-99-6. Food and Chemical Toxicology 2017, 110 , S39-S48. https://doi.org/10.1016/j.fct.2017.02.036
  1265. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, isotridecyl acetate, CAS registry number 69103-23-7. Food and Chemical Toxicology 2017, 110 , S78-S85. https://doi.org/10.1016/j.fct.2017.03.003
  1266. A.M. Api, D. Belsito, S. Bhatia, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, L. Kromidas, S. La Cava, J. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, V.T. Politano, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler, B. Wall, D.K. Wilcox. RIFM Fragrance Ingredient Safety Assessment, d-Cyclocitronellene acetate, CAS Registry Number 25225-10-9. Food and Chemical Toxicology 2017, 110 , S66-S77. https://doi.org/10.1016/j.fct.2017.03.004
  1267. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, isoamyl propionate, CAS Registry Number 105-68-0. Food and Chemical Toxicology 2017, 110 , S86-S94. https://doi.org/10.1016/j.fct.2017.03.021
  1268. A.M. Api, D. Belsito, S. Bhatia, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, V.T. Politano, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler, B. Wall, D.K. Wilcox. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, Methyl jasmonate, CAS Registry Number 1211-29-6. Food and Chemical Toxicology 2017, 110 , S104-S113. https://doi.org/10.1016/j.fct.2017.03.035
  1269. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, isoamyl hexanoate, CAS Registry Number 2198-61-0. Food and Chemical Toxicology 2017, 110 , S114-S122. https://doi.org/10.1016/j.fct.2017.03.040
  1270. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, isoamyl acetate, CAS Registry Number 123-92-2. Food and Chemical Toxicology 2017, 110 , S123-S132. https://doi.org/10.1016/j.fct.2017.03.046
  1271. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, isoamyl formate, CAS Registry Number 110-45-2. Food and Chemical Toxicology 2017, 110 , S142-S150. https://doi.org/10.1016/j.fct.2017.04.013
  1272. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, isononyl propionate, CAS Registry Number 65155-45-5. Food and Chemical Toxicology 2017, 110 , S133-S141. https://doi.org/10.1016/j.fct.2017.04.015
  1273. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3-methylbutyl 2-methylpropanoate, CAS Registry Number 2050-01-3. Food and Chemical Toxicology 2017, 110 , S169-S178. https://doi.org/10.1016/j.fct.2017.04.029
  1274. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 1-cyclohexylethyl butyrate, CAS Registry Number 63449-88-7. Food and Chemical Toxicology 2017, 110 , S160-S168. https://doi.org/10.1016/j.fct.2017.04.031
  1275. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-1-octanyl acetate, CAS Registry Number 20780-49-8. Food and Chemical Toxicology 2017, 110 , S151-S159. https://doi.org/10.1016/j.fct.2017.04.032
  1276. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, cuminyl nitrile, CAS Registry Number 13816-33-6. Food and Chemical Toxicology 2017, 110 , S179-S186. https://doi.org/10.1016/j.fct.2017.04.042
  1277. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 5-Acetyl-3-isopropyl-1,1,2,6-tetramethylindane, CAS Registry Number 68140-48-7. Food and Chemical Toxicology 2017, 110 , S198-S209. https://doi.org/10.1016/j.fct.2017.05.015
  1278. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, Isoamyl butyrate, CAS Registry Number 106-27-4. Food and Chemical Toxicology 2017, 110 , S187-S197. https://doi.org/10.1016/j.fct.2017.05.016
  1279. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, methyl N -acetylanthranilate, CAS Registry Number 2719-08-6. Food and Chemical Toxicology 2017, 110 , S210-S221. https://doi.org/10.1016/j.fct.2017.05.030
  1280. A.M. Api, D. Belsito, D. Botelho, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, J. Wahler. RIFM fragrance ingredient safety assessment, 2- tert -butylcyclohexanol, CAS Registry Number 13491-79-7. Food and Chemical Toxicology 2017, 110 , S263-S272. https://doi.org/10.1016/j.fct.2017.05.062
  1281. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, .α.-methylcyclohexylmethyl acetate, CAS Registry Number 13487-27-9. Food and Chemical Toxicology 2017, 110 , S242-S252. https://doi.org/10.1016/j.fct.2017.05.064
  1282. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, acetic acid, C7-9-branched alkyl esters, C8-rich, CAS Registry Number 108419-32-5. Food and Chemical Toxicology 2017, 110 , S234-S241. https://doi.org/10.1016/j.fct.2017.05.066
  1283. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, methyl anthranilate, CAS Registry Number 134-20-3. Food and Chemical Toxicology 2017, 110 , S290-S298. https://doi.org/10.1016/j.fct.2017.06.003
  1284. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3-methylbutyl valerate, CAS Registry Number 2050-09-1. Food and Chemical Toxicology 2017, 110 , S279-S289. https://doi.org/10.1016/j.fct.2017.06.007
  1285. A.M. Api, D. Belsito, S. Bhatia, D. Botelho, D. Browne, M. Bruze, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, V.T. Politano, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler, B. Wall, D.K. Wilcox. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, 2-Methylbutanol, CAS Registry Number 137-32-6. Food and Chemical Toxicology 2017, 110 , S318-S326. https://doi.org/10.1016/j.fct.2017.06.018
  1286. A.M. Api, D. Belsito, S. Bhatia, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, V.T. Politano, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Methyl hexyl oxo cyclopentanone carboxylate, CAS Registry Number 37172-53-5. Food and Chemical Toxicology 2017, 110 , S327-S336. https://doi.org/10.1016/j.fct.2017.06.028
  1287. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, acetic acid, C8-10-branched alkyl esters, C9-rich, CAS Registry Number 108419-33-6. Food and Chemical Toxicology 2017, 110 , S358-S367. https://doi.org/10.1016/j.fct.2017.07.003
  1288. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, P. Calow, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, p-methoxybenzonitrile, CAS Registry Number 874-90-8. Food and Chemical Toxicology 2017, 110 , S351-S357. https://doi.org/10.1016/j.fct.2017.07.004
  1289. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3-methyl-2-pentylcyclopentan-1-one, CAS Registry Number 13074-63-0. Food and Chemical Toxicology 2017, 110 , S447-S454. https://doi.org/10.1016/j.fct.2017.08.035
  1290. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, acetaldehyde, diphenethyl acetal, CAS Registry Number 122-71-4. Food and Chemical Toxicology 2017, 110 , S439-S446. https://doi.org/10.1016/j.fct.2017.08.036
  1291. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 1-methyl-3-methoxy-4-isopropylbenzene, CAS Registry Number 1076-56-8. Food and Chemical Toxicology 2017, 110 , S462-S470. https://doi.org/10.1016/j.fct.2017.08.042
  1292. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 4-isopropyl-2-methoxy-1-methylbenzene, CAS Registry Number 6379-73-3. Food and Chemical Toxicology 2017, 110 , S479-S485. https://doi.org/10.1016/j.fct.2017.09.008
  1293. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, benzenepropanol, a,ß-dimethyl-, CAS Registry Number 56836-93-2. Food and Chemical Toxicology 2017, 110 , S471-S478. https://doi.org/10.1016/j.fct.2017.09.009
  1294. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, propyl phenethyl acetal, CAS Registry Number 7493-57-4. Food and Chemical Toxicology 2017, 110 , S512-S520. https://doi.org/10.1016/j.fct.2017.09.030
  1295. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, ethyl 2- tert -butylcyclohexyl carbonate, CAS Registry Number 67801-64-3. Food and Chemical Toxicology 2017, 110 , S502-S511. https://doi.org/10.1016/j.fct.2017.09.033
  1296. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, menthyl isovalerate CAS Registry Number 16409-46-4. Food and Chemical Toxicology 2017, 110 , S486-S495. https://doi.org/10.1016/j.fct.2017.09.035
  1297. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 2-isopropyl-4-methylanisole, CAS Registry Number 31574-44-4. Food and Chemical Toxicology 2017, 110 , S545-S551. https://doi.org/10.1016/j.fct.2017.09.039
  1298. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM FRAGRANCE INGREDIENT SAFETY ASSESSMENT, acetaldehyde ethyl phenylethyl acetal, CAS Registry Number 2556-10-7. Food and Chemical Toxicology 2017, 110 , S537-S544. https://doi.org/10.1016/j.fct.2017.09.040
  1299. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, α-methylbenzyl alcohol, CAS registry number 98-85-1. Food and Chemical Toxicology 2017, 110 , S569-S576. https://doi.org/10.1016/j.fct.2017.09.045
  1300. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, Methylcyclooctyl carbonate, CAS Registry Number 61699-38-5. Food and Chemical Toxicology 2017, 110 , S561-S568. https://doi.org/10.1016/j.fct.2017.09.046
  1301. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-2,6-nonadienenitrile, CAS Registry Number 61792-11-8. Food and Chemical Toxicology 2017, 110 , S552-S560. https://doi.org/10.1016/j.fct.2017.09.047
  1302. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, β-methylphenethyl alcohol, CAS Registry Number 1123-85-9. Food and Chemical Toxicology 2017, 110 , S594-S602. https://doi.org/10.1016/j.fct.2017.09.056
  1303. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, α-Propylphenethyl alcohol, CAS Registry Number 705-73-7. Food and Chemical Toxicology 2017, 110 , S585-S593. https://doi.org/10.1016/j.fct.2017.09.057
  1304. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, cis -6-nonen-1-ol, CAS Registry Number 35854-86-5. Food and Chemical Toxicology 2017, 110 , S577-S584. https://doi.org/10.1016/j.fct.2017.09.059
  1305. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 2,2,5-trimethyl-5-pentylcyclopentanone, CAS Registry Number 65443-14-3. Food and Chemical Toxicology 2017, 110 , S662-S669. https://doi.org/10.1016/j.fct.2017.10.009
  1306. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, α-Isobutylphenethyl alcohol, CAS Registry Number 7779-78-4. Food and Chemical Toxicology 2017, 110 , S637-S644. https://doi.org/10.1016/j.fct.2017.10.012
  1307. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, menthyl acetate (isomer unspecified), CAS Registry Number 16409-45-3. Food and Chemical Toxicology 2017, 110 , S619-S628. https://doi.org/10.1016/j.fct.2017.10.014
  1308. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, cis -3-octen-1-ol, CAS Registry Number 20125-84-2. Food and Chemical Toxicology 2017, 110 , S611-S618. https://doi.org/10.1016/j.fct.2017.10.015
  1309. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 2-pentylcyclopentan-1-one, CAS Registry Number 4819-67-4. Food and Chemical Toxicology 2017, 110 , S603-S610. https://doi.org/10.1016/j.fct.2017.10.016
  1310. Hui Zhang, Peng Yu, Ji-Xia Ren, Xi-Bo Li, He-Li Wang, Lan Ding, Wei-Bao Kong. Development of novel prediction model for drug-induced mitochondrial toxicity by using naïve Bayes classifier method. Food and Chemical Toxicology 2017, 110 , 122-129. https://doi.org/10.1016/j.fct.2017.10.021
  1311. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment 4-(Isopropyl)cyclohexyl propionate, CAS Registry Number 63449-95-6. Food and Chemical Toxicology 2017, 110 , S704-S710. https://doi.org/10.1016/j.fct.2017.10.046
  1312. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, 3,6-nonadien-1-ol, CAS registry number 76649-25-7. Food and Chemical Toxicology 2017, 110 , S696-S703. https://doi.org/10.1016/j.fct.2017.10.047
  1313. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, decanal dimethyl acetal, CAS Registry Number 7779-41-1. Food and Chemical Toxicology 2017, 110 , S679-S686. https://doi.org/10.1016/j.fct.2017.10.049
  1314. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, ethylene dodecanedioate, CAS registry number 54982-83-1. Food and Chemical Toxicology 2017, 110 , S670-S678. https://doi.org/10.1016/j.fct.2017.10.050
  1315. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, Ethyl 2,3,6-trimethylcyclohexyl carbonate, CAS Registry Number 93981-50-1. Food and Chemical Toxicology 2017, 110 , S718-S725. https://doi.org/10.1016/j.fct.2017.11.012
  1316. A.M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton, J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O'Brien, R. Parakhia, A. Patel, T.M. Penning, G. Ritacco, J. Romine, D. Salvito, T.W. Schultz, I.G. Sipes, Y. Thakkar, E.H. Theophilus, A.K. Tiethof, Y. Tokura, S. Tsang, J. Wahler. RIFM fragrance ingredient safety assessment, cyclohexanecarboxylic acid, 1,4-dimethyl-, methyl ester, trans - CAS Registry Number 23250-42-2. Food and Chemical Toxicology 2017, 110 , S726-S734. https://doi.org/10.1016/j.fct.2017.11.017
  1317. Steven A. Lopez, Benjamin Sanchez-Lengeling, Julio de Goes Soares, Alán Aspuru-Guzik. Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics. Joule 2017, 1 (4) , 857-870. https://doi.org/10.1016/j.joule.2017.10.006
  1318. Antonio Peón, Stefan Naulaerts, Pedro J. Ballester. Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-04264-w
  1319. Aurelio Moya-García, Tolulope Adeyelu, Felix A. Kruger, Natalie L. Dawson, Jon G. Lees, John P. Overington, Christine Orengo, Juan A. G. Ranea. Structural and Functional View of Polypharmacology. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-10012-x
  1320. Shuntaro Chiba, Takashi Ishida, Kazuyoshi Ikeda, Masahiro Mochizuki, Reiji Teramoto, Y-h. Taguchi, Mitsuo Iwadate, Hideaki Umeyama, Chandrasekaran Ramakrishnan, A. Mary Thangakani, D. Velmurugan, M. Michael Gromiha, Tatsuya Okuno, Koya Kato, Shintaro Minami, George Chikenji, Shogo D. Suzuki, Keisuke Yanagisawa, Woong-Hee Shin, Daisuke Kihara, Kazuki Z. Yamamoto, Yoshitaka Moriwaki, Nobuaki Yasuo, Ryunosuke Yoshino, Sergey Zozulya, Petro Borysko, Roman Stavniichuk, Teruki Honma, Takatsugu Hirokawa, Yutaka Akiyama, Masakazu Sekijima. An iterative compound screening contest method for identifying target protein inhibitors using the tyrosine-protein kinase Yes. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-10275-4
  1321. Keisuke Yanagisawa, Shunta Komine, Shogo D Suzuki, Masahito Ohue, Takashi Ishida, Yutaka Akiyama, . Spresso: an ultrafast compound pre-screening method based on compound decomposition. Bioinformatics 2017, 33 (23) , 3836-3843. https://doi.org/10.1093/bioinformatics/btx178
  1322. , Tao Huang, Hong Mi, Cheng-yuan Lin, Ling Zhao, Linda L. D. Zhong, Feng-bin Liu, Ge Zhang, Ai-ping Lu, Zhao-xiang Bian. MOST: most-similar ligand based approach to target prediction. BMC Bioinformatics 2017, 18 (1) https://doi.org/10.1186/s12859-017-1586-z
  1323. Jan Jelínek, Petr Škoda, David Hoksza. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites. BMC Bioinformatics 2017, 18 (S15) https://doi.org/10.1186/s12859-017-1921-4
  1324. Masataka Kuroda. A novel descriptor based on atom-pair properties. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-016-0187-6
  1325. Mahendra Awale, Jean-Louis Reymond. The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0199-x
  1326. Milan Voršilák, Daniel Svozil. Nonpher: computational method for design of hard-to-synthesize structures. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0206-2
  1327. Till Schäfer, Nils Kriege, Lina Humbeck, Karsten Klein, Oliver Koch, Petra Mutzel. Scaffold Hunter: a comprehensive visual analytics framework for drug discovery. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0213-3
  1328. Egon L. Willighagen, John W. Mayfield, Jonathan Alvarsson, Arvid Berg, Lars Carlsson, Nina Jeliazkova, Stefan Kuhn, Tomáš Pluskal, Miquel Rojas-Chertó, Ola Spjuth, Gilleain Torrance, Chris T. Evelo, Rajarshi Guha, Christoph Steinbeck. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0220-4
  1329. Alexios Koutsoukas, Keith J. Monaghan, Xiaoli Li, Jun Huan. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0226-y
  1330. Michael A. Skinnider, Chris A. Dejong, Brian C. Franczak, Paul D. McNicholas, Nathan A. Magarvey. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0234-y
  1331. Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, Hongming Chen. Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0235-x
  1332. 이문환, 김홍기, 김응희. Pairwise Neural Networks for Predicting Compound-Protein Interaction. Korean Journal of Cognitive Science 2017, 28 (4) , 299-314. https://doi.org/10.19066/cogsci.2017.28.4.005
  1333. Richard D. Smith, Jing Lu, Heather A. Carlson, . Are there physicochemical differences between allosteric and competitive ligands?. PLOS Computational Biology 2017, 13 (11) , e1005813. https://doi.org/10.1371/journal.pcbi.1005813
  1334. Wanxiang Shen, Tao Xiao, Shangying Chen, Feng Liu, Yu Zong Chen, Yuyang Jiang. Predicting the Enzymatic Hydrolysis Half‐lives of New Chemicals Using Support Vector Regression Models Based on Stepwise Feature Elimination. Molecular Informatics 2017, 36 (11) , 1600153. https://doi.org/10.1002/minf.201600153
  1335. Simone S. Grecco, Thais A. Costa-Silva, Gerold Jerz, Fernanda S. de Sousa, Vinicius S. Londero, Mariana K. Galuppo, Marta L. Lima, Bruno J. Neves, Carolina H. Andrade, Andre G. Tempone, João Henrique G. Lago. Neolignans from leaves of Nectandra leucantha (Lauraceae) display in vitro antitrypanosomal activity via plasma membrane and mitochondrial damages. Chemico-Biological Interactions 2017, 277 , 55-61. https://doi.org/10.1016/j.cbi.2017.08.017
  1336. Takayuki Kondo, Keiko Imamura, Misato Funayama, Kayoko Tsukita, Michiyo Miyake, Akira Ohta, Knut Woltjen, Masato Nakagawa, Takashi Asada, Tetsuaki Arai, Shinobu Kawakatsu, Yuishin Izumi, Ryuji Kaji, Nobuhisa Iwata, Haruhisa Inoue. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease. Cell Reports 2017, 21 (8) , 2304-2312. https://doi.org/10.1016/j.celrep.2017.10.109
  1337. Alpha A. Lee, Michael P. Brenner, Lucy J. Colwell. Optimal Design of Experiments by Combining Coarse and Fine Measurements. Physical Review Letters 2017, 119 (20) https://doi.org/10.1103/PhysRevLett.119.208101
  1338. Insun Park, Ashwini M. Londhe, Ji Woong Lim, Beoung-Geon Park, Seo Yun Jung, Jae Yeol Lee, Sang Min Lim, Kyoung Tai No, Jiyoun Lee, Ae Nim Pae. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction. Journal of Computer-Aided Molecular Design 2017, 31 (10) , 929-941. https://doi.org/10.1007/s10822-017-0067-9
  1339. Vijay H. Masand, Vesna Rastija. PyDescriptor : A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemometrics and Intelligent Laboratory Systems 2017, 169 , 12-18. https://doi.org/10.1016/j.chemolab.2017.08.003
  1340. Xian Zhang, Marjo Götte, Yvonne Ibig-Rehm, Ansgar Schuffenhauer, Marion Kamke, Dan Beisner, Danilo Guerini, Daniela Siebert, Ghislain M. C. Bonamy, Daniela Gabriel, Ursula Bodendorf. Identification of SPPL2a Inhibitors by Multiparametric Analysis of a High-Content Ultra-High-Throughput Screen. SLAS DISCOVERY: Advancing the Science of Drug Discovery 2017, 22 (9) , 1106-1119. https://doi.org/10.1177/2472555217719834
  1341. Carlos Lagos, Gerardine Segovia, Nicolás Nuñez-Navarro, Mario Faúndez, Flavia Zacconi. Novel FXa Inhibitor Identification through Integration of Ligand- and Structure-Based Approaches. Molecules 2017, 22 (10) , 1588. https://doi.org/10.3390/molecules22101588
  1342. Grace Mugumbate, Vitor Mendes, Michal Blaszczyk, Mohamad Sabbah, George Papadatos, Joel Lelievre, Lluis Ballell, David Barros, Chris Abell, Tom L. Blundell, John P. Overington. Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach. Frontiers in Pharmacology 2017, 8 https://doi.org/10.3389/fphar.2017.00681
  1343. Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, Sergio E Baranzini. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 2017, 6 https://doi.org/10.7554/eLife.26726
  1344. Pavel Polishchuk, Timur Madzhidov, Timur Gimadiev, Andrey Bodrov, Ramil Nugmanov, Alexandre Varnek. Structure–reactivity modeling using mixture-based representation of chemical reactions. Journal of Computer-Aided Molecular Design 2017, 31 (9) , 829-839. https://doi.org/10.1007/s10822-017-0044-3
  1345. Marcelo N. Gomes, Rodolpho C. Braga, Edyta M. Grzelak, Bruno J. Neves, Eugene Muratov, Rui Ma, Larry L. Klein, Sanghyun Cho, Guilherme R. Oliveira, Scott G. Franzblau, Carolina Horta Andrade. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. European Journal of Medicinal Chemistry 2017, 137 , 126-138. https://doi.org/10.1016/j.ejmech.2017.05.026
  1346. Ugo Perricone, Marcus Wieder, Thomas Seidel, Thierry Langer, Alessandro Padova, Anna Maria Almerico, Marco Tutone. A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Receptor α. ChemMedChem 2017, 12 (16) , 1399-1407. https://doi.org/10.1002/cmdc.201600526
  1347. Xiuqing Zhang, Ting Liu, Xiaohui Fan, Ni Ai. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. Journal of Molecular Graphics and Modelling 2017, 75 , 347-354. https://doi.org/10.1016/j.jmgm.2017.05.021
  1348. Hui Zhang, Ji-Xia Ren, Yan-Li Kang, Peng Bo, Jun-Yu Liang, Lan Ding, Wei-Bao Kong, Ji Zhang. Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method. Reproductive Toxicology 2017, 71 , 8-15. https://doi.org/10.1016/j.reprotox.2017.04.005
  1349. Cristian Rojas, Roberto Todeschini, Davide Ballabio, Andrea Mauri, Viviana Consonni, Piercosimo Tripaldi, Francesca Grisoni. A QSTR-Based Expert System to Predict Sweetness of Molecules. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00053
  1350. Bradley C. Doak, Craig J. Morton, Jamie S. Simpson, Martin J. Scanlon. Assembly of Fragment Screening Libraries. 2017,,, 263-283. https://doi.org/10.1002/9781119099512.ch14
  1351. Michael A. Skinnider, Nishanth J. Merwin, Chad W. Johnston, Nathan A. Magarvey. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Research 2017, 45 (W1) , W49-W54. https://doi.org/10.1093/nar/gkx320
  1352. Didier Rognan. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacology & Therapeutics 2017, 175 , 47-66. https://doi.org/10.1016/j.pharmthera.2017.02.034
  1353. Sarah D. Lamore, Ernst Ahlberg, Scott Boyer, Michelle L. Lamb, Maria P. Hortigon-Vinagre, Victor Rodriguez, Godfrey L. Smith, Johanna Sagemark, Lars Carlsson, Stephanie M. Bates, Allison L. Choy, Jonna Stålring, Clay W. Scott, Matthew F. Peters. Deconvoluting Kinase Inhibitor Induced Cardiotoxicity. Toxicological Sciences 2017, 158 (1) , 213-226. https://doi.org/10.1093/toxsci/kfx082
  1354. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine 2017, 34 (4) , 18-42. https://doi.org/10.1109/MSP.2017.2693418
  1355. Martin Vogt, Antonio de la Vega de Leon, Jürgen Bajorath. Algorithmic Chemoinformatics. 2017,,, 393-448. https://doi.org/10.1002/9781119161110.ch24
  1356. Martin Vogt, Jürgen Bajorath. Hierarchical Clustering in R. 2017,,, 103-118. https://doi.org/10.1002/9781119161110.ch6
  1357. Garrett B. Goh, Nathan O. Hodas, Abhinav Vishnu. Deep learning for computational chemistry. Journal of Computational Chemistry 2017, 38 (16) , 1291-1307. https://doi.org/10.1002/jcc.24764
  1358. Hui Zhang, Yan-Li Kang, Yuan-Yuan Zhu, Kai-Xia Zhao, Jun-Yu Liang, Lan Ding, Teng-Guo Zhang, Ji Zhang. Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity. Toxicology in Vitro 2017, 41 , 56-63. https://doi.org/10.1016/j.tiv.2017.02.016
  1359. Thomas Olson, Rahul Singh. Predicting anatomic therapeutic chemical classification codes using tiered learning. BMC Bioinformatics 2017, 18 (S8) https://doi.org/10.1186/s12859-017-1660-6
  1360. Cameron R. Pye, Matthew J. Bertin, R. Scott Lokey, William H. Gerwick, Roger G. Linington. Retrospective analysis of natural products provides insights for future discovery trends. Proceedings of the National Academy of Sciences 2017, 114 (22) , 5601-5606. https://doi.org/10.1073/pnas.1614680114
  1361. Jiansong Fang, Ling Wang, Yecheng Li, Wenwen Lian, Xiaocong Pang, Hong Wang, Dongsheng Yuan, Qi Wang, Ai-Lin Liu, Guan-Hua Du, . AlzhCPI: A knowledge base for predicting chemical-protein interactions towards Alzheimer’s disease. PLOS ONE 2017, 12 (5) , e0178347. https://doi.org/10.1371/journal.pone.0178347
  1362. Marwin H. S. Segler, Mark P. Waller. Modelling Chemical Reasoning to Predict and Invent Reactions. Chemistry - A European Journal 2017, 23 (25) , 6118-6128. https://doi.org/10.1002/chem.201604556
  1363. Marwin H. S. Segler, Mark P. Waller. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. Chemistry - A European Journal 2017, 23 (25) , 5966-5971. https://doi.org/10.1002/chem.201605499
  1364. Anne Walter, Apirat Chaikuad, Nadège Loaëc, Lutz Preu, Stefan Knapp, Laurent Meijer, Conrad Kunick, Oliver Koch. Identification of CLK1 Inhibitors by a Fragment-linking Based Virtual Screening. Molecular Informatics 2017, 36 (4) , 1600123. https://doi.org/10.1002/minf.201600123
  1365. Jakub Gunera, Florian Kindinger, Shu-Ming Li, Peter Kolb. PrenDB, a Substrate Prediction Database to Enable Biocatalytic Use of Prenyltransferases. Journal of Biological Chemistry 2017, 292 (10) , 4003-4021. https://doi.org/10.1074/jbc.M116.759118
  1366. Ichigaku Takigawa, Hiroshi Mamitsuka. Generalized Sparse Learning of Linear Models Over the Complete Subgraph Feature Set. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017, 39 (3) , 617-624. https://doi.org/10.1109/TPAMI.2016.2567399
  1367. Daniel Reker, Petra Schneider, Gisbert Schneider, JB Brown. Active learning for computational chemogenomics. Future Medicinal Chemistry 2017, 9 (4) , 381-402. https://doi.org/10.4155/fmc-2016-0197
  1368. Andreas Keller, Richard C. Gerkin, Yuanfang Guan, Amit Dhurandhar, Gabor Turu, Bence Szalai, Joel D. Mainland, Yusuke Ihara, Chung Wen Yu, Russ Wolfinger, Celine Vens, Leander Schietgat, Kurt De Grave, Raquel Norel, , Gustavo Stolovitzky, Guillermo A. Cecchi, Leslie B. Vosshall, Pablo Meyer. Predicting human olfactory perception from chemical features of odor molecules. Science 2017, 355 (6327) , 820-826. https://doi.org/10.1126/science.aal2014
  1369. Mengdi Zhang, Zhonghua Xia, Aixia Yan. Computer modeling in predicting the bioactivity of human 5-lipoxygenase inhibitors. Molecular Diversity 2017, 21 (1) , 235-246. https://doi.org/10.1007/s11030-016-9709-4
  1370. Horst Prescher, Guido Koch, Tim Schuhmann, Peter Ertl, Alex Bussenault, Meir Glick, Ina Dix, Frank Petersen, Dimitrios E. Lizos. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products. Bioorganic & Medicinal Chemistry 2017, 25 (3) , 921-925. https://doi.org/10.1016/j.bmc.2016.12.005
  1371. Damian Leśniak, Stanisław Jastrzębski, Sabina Podlewska, Wojciech M. Czarnecki, Andrzej J. Bojarski. Quo vadis G protein-coupled receptor ligands? A tool for analysis of the emergence of new groups of compounds over time. Bioorganic & Medicinal Chemistry Letters 2017, 27 (3) , 626-631. https://doi.org/10.1016/j.bmcl.2016.12.001
  1372. Fazlin Mohd Fauzi, Cini Mathew John, Arunkumar Karunanidhi, Hamse Y. Mussa, Rajesh Ramasamy, Aishah Adam, Andreas Bender. Understanding the mode-of-action of Cassia auriculata via in silico and in vivo studies towards validating it as a long term therapy for type II diabetes. Journal of Ethnopharmacology 2017, 197 , 61-72. https://doi.org/10.1016/j.jep.2016.07.058
  1373. Jing Du, Martin Neuenschwander, Yong Yu, J. Henry M. Däbritz, Nina-Rosa Neuendorff, Kolja Schleich, Aitomi Bittner, Maja Milanovic, Gregor Beuster, Silke Radetzki, Edgar Specker, Maurice Reimann, Frank Rosenbauer, Stephan Mathas, Philipp Lohneis, Michael Hummel, Bernd Dörken, Jens Peter von Kries, Soyoung Lee, Clemens A. Schmitt. Pharmacological restoration and therapeutic targeting of the B-cell phenotype in classical Hodgkin lymphoma. Blood 2017, 129 (1) , 71-81. https://doi.org/10.1182/blood-2016-02-700773
  1374. Francesca Grisoni, Daniel Reker, Petra Schneider, Lukas Friedrich, Viviana Consonni, Roberto Todeschini, Andreas Koeberle, Oliver Werz, Gisbert Schneider. Matrix-based Molecular Descriptors for Prospective Virtual Compound Screening. Molecular Informatics 2017, 36 (1-2) , 1600091. https://doi.org/10.1002/minf.201600091
  1375. Jürgen Bajorath. Molecular Similarity Concepts for Informatics Applications. 2017,,, 231-245. https://doi.org/10.1007/978-1-4939-6613-4_13
  1376. Andrea Mauri, Viviana Consonni, Roberto Todeschini. Molecular Descriptors. 2017,,, 2065-2093. https://doi.org/10.1007/978-3-319-27282-5_51
  1377. Matthew L. Danielson, Bingjie Hu, Jie Shen, Prashant V. Desai. In Silico ADME Techniques Used in Early-Phase Drug Discovery. 2017,,, 81-117. https://doi.org/10.1007/978-3-319-50042-3_4
  1378. Watshara Shoombuatong, Philip Prathipati, Wiwat Owasirikul, Apilak Worachartcheewan, Saw Simeon, Nuttapat Anuwongcharoen, Jarl E. S. Wikberg, Chanin Nantasenamat. Towards the Revival of Interpretable QSAR Models. 2017,,, 3-55. https://doi.org/10.1007/978-3-319-56850-8_1
  1379. Mario Omar García-Sánchez, Maykel Cruz-Monteagudo, José L. Medina-Franco. Quantitative Structure-Epigenetic Activity Relationships. 2017,,, 303-338. https://doi.org/10.1007/978-3-319-56850-8_8
  1380. Masahito Ohue, Takuro Yamazaki, Tomohiro Ban, Yutaka Akiyama. Link Mining for Kernel-Based Compound-Protein Interaction Predictions Using a Chemogenomics Approach. 2017,,, 549-558. https://doi.org/10.1007/978-3-319-63312-1_48
  1381. G.K. Kanev, A.J. Kooistra, I.J.P de Esch, C. de Graaf. Structural Chemogenomics Databases to Navigate Protein–Ligand Interaction Space. 2017,,, 444-471. https://doi.org/10.1016/B978-0-12-409547-2.12298-X
  1382. D. Bajusz, A. Rácz, K. Héberger. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. 2017,,, 329-378. https://doi.org/10.1016/B978-0-12-409547-2.12345-5
  1383. Diogo A. R. S. Latino, Jörg Wicker, Martin Gütlein, Emanuel Schmid, Stefan Kramer, Kathrin Fenner. Eawag-Soil in enviPath: a new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data. Environmental Science: Processes & Impacts 2017, 19 (3) , 449-464. https://doi.org/10.1039/C6EM00697C
  1384. Ryo Kunimoto, Martin Vogt, Jürgen Bajorath. Tracing compound pathways using chemical space networks. MedChemComm 2017, 8 (2) , 376-384. https://doi.org/10.1039/C6MD00628K
  1385. Elumalai Pavadai, Gurminder Kaur, Sergio Wittlin, Kelly Chibale. Identification of steroid-like natural products as antiplasmodial agents by 2D and 3D similarity-based virtual screening. MedChemComm 2017, 8 (6) , 1152-1157. https://doi.org/10.1039/C7MD00063D
  1386. Zheng Xu, Sheng Wang, Feiyun Zhu, Junzhou Huang. Seq2seq Fingerprint. 2017,,, 285-294. https://doi.org/10.1145/3107411.3107424
  1387. Sereina Riniker, Gregory A. Landrum, Floriane Montanari, Santiago D. Villalba, Julie Maier, Johanna M. Jansen, W. Patrick Walters, Anang A. Shelat. Virtual-screening workflow tutorials and prospective results from the Teach-Discover-Treat competition 2014 against malaria. F1000Research 2017, 6 , 1136. https://doi.org/10.12688/f1000research.11905.1
  1388. Christin Rakers, Daniel Reker, J.B. Brown. Small Random Forest Models for Effective Chemogenomic Active Learning. Journal of Computer Aided Chemistry 2017, 18 (0) , 124-142. https://doi.org/10.2751/jcac.18.124
  1389. Davide Ballabio, Fabrizio Biganzoli, Roberto Todeschini, Viviana Consonni. Qualitative consensus of QSAR ready biodegradability predictions. Toxicological & Environmental Chemistry 2016, 149 , 1-24. https://doi.org/10.1080/02772248.2016.1260133
  1390. Steven A. Lopez, Edward O. Pyzer-Knapp, Gregor N. Simm, Trevor Lutzow, Kewei Li, Laszlo R. Seress, Johannes Hachmann, Alán Aspuru-Guzik. The Harvard organic photovoltaic dataset. Scientific Data 2016, 3 (1) https://doi.org/10.1038/sdata.2016.86
  1391. Kathryn E. Price, Christopher M. Armstrong, Leah S. Imlay, Dana M. Hodge, C. Pidathala, Natalie J. Roberts, Jooyoung Park, Marwa Mikati, Raman Sharma, Alexandre S. Lawrenson, Niraj H. Tolia, Neil G. Berry, Paul M. O’Neill, Audrey R. Odom John. Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep36777
  1392. Petr Skoda, David Hoksza. Benchmarking platform for ligand-based virtual screening. 2016,,, 1220-1227. https://doi.org/10.1109/BIBM.2016.7822693
  1393. Igor V. Tetko, Daniel M. Lowe, Antony J. Williams. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0113-y
  1394. Isidro Cortes-Ciriano. Bioalerts: a python library for the derivation of structural alerts from bioactivity and toxicity data sets. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0125-7
  1395. Gergely Zahoránszky-Kőhalmi, Cristian G. Bologa, Tudor I. Oprea. Impact of similarity threshold on the topology of molecular similarity networks and clustering outcomes. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0127-5
  1396. Zhonghua Wang, Lu Liang, Zheng Yin, Jianping Lin. Improving chemical similarity ensemble approach in target prediction. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0130-x
  1397. Noel M. O’Boyle, Roger A. Sayle. Comparing structural fingerprints using a literature-based similarity benchmark. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0148-0
  1398. Varsha S. Kulkarni, David J. Wild. An activity canyon characterization of the pharmacological topography. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0153-3
  1399. Priyanka Banerjee, Vishal B. Siramshetty, Malgorzata N. Drwal, Robert Preissner. Computational methods for prediction of in vitro effects of new chemical structures. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0162-2
  1400. Martin Gütlein, Stefan Kramer. Filtered circular fingerprints improve either prediction or runtime performance while retaining interpretability. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0173-z
  1401. Mariana González-Medina, Fernando D. Prieto-Martínez, John R. Owen, José L. Medina-Franco. Consensus Diversity Plots: a global diversity analysis of chemical libraries. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0176-9
  1402. Alpha A. Lee, Michael P. Brenner, Lucy J. Colwell. Predicting protein–ligand affinity with a random matrix framework. Proceedings of the National Academy of Sciences 2016, 113 (48) , 13564-13569. https://doi.org/10.1073/pnas.1611138113
  1403. Michele Graciotti, Zhou Fang, Kai Johnsson, Pierre Gönczy. Chemical Genetic Screen Identifies Natural Products that Modulate Centriole Number. ChemBioChem 2016, 17 (21) , 2063-2074. https://doi.org/10.1002/cbic.201600327
  1404. Ganesh Prabhu, Sudeepto Bhattacharya, Michael P. Krein, N. Sukumar. Investigation of similarity and diversity threshold networks generated from diversity-oriented and focused chemical libraries. Journal of Mathematical Chemistry 2016, 54 (10) , 1916-1941. https://doi.org/10.1007/s10910-016-0657-0
  1405. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0. Food and Chemical Toxicology 2016, 97 , S25-S37. https://doi.org/10.1016/j.fct.2015.12.013
  1406. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, l-linalool, CAS Registry Number 126-91-0. Food and Chemical Toxicology 2016, 97 , S11-S24. https://doi.org/10.1016/j.fct.2015.12.014
  1407. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Benzyl propionate, CAS Registry Number 122-63-4. Food and Chemical Toxicology 2016, 97 , S38-S48. https://doi.org/10.1016/j.fct.2015.12.015
  1408. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, α-Methylbenzyl acetate, CAS Registry Number 93-92-5. Food and Chemical Toxicology 2016, 97 , S57-S68. https://doi.org/10.1016/j.fct.2016.01.020
  1409. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 4-methylbenzyl acetate, CAS Registry Number 2216-45-7. Food and Chemical Toxicology 2016, 97 , S80-S89. https://doi.org/10.1016/j.fct.2016.04.001
  1410. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, p-Isopropylbenzyl acetate, CAS Registry Number 59230-57-8. Food and Chemical Toxicology 2016, 97 , S69-S79. https://doi.org/10.1016/j.fct.2016.04.002
  1411. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, benzyl isobutyrate, CAS Registry Number 103-28-6. Food and Chemical Toxicology 2016, 97 , S90-S100. https://doi.org/10.1016/j.fct.2016.04.027
  1412. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, T.M. Penning, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 2-methylundecanol, CAS Registry Number 10522-26-6. Food and Chemical Toxicology 2016, 97 , S119-S128. https://doi.org/10.1016/j.fct.2016.07.028
  1413. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 1-(1,2,3,4-tetrahydro-4,4-dimethyl-1-naphthyl)propan-1-one, CAS Registry Number 74499-60-8. Food and Chemical Toxicology 2016, 97 , S101-S109. https://doi.org/10.1016/j.fct.2016.07.031
  1414. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, benzyl butyrate, CAS Registry Number 103-37-7. Food and Chemical Toxicology 2016, 97 , S136-S146. https://doi.org/10.1016/j.fct.2016.08.007
  1415. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, T.M. Penning, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 2-ethyl-1-hexanol, CAS registry number 104-76-7. Food and Chemical Toxicology 2016, 97 , S147-S156. https://doi.org/10.1016/j.fct.2016.09.001
  1416. Hui Zhang, Zhi-Xing Cao, Meng Li, Yu-Zhi Li, Cheng Peng. Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals. Food and Chemical Toxicology 2016, 97 , 141-149. https://doi.org/10.1016/j.fct.2016.09.005
  1417. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 2-ethyl-1-butanol, CAS Registry Number 97-95-0. Food and Chemical Toxicology 2016, 97 , S157-S167. https://doi.org/10.1016/j.fct.2016.09.022
  1418. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dkant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, T.M. Penning, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, linalyl benzoate, CAS Registry Number 126-64-7. Food and Chemical Toxicology 2016, 97 , S180-S191. https://doi.org/10.1016/j.fct.2016.09.023
  1419. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 3,7-dimethyl-1,6-nonadien-3-ol, CAS Registry Number 10339-55-6. Food and Chemical Toxicology 2016, 97 , S168-S179. https://doi.org/10.1016/j.fct.2016.09.024
  1420. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, 1,3,3-trimethyl-2-norbornanyl acetate, CAS registry number 13851-11-1. Food and Chemical Toxicology 2016, 97 , S201-S208. https://doi.org/10.1016/j.fct.2016.09.031
  1421. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, ethylene brassylate, CAS Registry Number 105-95-3. Food and Chemical Toxicology 2016, 97 , S192-S200. https://doi.org/10.1016/j.fct.2016.09.032
  1422. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, isobornyl propionate, CAS Registry Number 2756-56-1. Food and Chemical Toxicology 2016, 97 , S216-S223. https://doi.org/10.1016/j.fct.2016.10.008
  1423. Dávid Bajusz, György G. Ferenczy, György M. Keserű. Ensemble docking-based virtual screening yields novel spirocyclic JAK1 inhibitors. Journal of Molecular Graphics and Modelling 2016, 70 , 275-283. https://doi.org/10.1016/j.jmgm.2016.10.014
  1424. Zichen Wang, Caroline D. Monteiro, Kathleen M. Jagodnik, Nicolas F. Fernandez, Gregory W. Gundersen, Andrew D. Rouillard, Sherry L. Jenkins, Axel S. Feldmann, Kevin S. Hu, Michael G. McDermott, Qiaonan Duan, Neil R. Clark, Matthew R. Jones, Yan Kou, Troy Goff, Holly Woodland, Fabio M R. Amaral, Gregory L. Szeto, Oliver Fuchs, Sophia M. Schüssler-Fiorenza Rose, Shvetank Sharma, Uwe Schwartz, Xabier Bengoetxea Bausela, Maciej Szymkiewicz, Vasileios Maroulis, Anton Salykin, Carolina M. Barra, Candice D. Kruth, Nicholas J. Bongio, Vaibhav Mathur, Radmila D Todoric, Udi E. Rubin, Apostolos Malatras, Carl T. Fulp, John A. Galindo, Ruta Motiejunaite, Christoph Jüschke, Philip C. Dishuck, Katharina Lahl, Mohieddin Jafari, Sara Aibar, Apostolos Zaravinos, Linda H. Steenhuizen, Lindsey R. Allison, Pablo Gamallo, Fernando de Andres Segura, Tyler Dae Devlin, Vicente Pérez-García, Avi Ma’ayan. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12846
  1425. Shardul Paricharak, Oscar Méndez-Lucio, Aakash Chavan Ravindranath, Andreas Bender, Adriaan P. IJzerman, Gerard J. P. van Westen. Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Briefings in Bioinformatics 2016, 5 , bbw105. https://doi.org/10.1093/bib/bbw105
  1426. Michael A. Skinnider, Chad W. Johnston, Robyn E. Edgar, Chris A. Dejong, Nishanth J. Merwin, Philip N. Rees, Nathan A. Magarvey. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proceedings of the National Academy of Sciences 2016, 113 (42) , E6343-E6351. https://doi.org/10.1073/pnas.1609014113
  1427. Pau Carrió, Ferran Sanz, Manuel Pastor. Toward a unifying strategy for the structure-based prediction of toxicological endpoints. Archives of Toxicology 2016, 90 (10) , 2445-2460. https://doi.org/10.1007/s00204-015-1618-2
  1428. Hui Zhang, Lan Ding, Yi Zou, Shui-Qing Hu, Hai-Guo Huang, Wei-Bao Kong, Ji Zhang. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach. Journal of Computer-Aided Molecular Design 2016, 30 (10) , 889-898. https://doi.org/10.1007/s10822-016-9972-6
  1429. Carmen Di Giovanni, Roberta Ettari, Serena Sarno, Archimede Rotondo, Alessandra Bitto, Francesco Squadrito, Domenica Altavilla, Tanja Schirmeister, Ettore Novellino, Silvana Grasso, Maria Zappalà, Antonio Lavecchia. Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual screening. European Journal of Medicinal Chemistry 2016, 121 , 578-591. https://doi.org/10.1016/j.ejmech.2016.05.049
  1430. Nobutaka Kato, Eamon Comer, Tomoyo Sakata-Kato, Arvind Sharma, Manmohan Sharma, Micah Maetani, Jessica Bastien, Nicolas M. Brancucci, Joshua A. Bittker, Victoria Corey, David Clarke, Emily R. Derbyshire, Gillian L. Dornan, Sandra Duffy, Sean Eckley, Maurice A. Itoe, Karin M. J. Koolen, Timothy A. Lewis, Ping S. Lui, Amanda K. Lukens, Emily Lund, Sandra March, Elamaran Meibalan, Bennett C. Meier, Jacob A. McPhail, Branko Mitasev, Eli L. Moss, Morgane Sayes, Yvonne Van Gessel, Mathias J. Wawer, Takashi Yoshinaga, Anne-Marie Zeeman, Vicky M. Avery, Sangeeta N. Bhatia, John E. Burke, Flaminia Catteruccia, Jon C. Clardy, Paul A. Clemons, Koen J. Dechering, Jeremy R. Duvall, Michael A. Foley, Fabian Gusovsky, Clemens H. M. Kocken, Matthias Marti, Marshall L. Morningstar, Benito Munoz, Daniel E. Neafsey, Amit Sharma, Elizabeth A. Winzeler, Dyann F. Wirth, Christina A. Scherer, Stuart L. Schreiber. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 2016, 538 (7625) , 344-349. https://doi.org/10.1038/nature19804
  1431. Rafael Gómez-Bombarelli, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, David Duvenaud, Dougal Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha, Tony Wu, Georgios Markopoulos, Soonok Jeon, Hosuk Kang, Hiroshi Miyazaki, Masaki Numata, Sunghan Kim, Wenliang Huang, Seong Ik Hong, Marc Baldo, Ryan P. Adams, Alán Aspuru-Guzik. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nature Materials 2016, 15 (10) , 1120-1127. https://doi.org/10.1038/nmat4717
  1432. David Hoksza, Petr Skoda. Using Bayesian modeling on molecular fragments features for virtual screening. 2016,,, 1-6. https://doi.org/10.1109/CIBCB.2016.7758111
  1433. Ashutosh Kumar, Kam Y. J. Zhang. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. Journal of Computer-Aided Molecular Design 2016, 30 (9) , 685-693. https://doi.org/10.1007/s10822-016-9931-2
  1434. Jocelyn Sunseri, Matthew Ragoza, Jasmine Collins, David Ryan Koes. A D3R prospective evaluation of machine learning for protein-ligand scoring. Journal of Computer-Aided Molecular Design 2016, 30 (9) , 761-771. https://doi.org/10.1007/s10822-016-9960-x
  1435. Philip Prathipati, Chioko Nagao, Shandar Ahmad, Kenji Mizuguchi. Improved pose and affinity predictions using different protocols tailored on the basis of data availability. Journal of Computer-Aided Molecular Design 2016, 30 (9) , 817-828. https://doi.org/10.1007/s10822-016-9982-4
  1436. Victoria C. Corey, Amanda K. Lukens, Eva S. Istvan, Marcus C. S. Lee, Virginia Franco, Pamela Magistrado, Olivia Coburn-Flynn, Tomoyo Sakata-Kato, Olivia Fuchs, Nina F. Gnädig, Greg Goldgof, Maria Linares, Maria G. Gomez-Lorenzo, Cristina De Cózar, Maria Jose Lafuente-Monasterio, Sara Prats, Stephan Meister, Olga Tanaseichuk, Melanie Wree, Yingyao Zhou, Paul A. Willis, Francisco-Javier Gamo, Daniel E. Goldberg, David A. Fidock, Dyann F. Wirth, Elizabeth A. Winzeler. A broad analysis of resistance development in the malaria parasite. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11901
  1437. Albert J. Kooistra, Henry F. Vischer, Daniel McNaught-Flores, Rob Leurs, Iwan J. P. de Esch, Chris de Graaf. Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28288
  1438. Ingo Muegge, Jörg Bentzien, Prasenjit Mukherjee, Robert O Hughes. Automatically updating predictive modeling workflows support decision-making in drug design. Future Medicinal Chemistry 2016, 8 (14) , 1779-1796. https://doi.org/10.4155/fmc-2016-0070
  1439. Boxue Tian, C. Dale Poulter, Matthew P. Jacobson, . Defining the Product Chemical Space of Monoterpenoid Synthases. PLOS Computational Biology 2016, 12 (8) , e1005053. https://doi.org/10.1371/journal.pcbi.1005053
  1440. Jing Lu, Heather A. Carlson. ChemTreeMap: an interactive map of biochemical similarity in molecular datasets. Bioinformatics 2016, 8 , btw523. https://doi.org/10.1093/bioinformatics/btw523
  1441. Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley. Molecular graph convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design 2016, 30 (8) , 595-608. https://doi.org/10.1007/s10822-016-9938-8
  1442. Mathias M. von Behren, Stefan Bietz, Eva Nittinger, Matthias Rarey. mRAISE: an alternative algorithmic approach to ligand-based virtual screening. Journal of Computer-Aided Molecular Design 2016, 30 (8) , 583-594. https://doi.org/10.1007/s10822-016-9940-1
  1443. J. Jesús Naveja, Francisco Cortés-Benítez, Eugene Bratoeff, José L. Medina-Franco. Activity landscape analysis of novel 5$$\upalpha $$-reductase inhibitors. Molecular Diversity 2016, 20 (3) , 771-780. https://doi.org/10.1007/s11030-016-9659-x
  1444. Danishuddin, Asad U. Khan. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discovery Today 2016, 21 (8) , 1291-1302. https://doi.org/10.1016/j.drudis.2016.06.013
  1445. Imran Shah, Jie Liu, Richard S. Judson, Russell S. Thomas, Grace Patlewicz. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Regulatory Toxicology and Pharmacology 2016, 79 , 12-24. https://doi.org/10.1016/j.yrtph.2016.05.008
  1446. Nolen Joy Perualila-Tan, Ziv Shkedy, Willem Talloen, Hinrich W. H. Göhlmann, , Marijke Van Moerbeke, Adetayo Kasim. Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery. Journal of Bioinformatics and Computational Biology 2016, 14 (04) , 1650018. https://doi.org/10.1142/S0219720016500189
  1447. Simone de Jong, Lewis R Vidler, Younes Mokrab, David A Collier, Gerome Breen. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia. Journal of Psychopharmacology 2016, 30 (8) , 826-830. https://doi.org/10.1177/0269881116653109
  1448. Mariana González-Medina, Fernando D Prieto-Martínez, J Jesús Naveja, Oscar Méndez-Lucio, Tamam El-Elimat, Cedric J Pearce, Nicholas H Oberlies, Mario Figueroa, José L Medina-Franco. Chemoinformatic expedition of the chemical space of fungal products. Future Medicinal Chemistry 2016, 8 (12) , 1399-1412. https://doi.org/10.4155/fmc-2016-0079
  1449. Matthew J. O’Meara, Sara Ballouz, Brian K. Shoichet, Jesse Gillis, . Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction. PLOS ONE 2016, 11 (7) , e0160098. https://doi.org/10.1371/journal.pone.0160098
  1450. Baudoin Delépine, Vincent Libis, Pablo Carbonell, Jean-Loup Faulon. SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Research 2016, 44 (W1) , W226-W231. https://doi.org/10.1093/nar/gkw305
  1451. Ryo Kunimoto, Martin Vogt, Jürgen Bajorath. Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure. Journal of Computer-Aided Molecular Design 2016, 30 (7) , 523-531. https://doi.org/10.1007/s10822-016-9935-y
  1452. Ashutosh Kumar, Kam Y. J. Zhang. A pose prediction approach based on ligand 3D shape similarity. Journal of Computer-Aided Molecular Design 2016, 30 (6) , 457-469. https://doi.org/10.1007/s10822-016-9923-2
  1453. Serena Nembri, Francesca Grisoni, Viviana Consonni, Roberto Todeschini. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9. International Journal of Molecular Sciences 2016, 17 (6) , 914. https://doi.org/10.3390/ijms17060914
  1454. Federico Mattiello, Olivier Thas, Bie Verbist. Principal bicorrelation analysis: Unraveling associations between three data sources. Journal of Biopharmaceutical Statistics 2016, 26 (3) , 534-551. https://doi.org/10.1080/10543406.2015.1052491
  1455. Nadya Velikova, Simone Fulle, Ana Sousa Manso, Milena Mechkarska, Paul Finn, J. Michael Conlon, Marco Rinaldo Oggioni, Jerry M. Wells, Alberto Marina. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep26085
  1456. Antonio Peón, Cuong C. Dang, Pedro J. Ballester. How Reliable Are Ligand-Centric Methods for Target Fishing?. Frontiers in Chemistry 2016, 4 https://doi.org/10.3389/fchem.2016.00015
  1457. Yang Li, Yue Kong, Mengdi Zhang, Aixia Yan, Zhenming Liu. Using Support Vector Machine (SVM) for Classification of Selectivity of H1N1 Neuraminidase Inhibitors. Molecular Informatics 2016, 35 (3-4) , 116-124. https://doi.org/10.1002/minf.201500107
  1458. Giuseppe Marco Randazzo, David Tonoli, Stephanie Hambye, Davy Guillarme, Fabienne Jeanneret, Alessandra Nurisso, Laura Goracci, Julien Boccard, Serge Rudaz. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification. Analytica Chimica Acta 2016, 916 , 8-16. https://doi.org/10.1016/j.aca.2016.02.014
  1459. Alayna M. George Thompson, Oleg Ursu, Petr Babkin, Cristina V. Iancu, Alex Whang, Tudor I. Oprea, Jun-yong Choe. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24240
  1460. Zengrui Wu, Feixiong Cheng, Jie Li, Weihua Li, Guixia Liu, Yun Tang. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning. Briefings in Bioinformatics 2016, 4 , bbw012. https://doi.org/10.1093/bib/bbw012
  1461. Alexios Koutsoukas, Joseph St. Amand, Meenakshi Mishra, Jun Huan. Predictive Toxicology: Modeling Chemical Induced Toxicological Response Combining Circular Fingerprints with Random Forest and Support Vector Machine. Frontiers in Environmental Science 2016, 4 https://doi.org/10.3389/fenvs.2016.00011
  1462. Martin Vogt, Dagmar Stumpfe, Gerald M. Maggiora, Jürgen Bajorath. Lessons learned from the design of chemical space networks and opportunities for new applications. Journal of Computer-Aided Molecular Design 2016, 30 (3) , 191-208. https://doi.org/10.1007/s10822-016-9906-3
  1463. Igor V. Tetko, Hristo P. Varbanov, Markus Galanski, Mona Talmaciu, James A. Platts, Mauro Ravera, Elisabetta Gabano. Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches. Journal of Inorganic Biochemistry 2016, 156 , 1-13. https://doi.org/10.1016/j.jinorgbio.2015.12.006
  1464. Tingting Liu, Dong Lu, Hao Zhang, Mingyue Zheng, Huaiyu Yang, Yechun Xu, Cheng Luo, Weiliang Zhu, Kunqian Yu, Hualiang Jiang. Applying high-performance computing in drug discovery and molecular simulation. National Science Review 2016, 3 (1) , 49-63. https://doi.org/10.1093/nsr/nww003
  1465. Yvonne C. Martin, Ruben Abagyan, György G. Ferenczy, Val J. Gillet, Tudor I. Oprea, Johan Ulander, David Winkler, Nicolai S. Zefirov. Glossary of terms used in computational drug design, part II (IUPAC Recommendations 2015). Pure and Applied Chemistry 2016, 88 (3) , 239-264. https://doi.org/10.1515/pac-2012-1204
  1466. Yu Wei, Jinlong Li, Jie Qing, Mingjie Huang, Ming Wu, Fenghua Gao, Dongmei Li, Zhangyong Hong, Lingbao Kong, Weiqiang Huang, Jianping Lin, . Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking. PLOS ONE 2016, 11 (2) , e0148181. https://doi.org/10.1371/journal.pone.0148181
  1467. Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Sepp Hochreiter. DeepTox: Toxicity Prediction using Deep Learning. Frontiers in Environmental Science 2016, 3 https://doi.org/10.3389/fenvs.2015.00080
  1468. Ingo Muegge, Prasenjit Mukherjee. An overview of molecular fingerprint similarity search in virtual screening. Expert Opinion on Drug Discovery 2016, 11 (2) , 137-148. https://doi.org/10.1517/17460441.2016.1117070
  1469. Jean-Louis Reymond, Ricardo Visini, Mahendra Awale. Enumeration of Chemical Fragment Space. 2016,,, 57-74. https://doi.org/10.1002/9783527683604.ch03
  1470. Albert J. Kooistra, Georgi K. Kanev, Oscar P.J. van Linden, Rob Leurs, Iwan J.P. de Esch, Chris de Graaf. KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Research 2016, 44 (D1) , D365-D371. https://doi.org/10.1093/nar/gkv1082
  1471. Dennie G. A. J. Hebels, Axel Rasche, Ralf Herwig, Gerard J. P. van Westen, Danyel G. J. Jennen, Jos C. S. Kleinjans. A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure. 2016,,, 339-359. https://doi.org/10.1007/978-1-4939-3609-0_15
  1472. Alexander Dörr, Sebastian Otte, Andreas Zell. Investigating Recurrent Neural Networks for Feature-Less Computational Drug Design. 2016,,, 140-148. https://doi.org/10.1007/978-3-319-44778-0_17
  1473. Katrin Ullrich, Jennifer Mack, Pascal Welke. Ligand Affinity Prediction with Multi-pattern Kernels. 2016,,, 474-489. https://doi.org/10.1007/978-3-319-46307-0_30
  1474. Andrea Mauri, Viviana Consonni, Roberto Todeschini. Molecular Descriptors. 2016,,, 1-29. https://doi.org/10.1007/978-94-007-6169-8_51-1
  1475. Mengjun Wu, Martin Vogt, Gerald M. Maggiora, Jürgen Bajorath. Design of chemical space networks on the basis of Tversky similarity. Journal of Computer-Aided Molecular Design 2016, 30 (1) , 1-12. https://doi.org/10.1007/s10822-015-9891-y
  1476. Sun Hongmao. Quantitative Structure–Activity Relationships. 2016,,, 163-192. https://doi.org/10.1016/B978-0-08-100098-4.00005-3
  1477. Manish K. Gupta, Swati Gupta, Ravindra K. Rawal. Impact of Artificial Neural Networks in QSAR and Computational Modeling. 2016,,, 153-179. https://doi.org/10.1016/B978-0-12-801559-9.00008-9
  1478. Oscar Méndez-Lucio. Computational Structure–Activity Relationship Studies of Epigenetic Target Inhibitors. 2016,,, 359-384. https://doi.org/10.1016/B978-0-12-802808-7.00013-7
  1479. Guillaume Paillard, Philip Cochrane, Philip S. Jones, Willem P. van Hoorn, Andrei Caracoti, Herman van Vlijmen, Andrew D. Pannifer. The ELF Honest Data Broker: informatics enabling public–private collaboration in a precompetitive arena. Drug Discovery Today 2016, 21 (1) , 97-102. https://doi.org/10.1016/j.drudis.2015.11.005
  1480. Naeem Shaikh, Mahesh Sharma, Prabha Garg. An improved approach for predicting drug–target interaction: proteochemometrics to molecular docking. Molecular BioSystems 2016, 12 (3) , 1006-1014. https://doi.org/10.1039/C5MB00650C
  1481. Edward O. Pyzer-Knapp, Gregor N. Simm, Alán Aspuru Guzik. A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials. Materials Horizons 2016, 3 (3) , 226-233. https://doi.org/10.1039/C5MH00282F
  1482. D. Reker, P. Schneider, G. Schneider. Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors. Chemical Science 2016, 7 (6) , 3919-3927. https://doi.org/10.1039/C5SC04272K
  1483. M. Klika Škopić, O. Bugain, K. Jung, S. Onstein, S. Brandherm, T. Kalliokoski, A. Brunschweiger. Design and synthesis of DNA-encoded libraries based on a benzodiazepine and a pyrazolopyrimidine scaffold. MedChemComm 2016, 7 (10) , 1957-1965. https://doi.org/10.1039/C6MD00243A
  1484. M. Arda, I. I. Ozturk, C. N. Banti, N. Kourkoumelis, M. Manoli, A. J. Tasiopoulos, S. K. Hadjikakou. Novel bismuth compounds: synthesis, characterization and biological activity against human adenocarcinoma cells. RSC Advances 2016, 6 (35) , 29026-29044. https://doi.org/10.1039/C6RA01181K
  1485. Enade Perdana Istyastono. Increasing the virtual screening quality to identify adrenergic β2 receptor ligands using classification trees. 2016,,, 080004. https://doi.org/10.1063/1.4958512
  1486. Swarit Jasial, Ye Hu, Martin Vogt, Jürgen Bajorath. Activity-relevant similarity values for fingerprints and implications for similarity searching. F1000Research 2016, 5 , 591. https://doi.org/10.12688/f1000research.8357.2
  1487. Nolen Perualila-Tan, Adetayo Kasim, Willem Talloen, Bie Verbist, Hinrich W.H. Göhlmann, QSTAR Consortium, Ziv Shkedy. A joint modeling approach for uncovering associations between gene expression, bioactivity and chemical structure in early drug discovery to guide lead selection and genomic biomarker development. Statistical Applications in Genetics and Molecular Biology 2016, 15 (4) https://doi.org/10.1515/sagmb-2014-0086
  1488. Elena Salmina, Norbert Haider, Igor Tetko. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds. Molecules 2016, 21 (1) , 1. https://doi.org/10.3390/molecules21010001
  1489. . Accelerating Group Fusion for Ligand-Based Virtual Screening on Multi-core and Many-core Platforms. Journal of Information Processing Systems 2016,,https://doi.org/10.3745/JIPS.01.0012
  1490. María Jose Rebollo-Lopez, Joël Lelièvre, Daniel Alvarez-Gomez, Julia Castro-Pichel, Francisco Martínez-Jiménez, George Papadatos, Vinod Kumar, Gonzalo Colmenarejo, Grace Mugumbate, Mark Hurle, Vanessa Barroso, Rob J. Young, María Martinez-Hoyos, Rubén González del Río, Robert H. Bates, Eva Maria Lopez-Roman, Alfonso Mendoza-Losana, James R. Brown, Emilio Alvarez-Ruiz, Marc A. Marti-Renom, John P. Overington, Nicholas Cammack, Lluís Ballell, David Barros-Aguire, . Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery. PLOS ONE 2015, 10 (12) , e0142293. https://doi.org/10.1371/journal.pone.0142293
  1491. Anne Mai Wassermann, Eugen Lounkine, Dominic Hoepfner, Gaelle Le Goff, Frederick J King, Christian Studer, John M Peltier, Melissa L Grippo, Vivian Prindle, Jianshi Tao, Ansgar Schuffenhauer, Iain M Wallace, Shanni Chen, Philipp Krastel, Amanda Cobos-Correa, Christian N Parker, John W Davies, Meir Glick. Dark chemical matter as a promising starting point for drug lead discovery. Nature Chemical Biology 2015, 11 (12) , 958-966. https://doi.org/10.1038/nchembio.1936
  1492. Emna Harigua-Souiai, Isidro Cortes-Ciriano, Nathan Desdouits, Thérèse E Malliavin, Ikram Guizani, Michael Nilges, Arnaud Blondel, Guillaume Bouvier. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. BMC Bioinformatics 2015, 16 (1) https://doi.org/10.1186/s12859-015-0518-z
  1493. Bjoern-Oliver Gohlke, Tim Overkamp, Anja Richter, Antje Richter, Peter T. Daniel, Bernd Gillissen, Robert Preissner. 2D and 3D similarity landscape analysis identifies PARP as a novel off-target for the drug Vatalanib. BMC Bioinformatics 2015, 16 (1) https://doi.org/10.1186/s12859-015-0730-x
  1494. Isidro Cortes-Ciriano, Daniel S Murrell, Gerard JP van Westen, Andreas Bender, Thérèse E Malliavin. Prediction of the potency of mammalian cyclooxygenase inhibitors with ensemble proteochemometric modeling. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-014-0049-z
  1495. Alexander Dörr, Lars Rosenbaum, Andreas Zell. A ranking method for the concurrent learning of compounds with various activity profiles. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-014-0050-6
  1496. Mahendra Awale, Xian Jin, Jean-Louis Reymond. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-014-0051-5
  1497. Alberto Gobbi, Anthony M Giannetti, Huifen Chen, Man-Ling Lee. Atom-Atom-Path similarity and Sphere Exclusion clustering: tools for prioritizing fragment hits. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0056-8
  1498. Dávid Bajusz, Anita Rácz, Károly Héberger. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0069-3
  1499. Avid M Afzal, Hamse Y Mussa, Richard E Turner, Andreas Bender, Robert C Glen. A multi-label approach to target prediction taking ligand promiscuity into account. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0071-9
  1500. Hamse Y Mussa, David Marcus, John B O Mitchell, Robert C Glen. Verifying the fully “Laplacianised” posterior Naïve Bayesian approach and more. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0075-5
  1501. Volker D Hähnke, Evan E Bolton, Stephen H Bryant. PubChem atom environments. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0076-4
  1502. Daniel S Murrell, Isidro Cortes-Ciriano, Gerard J P van Westen, Ian P Stott, Andreas Bender, Thérèse E Malliavin, Robert C Glen. Chemically Aware Model Builder (camb): an R package for property and bioactivity modelling of small molecules. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0086-2
  1503. Yocheved Gilad, Katalin Nadassy, Hanoch Senderowitz. A reliable computational workflow for the selection of optimal screening libraries. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0108-0
  1504. Alessandro Lusci, David Fooshee, Michael Browning, Joshua Swamidass, Pierre Baldi. Accurate and efficient target prediction using a potency-sensitive influence-relevance voter. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0110-6
  1505. Alessandra Capasso, Carmen Cerchia, Carmen Di Giovanni, Giuseppina Granato, Francesco Albano, Simona Romano, Emmanuele De Vendittis, Maria Rosaria Ruocco, Antonio Lavecchia. Ligand-based chemoinformatic discovery of a novel small molecule inhibitor targeting CDC25 dual specificity phosphatases and displaying in vitro efficacy against melanoma cells. Oncotarget 2015, 6 (37) , 40202-40222. https://doi.org/10.18632/oncotarget.5473
  1506. Edward O. Pyzer-Knapp, Kewei Li, Alan Aspuru-Guzik. Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery. Advanced Functional Materials 2015, 25 (41) , 6495-6502. https://doi.org/10.1002/adfm.201501919
  1507. Jaime Pérez-Villanueva, Oscar Méndez-Lucio, Olivia Soria-Arteche, José L. Medina-Franco. Activity cliffs and activity cliff generators based on chemotype-related activity landscapes. Molecular Diversity 2015, 19 (4) , 1021-1035. https://doi.org/10.1007/s11030-015-9609-z
  1508. Petr Skoda, David Hoksza. Exploration of topological torsion fingerprints. 2015,,, 822-828. https://doi.org/10.1109/BIBM.2015.7359792
  1509. Michael A. Skinnider, Chris A. Dejong, Philip N. Rees, Chad W. Johnston, Haoxin Li, Andrew L. H. Webster, Morgan A. Wyatt, Nathan A. Magarvey. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Research 2015, 41 , gkv1012. https://doi.org/10.1093/nar/gkv1012
  1510. J Jesús Naveja, José L Medina-Franco. Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opinion on Drug Discovery 2015, 10 (10) , 1059-1070. https://doi.org/10.1517/17460441.2015.1073257
  1511. B Chen, P Greenside, H Paik, M Sirota, D Hadley, AJ Butte. Relating Chemical Structure to Cellular Response: An Integrative Analysis of Gene Expression, Bioactivity, and Structural Data Across 11,000 Compounds. CPT: Pharmacometrics & Systems Pharmacology 2015, 4 (10) , 576-584. https://doi.org/10.1002/psp4.12009
  1512. A. R. Bradley, I. D. Wall, F. von Delft, D. V. S. Green, C. M. Deane, B. D. Marsden. WONKA: objective novel complex analysis for ensembles of protein–ligand structures. Journal of Computer-Aided Molecular Design 2015, 29 (10) , 963-973. https://doi.org/10.1007/s10822-015-9866-z
  1513. Bijun Zhang, Martin Vogt, Gerald M. Maggiora, Jürgen Bajorath. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures. Journal of Computer-Aided Molecular Design 2015, 29 (10) , 937-950. https://doi.org/10.1007/s10822-015-9872-1
  1514. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, (Z)-2-penten-1-ol, CAS Registry Number 1576-95-0. Food and Chemical Toxicology 2015, 84 , S66-S75. https://doi.org/10.1016/j.fct.2015.06.022
  1515. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, (2E,6Z)-Nona-2,6-dien-1-ol, CAS registry number 28069-72-9. Food and Chemical Toxicology 2015, 84 , S57-S65. https://doi.org/10.1016/j.fct.2015.06.023
  1516. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Isoborneol, CAS Registry Number 124-76-5. Food and Chemical Toxicology 2015, 84 , S33-S41. https://doi.org/10.1016/j.fct.2015.08.011
  1517. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Fenchyl alcohol, CAS registry number 1632-73-1. Food and Chemical Toxicology 2015, 84 , S25-S32. https://doi.org/10.1016/j.fct.2015.08.022
  1518. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Linalyl isovalerate, CAS Registry Number 1118-27-0. Food and Chemical Toxicology 2015, 84 , S88-S99. https://doi.org/10.1016/j.fct.2015.08.025
  1519. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, α-butylcinnamaldehyde, CAS Registry Number 7492-44-6. Food and Chemical Toxicology 2015, 84 , S100-S109. https://doi.org/10.1016/j.fct.2015.09.006
  1520. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, linalyl isobutyrate, CAS registry number 78-35-3. Food and Chemical Toxicology 2015, 84 , S76-S87. https://doi.org/10.1016/j.fct.2015.09.013
  1521. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, T.W. Schultz, J. Shen, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, isoamyl salicylate, CAS registry number 87-20-7. Food and Chemical Toxicology 2015, 84 , S110-S121. https://doi.org/10.1016/j.fct.2015.09.014
  1522. Woo Dae Jang, Jun-Tae Kim, Hoon Young Son, Seung Yeon Park, Young Sik Cho, Tae-sung Koo, Hyuk Lee, Nam Sook Kang. Discovery of Tyk2 inhibitors via the virtual site-directed fragment-based drug design. Bioorganic & Medicinal Chemistry Letters 2015, 25 (18) , 3947-3952. https://doi.org/10.1016/j.bmcl.2015.07.037
  1523. , Federica Eduati, Lara M Mangravite, Tao Wang, Hao Tang, J Christopher Bare, Ruili Huang, Thea Norman, Mike Kellen, Michael P Menden, Jichen Yang, Xiaowei Zhan, Rui Zhong, Guanghua Xiao, Menghang Xia, Nour Abdo, Oksana Kosyk, Stephen Friend, Allen Dearry, Anton Simeonov, Raymond R Tice, Ivan Rusyn, Fred A Wright, Gustavo Stolovitzky, Yang Xie, Julio Saez-Rodriguez. Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology 2015, 33 (9) , 933-940. https://doi.org/10.1038/nbt.3299
  1524. Hugo Villar. Library Design, Chemical Space, and Drug Likeness. 2015,,, 79-98. https://doi.org/10.1201/b18799-5
  1525. Álvaro Cortés-Cabrera, Pedro Murcia, Antonio Morreale, Federico Gago. Ligand-Based Drug Discovery and Design. 2015,,, 99-121. https://doi.org/10.1201/b18799-6
  1526. Jakub Gunera, Peter Kolb. Fragment-based similarity searching with infinite color space. Journal of Computational Chemistry 2015, 36 (21) , 1597-1608. https://doi.org/10.1002/jcc.23974
  1527. Janina Schmitz, Norbert Furtmann, Moritz Ponert, Maxim Frizler, Reik Löser, Ulrike Bartz, Jürgen Bajorath, Michael Gütschow. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors. ChemMedChem 2015, 10 (8) , 1365-1377. https://doi.org/10.1002/cmdc.201500151
  1528. Stefan M. Noha, Katrin Fischer, Andreas Koeberle, Ulrike Garscha, Oliver Werz, Daniela Schuster. Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorganic & Medicinal Chemistry 2015, 23 (15) , 4839-4845. https://doi.org/10.1016/j.bmc.2015.05.045
  1529. Yu Wei, Jinlong Li, Zeming Chen, Fengwei Wang, Weiqiang Huang, Zhangyong Hong, Jianping Lin. Multistage virtual screening and identification of novel HIV-1 protease inhibitors by integrating SVM, shape, pharmacophore and docking methods. European Journal of Medicinal Chemistry 2015, 101 , 409-418. https://doi.org/10.1016/j.ejmech.2015.06.054
  1530. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Linalool, CAS registry number 78-70-6. Food and Chemical Toxicology 2015, 82 , S29-S38. https://doi.org/10.1016/j.fct.2015.01.005
  1531. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, α-amylcinnamaldehyde, CAS registry number 122-40-7. Food and Chemical Toxicology 2015, 82 , S20-S28. https://doi.org/10.1016/j.fct.2015.01.008
  1532. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, Linalyl hexanoate, CAS Registry Number 7779-23-9. Food and Chemical Toxicology 2015, 82 , S49-S58. https://doi.org/10.1016/j.fct.2015.01.009
  1533. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, allyl (cyclohexyloxy)acetate, CAS registry number 68901-15-5. Food and Chemical Toxicology 2015, 82 , S59-S65. https://doi.org/10.1016/j.fct.2015.03.016
  1534. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, ethyl anthranilate, CAS registry number 87-25-2. Food and Chemical Toxicology 2015, 82 , S97-S104. https://doi.org/10.1016/j.fct.2015.03.017
  1535. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, allyl phenylacetate, CAS registry number 1797-74-6. Food and Chemical Toxicology 2015, 82 , S66-S73. https://doi.org/10.1016/j.fct.2015.03.018
  1536. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, α-Irone, CAS registry number 79-69-6. Food and Chemical Toxicology 2015, 82 , S105-S113. https://doi.org/10.1016/j.fct.2015.03.019
  1537. A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, borneol, CAS registry number 507-70-0. Food and Chemical Toxicology 2015, 82 , S81-S88. https://doi.org/10.1016/j.fct.2015.04.012
  1538. Dagmar Stumpfe, Jürgen Bajorath. Monitoring global growth of activity cliff information over time and assessing activity cliff frequencies and distributions. Future Medicinal Chemistry 2015, 7 (12) , 1565-1579. https://doi.org/10.4155/fmc.15.89
  1539. Malgorzata N. Drwal, Vishal B. Siramshetty, Priyanka Banerjee, Andrean Goede, Robert Preissner, Mathias Dunkel. Molecular similarity-based predictions of the Tox21 screening outcome. Frontiers in Environmental Science 2015, 3 https://doi.org/10.3389/fenvs.2015.00054
  1540. Bijun Zhang, Martin Vogt, Gerald M. Maggiora, Jürgen Bajorath. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity. Journal of Computer-Aided Molecular Design 2015, 29 (7) , 595-608. https://doi.org/10.1007/s10822-015-9852-5
  1541. José L Medina-Franco, Gabriel Navarrete-Vázquez, Oscar Méndez-Lucio. Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry. Future Medicinal Chemistry 2015, 7 (9) , 1197-1211. https://doi.org/10.4155/fmc.15.51
  1542. Enade P. Istyastono, Albert J. Kooistra, Henry F. Vischer, Martien Kuijer, Luc Roumen, Saskia Nijmeijer, Rogier A. Smits, Iwan J. P. de Esch, Rob Leurs, Chris de Graaf. Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H 4 receptor. MedChemComm 2015, 6 (6) , 1003-1017. https://doi.org/10.1039/C5MD00022J
  1543. Isidro Cortés-Ciriano, Andreas Bender, Thérèse Malliavin. Prediction of PARP Inhibition with Proteochemometric Modelling and Conformal Prediction. Molecular Informatics 2015, 34 (6-7) , 357-366. https://doi.org/10.1002/minf.201400165
  1544. Guanzhong Wu, Zhen Zhang, Hong Chen, Kejiang Lin. De novo design of caseinolytic protein proteases inhibitors based on pharmacophore and 2D molecular fingerprints. Bioorganic & Medicinal Chemistry Letters 2015, 25 (11) , 2345-2352. https://doi.org/10.1016/j.bmcl.2015.04.035
  1545. Peter S. Kutchukian, Anne Mai Wassermann, Mika K. Lindvall, S. Kirk Wright, Johannes Ottl, Jaison Jacob, Clemens Scheufler, Andreas Marzinzik, Natasja Brooijmans, Meir Glick. Large Scale Meta-Analysis of Fragment-Based Screening Campaigns. Journal of Biomolecular Screening 2015, 20 (5) , 588-596. https://doi.org/10.1177/1087057114565080
  1546. Alessandra Guidi, Nuha R. Mansour, Ross A. Paveley, Ian M. Carruthers, Jérémy Besnard, Andrew L. Hopkins, Ian H. Gilbert, Quentin D. Bickle, . Application of RNAi to Genomic Drug Target Validation in Schistosomes. PLOS Neglected Tropical Diseases 2015, 9 (5) , e0003801. https://doi.org/10.1371/journal.pntd.0003801
  1547. Miguel Garcia-Castro, Lea Kremer, Christopher D. Reinkemeier, Christian Unkelbach, Carsten Strohmann, Slava Ziegler, Claude Ostermann, Kamal Kumar. De novo branching cascades for structural and functional diversity in small molecules. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms7516
  1548. Mauro Pascolutti, Marc Campitelli, Bao Nguyen, Ngoc Pham, Alain-Dominique Gorse, Ronald J. Quinn, . Capturing Nature's Diversity. PLOS ONE 2015, 10 (4) , e0120942. https://doi.org/10.1371/journal.pone.0120942
  1549. Alicia Contet, Emilie Pihan, Marina Lavigne, Kai Wengelnik, Sweta Maheshwari, Henri Vial, Dominique Douguet, Rachel Cerdan. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase possesses two functional catalytic domains and is inhibited by a CDP-choline analog selected from a virtual screening. FEBS Letters 2015, 589 (9) , 992-1000. https://doi.org/10.1016/j.febslet.2015.03.003
  1550. Roman Garnett, Thomas Gärtner, Martin Vogt, Jürgen Bajorath. Introducing the ‘active search’ method for iterative virtual screening. Journal of Computer-Aided Molecular Design 2015, 29 (4) , 305-314. https://doi.org/10.1007/s10822-015-9832-9
  1551. Ignacio Aliagas, Alberto Gobbi, Timothy Heffron, Man-Ling Lee, Daniel F. Ortwine, Mark Zak, S. Cyrus Khojasteh. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. Journal of Computer-Aided Molecular Design 2015, 29 (4) , 327-338. https://doi.org/10.1007/s10822-015-9838-3
  1552. Anne Mai Wassermann, Eugen Lounkine, John W. Davies, Meir Glick, L. Miguel Camargo. The opportunities of mining historical and collective data in drug discovery. Drug Discovery Today 2015, 20 (4) , 422-434. https://doi.org/10.1016/j.drudis.2014.11.004
  1553. Grace Mugumbate, Katherine A. Abrahams, Jonathan A. G. Cox, George Papadatos, Gerard van Westen, Joël Lelièvre, Szymon T. Calus, Nicholas J. Loman, Lluis Ballell, David Barros, John P. Overington, Gurdyal S. Besra, . Mycobacterial Dihydrofolate Reductase Inhibitors Identified Using Chemogenomic Methods and In Vitro Validation. PLOS ONE 2015, 10 (3) , e0121492. https://doi.org/10.1371/journal.pone.0121492
  1554. Jenny Balfer, Jürgen Bajorath, . Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis. PLOS ONE 2015, 10 (3) , e0119301. https://doi.org/10.1371/journal.pone.0119301
  1555. Vishwesh Venkatraman, Sailesh Abburu, Bjørn Kåre Alsberg. Can chemometrics be used to guide the selection of suitable DFT functionals?. Chemometrics and Intelligent Laboratory Systems 2015, 142 , 87-94. https://doi.org/10.1016/j.chemolab.2015.01.013
  1556. Fang Du, Joseph J. Babcock, Haibo Yu, Beiyan Zou, Min Li, . Global Analysis Reveals Families of Chemical Motifs Enriched for hERG Inhibitors. PLOS ONE 2015, 10 (2) , e0118324. https://doi.org/10.1371/journal.pone.0118324
  1557. Steven Shave, Elizabeth A. Blackburn, Jillian Adie, Douglas R. Houston, Manfred Auer, Scott P. Webster, Paul Taylor, Malcolm D. Walkinshaw, . UFSRAT: Ultra-Fast Shape Recognition with Atom Types –The Discovery of Novel Bioactive Small Molecular Scaffolds for FKBP12 and 11βHSD1. PLOS ONE 2015, 10 (2) , e0116570. https://doi.org/10.1371/journal.pone.0116570
  1558. Disha Gupta-Ostermann, Jenny Balfer, Jürgen Bajorath. Hit Expansion from Screening Data Based upon Conditional Probabilities of Activity Derived from SAR Matrices. Molecular Informatics 2015, 34 (2-3) , 134-146. https://doi.org/10.1002/minf.201400164
  1559. Magdalena Zwierzyna, Martin Vogt, Gerald M. Maggiora, Jürgen Bajorath. Design and characterization of chemical space networks for different compound data sets. Journal of Computer-Aided Molecular Design 2015, 29 (2) , 113-125. https://doi.org/10.1007/s10822-014-9821-4
  1560. Jérémy Besnard, Philip S. Jones, Andrew L. Hopkins, Andrew D. Pannifer. The Joint European Compound Library: boosting precompetitive research. Drug Discovery Today 2015, 20 (2) , 181-186. https://doi.org/10.1016/j.drudis.2014.08.014
  1561. Bin Zhou, Rong Wang, Ping Wu, De-Xin Kong. Drug Repurposing Based on Drug-Drug Interaction. Chemical Biology & Drug Design 2015, 85 (2) , 137-144. https://doi.org/10.1111/cbdd.12378
  1562. Tiago Rodrigues, Nadine Hauser, Daniel Reker, Michael Reutlinger, Tiffany Wunderlin, Jacques Hamon, Guido Koch, Gisbert Schneider. Multidimensional De Novo Design Reveals 5-HT 2B Receptor-Selective Ligands. Angewandte Chemie 2015, 127 (5) , 1571-1575. https://doi.org/10.1002/ange.201410201
  1563. Tiago Rodrigues, Nadine Hauser, Daniel Reker, Michael Reutlinger, Tiffany Wunderlin, Jacques Hamon, Guido Koch, Gisbert Schneider. Multidimensional De Novo Design Reveals 5-HT 2B Receptor-Selective Ligands. Angewandte Chemie International Edition 2015, 54 (5) , 1551-1555. https://doi.org/10.1002/anie.201410201
  1564. Kyaw Z. Myint, Xiang-Qun Xie. Ligand Biological Activity Predictions Using Fingerprint-Based Artificial Neural Networks (FANN-QSAR). 2015,,, 149-164. https://doi.org/10.1007/978-1-4939-2239-0_9
  1565. Tiago Rodrigues, Gisbert Schneider. In Silico Screening. 2015,,, 141-160. https://doi.org/10.1016/B978-0-12-417205-0.00006-7
  1566. Ashutosh Kumar, Kam Y.J. Zhang. Hierarchical virtual screening approaches in small molecule drug discovery. Methods 2015, 71 , 26-37. https://doi.org/10.1016/j.ymeth.2014.07.007
  1567. Adrià Cereto-Massagué, María José Ojeda, Cristina Valls, Miquel Mulero, Santiago Garcia-Vallvé, Gerard Pujadas. Molecular fingerprint similarity search in virtual screening. Methods 2015, 71 , 58-63. https://doi.org/10.1016/j.ymeth.2014.08.005
  1568. Jerome G. P. Wicker, Richard I. Cooper. Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 2015, 17 (9) , 1927-1934. https://doi.org/10.1039/C4CE01912A
  1569. Isidro Cortés-Ciriano, Qurrat Ul Ain, Vigneshwari Subramanian, Eelke B. Lenselink, Oscar Méndez-Lucio, Adriaan P. IJzerman, Gerd Wohlfahrt, Peteris Prusis, Thérèse E. Malliavin, Gerard J. P. van Westen, Andreas Bender. Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects. MedChemComm 2015, 6 (1) , 24-50. https://doi.org/10.1039/C4MD00216D
  1570. Lei Chen, Chen Chu, Jing Lu, Xiangyin Kong, Tao Huang, Yu-Dong Cai. A computational method for the identification of new candidate carcinogenic and non-carcinogenic chemicals. Molecular BioSystems 2015, 11 (9) , 2541-2550. https://doi.org/10.1039/C5MB00276A
  1571. George Nicola, Michael R. Berthold, Michael P. Hedrick, Michael K. Gilson. Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME. Database 2015, 2015 , bav087. https://doi.org/10.1093/database/bav087
  1572. Guohua Huang, Yin Lu, Changhong Lu, Mingyue Zheng, Yu-Dong Cai. Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities. BioMed Research International 2015, 2015 , 1-14. https://doi.org/10.1155/2015/584546
  1573. Ye Hu, Norbert Furtmann, Dagmar Stumpfe, Jürgen Bajorath. Comprehensive knowledge base of two- and three-dimensional activity cliffs for medicinal and computational chemistry. F1000Research 2015, 4 , 168. https://doi.org/10.12688/f1000research.6661.1
  1574. Kiyoshi Hasegawa, Kimito Funatsu. Data Mining of Chemogenomics Data Using Activity Landscape and Partial Least Squares. 2015,,, 1723-1731. https://doi.org/10.4018/978-1-4666-5888-2.ch165
  1575. Andy Liaw, Vladimir Svetnik. QSAR modeling: prediction of biological activity from chemical structure. 2014,,, 66-83. https://doi.org/10.1002/9781118763070.ch3
  1576. M. Cassotti, V. Consonni, A. Mauri, D. Ballabio. Validation and extension of a similarity-based approach for prediction of acute aquatic toxicity towards Daphnia magna. SAR and QSAR in Environmental Research 2014, 25 (12) , 1013-1036. https://doi.org/10.1080/1062936X.2014.977818
  1577. Ryusuke Sawada, Masaaki Kotera, Yoshihiro Yamanishi. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach. Molecular Informatics 2014, 33 (11-12) , 719-731. https://doi.org/10.1002/minf.201400066
  1578. Kiyoshi Hasegawa, Kimito Funatsu. Application of orthogonal L-shaped PLS to chemogenomics data and its chemical interpretation from predictive and orthogonal regression coefficients. Chemometrics and Intelligent Laboratory Systems 2014, 139 , 64-69. https://doi.org/10.1016/j.chemolab.2014.09.010
  1579. Nir London, Rand M Miller, Shyam Krishnan, Kenji Uchida, John J Irwin, Oliv Eidam, Lucie Gibold, Peter Cimermančič, Richard Bonnet, Brian K Shoichet, Jack Taunton. Covalent docking of large libraries for the discovery of chemical probes. Nature Chemical Biology 2014, 10 (12) , 1066-1072. https://doi.org/10.1038/nchembio.1666
  1580. Jing Lu, Jianlong Peng, Jinan Wang, Qiancheng Shen, Yi Bi, Likun Gong, Mingyue Zheng, Xiaomin Luo, Weiliang Zhu, Hualiang Jiang, Kaixian Chen. Estimation of acute oral toxicity in rat using local lazy learning. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-26
  1581. Lars Ruddigkeit, Mahendra Awale, Jean-Louis Reymond. Expanding the fragrance chemical space for virtual screening. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-27
  1582. Xian Liu, Yuan Xu, Shanshan Li, Yulan Wang, Jianlong Peng, Cheng Luo, Xiaomin Luo, Mingyue Zheng, Kaixian Chen, Hualiang Jiang. In Silicotarget fishing: addressing a “Big Data” problem by ligand-based similarity rankings with data fusion. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-33
  1583. Isidro Cortes-Ciriano, Gerard JP van Westen, Eelke Bart Lenselink, Daniel S Murrell, Andreas Bender, Thérèse Malliavin. Proteochemometric modeling in a Bayesian framework. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-35
  1584. Pedro Franco, Nuria Porta, John D Holliday, Peter Willett. The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-5
  1585. David Hoksza, Petr Škoda, Milan Voršilák, Daniel Svozil. Molpher: a software framework for systematic chemical space exploration. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-7
  1586. Alex M Clark, Malabika Sarker, Sean Ekins. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/s13321-014-0038-2
  1587. Yurii Sushko, Sergii Novotarskyi, Robert Körner, Joachim Vogt, Ahmed Abdelaziz, Igor V Tetko. Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/s13321-014-0048-0
  1588. Richard A. Lewis, David Wood. Modern 2D QSAR for drug discovery. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4 (6) , 505-522. https://doi.org/10.1002/wcms.1187
  1589. Dragos Horvath, Michael Lisurek, Bernd Rupp, Ronald Kühne, Edgar Specker, Jens von Kries, Didier Rognan, C. David Andersson, Fredrik Almqvist, Mikael Elofsson, Per-Anders Enqvist, Anna-Lena Gustavsson, Nikita Remez, Jordi Mestres, Gilles Marcou, Alexander Varnek, Marcel Hibert, Jordi Quintana, Ronald Frank. Design of a General-Purpose European Compound Screening Library for EU-OPENSCREEN. ChemMedChem 2014, 9 (10) , 2309-2326. https://doi.org/10.1002/cmdc.201402126
  1590. Michael Römer, Linus Backert, Johannes Eichner, Andreas Zell. ToxDBScan: Large-Scale Similarity Screening of Toxicological Databases for Drug Candidates. International Journal of Molecular Sciences 2014, 15 (10) , 19037-19055. https://doi.org/10.3390/ijms151019037
  1591. Nagamani Sukumar, Michael P. Krein, Ganesh Prabhu, Sudeepto Bhattacharya, Subhabrata Sen. Network Measures for Chemical Library Design. Drug Development Research 2014, 75 (6) , 402-411. https://doi.org/10.1002/ddr.21218
  1592. Bijun Zhang, Martin Vogt, Jürgen Bajorath. Design of an activity landscape view taking compound-based feature probabilities into account. Journal of Computer-Aided Molecular Design 2014, 28 (9) , 919-926. https://doi.org/10.1007/s10822-014-9773-8
  1593. Sergiy A. Starosyla, Galyna P. Volynets, Volodymyr G. Bdzhola, Andriy G. Golub, Mykola V. Protopopov, Sergiy M. Yarmoluk. ASK1 pharmacophore model derived from diverse classes of inhibitors. Bioorganic & Medicinal Chemistry Letters 2014, 24 (18) , 4418-4423. https://doi.org/10.1016/j.bmcl.2014.08.011
  1594. Gary Tresadern, José-Maria Cid, Andrés A. Trabanco. QSAR design of triazolopyridine mGlu2 receptor positive allosteric modulators. Journal of Molecular Graphics and Modelling 2014, 53 , 82-91. https://doi.org/10.1016/j.jmgm.2014.07.006
  1595. Suleiman A. Khan, Seppo Virtanen, Olli P. Kallioniemi, Krister Wennerberg, Antti Poso, Samuel Kaski. Identification of structural features in chemicals associated with cancer drug response: a systematic data-driven analysis. Bioinformatics 2014, 30 (17) , i497-i504. https://doi.org/10.1093/bioinformatics/btu456
  1596. Kiyoshi Hasegawa, Kimito Funatsu. Multivariate Analysis of Side Effects of Drug Molecules Based on Knowledge of Protein Bindings and ProteinProtein Interactions. Molecular Informatics 2014, 279 , n/a-n/a. https://doi.org/10.1002/minf.201400064
  1597. Kiyoshi Hasegawa, Kimito Funatsu. Data Mining of Chemogenomics Data Using Bi-Modal PLS Methods and Chemical Interpretation for Molecular Design. Molecular Informatics 2014, 34 , n/a-n/a. https://doi.org/10.1002/minf.201400061
  1598. Jenny Balfer, Ye Hu, Jürgen Bajorath. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space. Molecular Informatics 2014, 33 (8) , 544-558. https://doi.org/10.1002/minf.201400051
  1599. Maykel Cruz-Monteagudo, José L. Medina-Franco, Yunierkis Pérez-Castillo, Orazio Nicolotti, M. Natália D.S. Cordeiro, Fernanda Borges. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?. Drug Discovery Today 2014, 19 (8) , 1069-1080. https://doi.org/10.1016/j.drudis.2014.02.003
  1600. Li-li Liu, Jing Lu, Yin Lu, Ming-yue Zheng, Xiao-min Luo, Wei-liang Zhu, Hua-liang Jiang, Kai-xian Chen. Novel Bayesian classification models for predicting compounds blocking hERG potassium channels. Acta Pharmacologica Sinica 2014, 35 (8) , 1093-1102. https://doi.org/10.1038/aps.2014.35
  1601. M. J. Wawer, K. Li, S. M. Gustafsdottir, V. Ljosa, N. E. Bodycombe, M. A. Marton, K. L. Sokolnicki, M.-A. Bray, M. M. Kemp, E. Winchester, B. Taylor, G. B. Grant, C. S.-Y. Hon, J. R. Duvall, J. A. Wilson, J. A. Bittker, V. Dan ik, R. Narayan, A. Subramanian, W. Winckler, T. R. Golub, A. E. Carpenter, A. F. Shamji, S. L. Schreiber, P. A. Clemons. Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proceedings of the National Academy of Sciences 2014, 111 (30) , 10911-10916. https://doi.org/10.1073/pnas.1410933111
  1602. Kiyoshi Hasegawa, Kimito Funatsu. Application of orthogonal L-shaped PLS to chemogenomic data and its chemical interpretation from predictive and orthogonal latent variables. Chemometrics and Intelligent Laboratory Systems 2014, 135 , 166-171. https://doi.org/10.1016/j.chemolab.2014.04.015
  1603. Mahendra Awale, Jean-Louis Reymond. A multi-fingerprint browser for the ZINC database. Nucleic Acids Research 2014, 42 (W1) , W234-W239. https://doi.org/10.1093/nar/gku379
  1604. Malgorzata N. Drwal, Priyanka Banerjee, Mathias Dunkel, Martin R. Wettig, Robert Preissner. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research 2014, 42 (W1) , W53-W58. https://doi.org/10.1093/nar/gku401
  1605. Janette Nickel, Bjoern-Oliver Gohlke, Jevgeni Erehman, Priyanka Banerjee, Wen Wei Rong, Andrean Goede, Mathias Dunkel, Robert Preissner. SuperPred: update on drug classification and target prediction. Nucleic Acids Research 2014, 42 (W1) , W26-W31. https://doi.org/10.1093/nar/gku477
  1606. Jenny Balfer, Kathrin Heikamp, Stefan Laufer, Jürgen Bajorath. Modeling of Compound Profiling Experiments Using Support Vector Machines. Chemical Biology & Drug Design 2014, 84 (1) , 75-85. https://doi.org/10.1111/cbdd.12294
  1607. Andrew E. Bruno, Amanda M. Ruby, Joseph R. Luft, Thomas D. Grant, Jayaraman Seetharaman, Gaetano T. Montelione, John F. Hunt, Edward H. Snell, . Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography. PLoS ONE 2014, 9 (6) , e100782. https://doi.org/10.1371/journal.pone.0100782
  1608. Faisal Saeed, Ali Ahmed, Mohd Shahir Shamsir, Naomie Salim. Weighted voting-based consensus clustering for chemical structure databases. Journal of Computer-Aided Molecular Design 2014, 28 (6) , 675-684. https://doi.org/10.1007/s10822-014-9750-2
  1609. Vlado Dančík, Hyman Carrel, Nicole E. Bodycombe, Kathleen Petri Seiler, Dina Fomina-Yadlin, Stefan T. Kubicek, Kimberly Hartwell, Alykhan F. Shamji, Bridget K. Wagner, Paul A. Clemons. Connecting Small Molecules with Similar Assay Performance Profiles Leads to New Biological Hypotheses. Journal of Biomolecular Screening 2014, 19 (5) , 771-781. https://doi.org/10.1177/1087057113520226
  1610. Maureen H. Beresini, Yichin Liu, Timothy D. Dawes, Kevin R. Clark, Linda Orren, Stephen Schmidt, Rebecca Turincio, Steven W. Jones, Richard A. Rodriguez, Peter Thana, Daniel Hascall, Daniel P. Gross, Nicholas J. Skelton. Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification. Journal of Biomolecular Screening 2014, 19 (5) , 758-770. https://doi.org/10.1177/1087057114522515
  1611. Mathias J. Wawer, David E. Jaramillo, Vlado Dančík, Daniel M. Fass, Stephen J. Haggarty, Alykhan F. Shamji, Bridget K. Wagner, Stuart L. Schreiber, Paul A. Clemons. Automated Structure–Activity Relationship Mining. Journal of Biomolecular Screening 2014, 19 (5) , 738-748. https://doi.org/10.1177/1087057114530783
  1612. Michael Reutlinger, Tiago Rodrigues, Petra Schneider, Gisbert Schneider. Mehrdimensionales De-novo-Moleküldesign durch adaptive Fragmentauswahl. Angewandte Chemie 2014, 126 (16) , 4330-4334. https://doi.org/10.1002/ange.201310864
  1613. Michael Reutlinger, Tiago Rodrigues, Petra Schneider, Gisbert Schneider. Multi-Objective Molecular De Novo Design by Adaptive Fragment Prioritization. Angewandte Chemie International Edition 2014, 53 (16) , 4244-4248. https://doi.org/10.1002/anie.201310864
  1614. Gerard J. P. van Westen, Anna Gaulton, John P. Overington, . Chemical, Target, and Bioactive Properties of Allosteric Modulation. PLoS Computational Biology 2014, 10 (4) , e1003559. https://doi.org/10.1371/journal.pcbi.1003559
  1615. Anat Levit, Stefanie Nowak, Maximilian Peters, Ayana Wiener, Wolfgang Meyerhof, Maik Behrens, Masha Y. Niv. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. The FASEB Journal 2014, 28 (3) , 1181-1197. https://doi.org/10.1096/fj.13-242594
  1616. Antonio de la Vega de León, Jürgen Bajorath. Formation of Activity Cliffs Is Accompanied by Systematic Increases in Ligand Efficiency from Lowly to Highly Potent Compounds. The AAPS Journal 2014, 16 (2) , 335-341. https://doi.org/10.1208/s12248-014-9567-x
  1617. Rodrigo Aguayo-Ortiz, Jaime Pérez-Villanueva, Alicia Hernández-Campos, Rafael Castillo, Nathalie Meurice, José L Medina-Franco. Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds. Future Medicinal Chemistry 2014, 6 (3) , 281-294. https://doi.org/10.4155/fmc.13.173
  1618. Lionel Sacconnay, Melissa Angleviel, Giuseppe Marco Randazzo, Marcos Marçal Ferreira Queiroz, Emerson Ferreira Queiroz, Jean-Luc Wolfender, Pierre-Alain Carrupt, Alessandra Nurisso, . Computational Studies on Sirtuins from Trypanosoma cruzi: Structures, Conformations and Interactions with Phytochemicals. PLoS Neglected Tropical Diseases 2014, 8 (2) , e2689. https://doi.org/10.1371/journal.pntd.0002689
  1619. Sihui Yao, Tao Lu, Zifan Zhou, Haichun Liu, Haoliang Yuan, Ting Ran, Shuai Lu, Yanmin Zhang, Zhipeng Ke, Jinxing Xu, Xiao Xiong, Yadong Chen. An efficient multistep ligand-based virtual screening approach for GPR40 agonists. Molecular Diversity 2014, 18 (1) , 183-193. https://doi.org/10.1007/s11030-013-9493-3
  1620. Michael Reutlinger, Tiago Rodrigues, Petra Schneider, Gisbert Schneider. Kombination von On-Chip-Synthese einer fokussierten kombinatorischen Bibliothek mit computergestützter Vorhersage der biologischen Aktivität enthüllt Imidazopyridine als GPCR-Liganden. Angewandte Chemie 2014, 126 (2) , 593-596. https://doi.org/10.1002/ange.201307786
  1621. Michael Reutlinger, Tiago Rodrigues, Petra Schneider, Gisbert Schneider. Combining On-Chip Synthesis of a Focused Combinatorial Library with Computational Target Prediction Reveals Imidazopyridine GPCR Ligands. Angewandte Chemie International Edition 2014, 53 (2) , 582-585. https://doi.org/10.1002/anie.201307786
  1622. Ryan J. Rafferty, Robert W. Hicklin, Katherine A. Maloof, Paul J. Hergenrother. Synthesis of Complex and Diverse Compounds through Ring Distortion of Abietic Acid. Angewandte Chemie 2014, 126 (1) , 224-228. https://doi.org/10.1002/ange.201308743
  1623. Ryan J. Rafferty, Robert W. Hicklin, Katherine A. Maloof, Paul J. Hergenrother. Synthesis of Complex and Diverse Compounds through Ring Distortion of Abietic Acid. Angewandte Chemie International Edition 2014, 53 (1) , 220-224. https://doi.org/10.1002/anie.201308743
  1624. Moustafa Zein, Ahmed Abdo, Ammar Adl, Aboul Ella Hassanien, Mohamed F. Tolba, Václav Snášel. Orphan Drug Legislation with Data Fusion Rules Using Multiple Fingerprints Measurements. 2014,,, 261-270. https://doi.org/10.1007/978-3-319-08156-4_26
  1625. Gerald M. Maggiora. Introduction to Molecular Similarity and Chemical Space. 2014,,, 1-81. https://doi.org/10.1007/978-3-319-10226-9_1
  1626. Muthukumarasamy Karthikeyan, Renu Vyas. Chemoinformatics Approach for the Design and Screening of Focused Virtual Libraries. 2014,,, 93-131. https://doi.org/10.1007/978-81-322-1780-0_2
  1627. Richard B. Silverman, Mark W. Holladay. Lead Discovery and Lead Modification. 2014,,, 19-122. https://doi.org/10.1016/B978-0-12-382030-3.00002-7
  1628. Gregory Sliwoski, Sandeepkumar Kothiwale, Jens Meiler, Edward W. Lowe, . Computational Methods in Drug Discovery. Pharmacological Reviews 2014, 66 (1) , 334-395. https://doi.org/10.1124/pr.112.007336
  1629. Tae-Hee Kim, Dong-Hwa Choi, Virginie Vauthier, Julie Dam, Xiaolan Li, Yeon-Ju Nam, YoonAe Ko, Ho Jeong Kwon, Sang Hoon Shin, Jonathan Cechetto, Veronica Soloveva, Ralf Jockers. Anti-Obesity Phenotypic Screening Looking to Increase OBR Cell Surface Expression. Journal of Biomolecular Screening 2014, 19 (1) , 88-99. https://doi.org/10.1177/1087057113499185
  1630. Ye Hu, Jürgen Bajorath. Scaffold Mining of Publicly Available Compound Data. 2013,,, 61-82. https://doi.org/10.1002/9783527665143.ch04
  1631. Peter Willett. Similarity‐Based Scaffold Hopping Using 2D Fingerprints. 2013,,, 105-118. https://doi.org/10.1002/9783527665143.ch06
  1632. Christian P. Koch, Michael Reutlinger, Nickolay Todoroff, Petra Schneider, Gisbert Schneider. CATS for Scaffold Hopping in Medicinal Chemistry. 2013,,, 119-130. https://doi.org/10.1002/9783527665143.ch07
  1633. Didier Rognan, Jérémy Desaphy. Molecular Interaction Fingerprints. 2013,,, 215-230. https://doi.org/10.1002/9783527665143.ch14
  1634. J. B. Brown, Satoshi Niijima, Yasushi Okuno. CompoundProtein Interaction Prediction Within Chemogenomics: Theoretical Concepts, Practical Usage, and Future Directions. Molecular Informatics 2013, 32 (11-12) , 906-921. https://doi.org/10.1002/minf.201300101
  1635. Malgorzata N. Drwal, Keli Agama, Yves Pommier, Renate Griffith. Development of purely structure-based pharmacophores for the topoisomerase I-DNA-ligand binding pocket. Journal of Computer-Aided Molecular Design 2013, 27 (12) , 1037-1049. https://doi.org/10.1007/s10822-013-9695-x
  1636. Jürgen Bajorath. Molecular crime scene investigation – dusting for fingerprints. Drug Discovery Today: Technologies 2013, 10 (4) , e491-e498. https://doi.org/10.1016/j.ddtec.2012.06.003
  1637. Felix Reisen, Xian Zhang, Daniela Gabriel, Paul Selzer. Benchmarking of Multivariate Similarity Measures for High-Content Screening Fingerprints in Phenotypic Drug Discovery. Journal of Biomolecular Screening 2013, 18 (10) , 1284-1297. https://doi.org/10.1177/1087057113501390
  1638. Clayton Springer, Katherine L Sokolnicki. A fingerprint pair analysis of hERG inhibition data. Chemistry Central Journal 2013, 7 (1) https://doi.org/10.1186/1752-153X-7-167
  1639. Lars Rosenbaum, Andreas Jahn, Alexander Dörr, Andreas Zell. Optimization and visualization of the edge weights in optimal assignment methods for virtual screening. BioData Mining 2013, 6 (1) https://doi.org/10.1186/1756-0381-6-7
  1640. Melvin J Yu. Druggable chemical space and enumerative combinatorics. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-19
  1641. Sereina Riniker, Gregory A Landrum. Open-source platform to benchmark fingerprints for ligand-based virtual screening. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-26
  1642. Lars Rosenbaum, Alexander Dörr, Matthias R Bauer, Frank M Boeckler, Andreas Zell. Inferring multi-target QSAR models with taxonomy-based multi-task learning. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-33
  1643. Gerard JP van Westen, Remco F Swier, Isidro Cortes-Ciriano, Jörg K Wegner, John P Overington, Adriaan P IJzerman, Herman WT van Vlijmen, Andreas Bender. Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-42
  1644. Sereina Riniker, Gregory A Landrum. Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-43
  1645. Shardul Paricharak, Tom Klenka, Martin Augustin, Umesh A Patel, Andreas Bender. Are phylogenetic trees suitable for chemogenomics analyses of bioactivity data sets: the importance of shared active compounds and choosing a suitable data embedding method, as exemplified on Kinases. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-49
  1646. Tobias Girschick, Lucia Puchbauer, Stefan Kramer. Improving structural similarity based virtual screening using background knowledge. Journal of Cheminformatics 2013, 5 (1) https://doi.org/10.1186/1758-2946-5-50
  1647. George A. Lemieux, Michael J. Keiser, Maria F. Sassano, Christian Laggner, Fahima Mayer, Roland J. Bainton, Zena Werb, Bryan L. Roth, Brian K. Shoichet, Kaveh Ashrafi, . In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets That Regulate Feeding. PLoS Biology 2013, 11 (11) , e1001712. https://doi.org/10.1371/journal.pbio.1001712
  1648. José L. Medina-Franco, Gerald M. Maggiora. MOLECULAR SIMILARITY ANALYSIS. 2013,,, 343-399. https://doi.org/10.1002/9781118742785.ch15
  1649. Kiyoshi Hasegawa, Kimito Funatsu. BIMODAL PARTIAL LEAST-SQUARES APPROACH AND ITS APPLICATION TO CHEMOGENOMICS STUDIES FOR MOLECULAR DESIGN. 2013,,, 85-95. https://doi.org/10.1002/9781118742785.ch4
  1650. Anthony Nicholls, Brian Kelley. STABILITY IN MOLECULAR FINGERPRINT COMPARISON. 2013,,, 97-112. https://doi.org/10.1002/9781118742785.ch5
  1651. Eugen Lounkine, Peter S. Kutchukian, Meir Glick. CHEMOMETRIC APPLICATIONS OF NAÏVE BAYESIAN MODELS IN DRUG DISCOVERY. 2013,,, 131-148. https://doi.org/10.1002/9781118742785.ch7
  1652. Alan Brown, David Ellis, David A. Favor, Tony Kirkup, Wolfgang Klute, Malcolm MacKenny, Gordon McMurray, Adam Stennett. Serendipity in drug-discovery: A new series of 2-(benzyloxy)benzamides as TRPM8 antagonists. Bioorganic & Medicinal Chemistry Letters 2013, 23 (22) , 6118-6122. https://doi.org/10.1016/j.bmcl.2013.09.016
  1653. Ye Hu, Jürgen Bajorath. Activity profile relationships between structurally similar promiscuous compounds. European Journal of Medicinal Chemistry 2013, 69 , 393-398. https://doi.org/10.1016/j.ejmech.2013.08.044
  1654. Sudhanshu Kumar Bharti, Amit Kumar, Neeraj Kumar Sharma, Om Prakash, Sudhir Kumar Jaiswal, Supriya Krishnan, Ashok Kumar Gupta, Awanish Kumar. Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. Journal of the Formosan Medical Association 2013, 112 (11) , 676-690. https://doi.org/10.1016/j.jfma.2013.08.003
  1655. Iain Kilty, Martin P. Green, Andrew S. Bell, David G. Brown, Peter G. Dodd, Christopher Hewson, Samantha J. Hughes, Christopher Phillips, Thomas Ryckmans, Robert T. Smith, Willem P. van Hoorn, Philip Cohen, Lyn H. Jones. TAK1 Inhibition in the DFG-Out Conformation. Chemical Biology & Drug Design 2013, 82 (5) , 500-505. https://doi.org/10.1111/cbdd.12169
  1656. Jérémy Besnard, Andrew L. Hopkins. De Novo Design of Ligands against Multitarget Profiles. 2013,,, 287-309. https://doi.org/10.1002/9783527677016.ch12
  1657. Peter S. Kutchukian, Salla I. Virtanen, Eugen Lounkine, Meir Glick, Eugene I. Shakhnovich. Construction of Drug-Like Compounds by Markov Chains. 2013,,, 311-323. https://doi.org/10.1002/9783527677016.ch13
  1658. Michael Mazanetz, Richard Law, Mark Whittaker. Hit and Lead Identification from Fragments. 2013,,, 143-200. https://doi.org/10.1002/9783527677016.ch6
  1659. Francisco Martínez-Jiménez, George Papadatos, Lun Yang, Iain M. Wallace, Vinod Kumar, Ursula Pieper, Andrej Sali, James R. Brown, John P. Overington, Marc A. Marti-Renom, . Target Prediction for an Open Access Set of Compounds Active against Mycobacterium tuberculosis. PLoS Computational Biology 2013, 9 (10) , e1003253. https://doi.org/10.1371/journal.pcbi.1003253
  1660. Christian S. Lentz, Dagmar Stumpfe, Juergen Bajorath, Michael Famulok, Achim Hoerauf, Kenneth M. Pfarr. New chemotypes for wALADin1-like inhibitors of delta-aminolevulinic acid dehydratase from Wolbachia endobacteria. Bioorganic & Medicinal Chemistry Letters 2013, 23 (20) , 5558-5562. https://doi.org/10.1016/j.bmcl.2013.08.052
  1661. Thierry Kogej, Niklas Blomberg, Peter J. Greasley, Stefan Mundt, Mikko J. Vainio, Jens Schamberger, Georg Schmidt, Jörg Hüser. Big pharma screening collections: more of the same or unique libraries? The AstraZeneca–Bayer Pharma AG case. Drug Discovery Today 2013, 18 (19-20) , 1014-1024. https://doi.org/10.1016/j.drudis.2012.10.011
  1662. Jürgen Bajorath. Machine learning and similarity-based virtual screening techniques. 2013,,, 134-146. https://doi.org/10.4155/ebo.12.419
  1663. Holger Kubas, Udo Meyer, Bjoern Krueger, Mirko Hechenberger, Maksims Vanejevs, Ronalds Zemribo, Valerjans Kauss, Raisa Ambartsumova, Ilya Pyatkin, Alexey I. Polosukhin, Ulrich Abel. Discovery, synthesis, and structure–activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorganic & Medicinal Chemistry Letters 2013, 23 (16) , 4493-4500. https://doi.org/10.1016/j.bmcl.2013.06.049
  1664. X. Liu, I. Vogt, T. Haque, M. Campillos. HitPick: a web server for hit identification and target prediction of chemical screenings. Bioinformatics 2013, 29 (15) , 1910-1912. https://doi.org/10.1093/bioinformatics/btt303
  1665. Fazlin Mohd Fauzi, Alexios Koutsoukas, Andrew Cunningham, Ana Gallegos, Roumen Sedefov, Andreas Bender. Computer-aided ( in silico ) approaches in the mode-of-action analysis and safety assessment of Ostarine and 4-methylamphetamine. Human Psychopharmacology: Clinical and Experimental 2013, 28 (4) , 365-378. https://doi.org/10.1002/hup.2322
  1666. Faisal Saeed, Naomie Salim, Ammar Abdo. Information Theory and Voting Based Consensus Clustering for Combining Multiple Clusterings of Chemical Structures. Molecular Informatics 2013, 32 (7) , 591-598. https://doi.org/10.1002/minf.201300004
  1667. George Papadatos, Nathan Brown. In silico applications of bioisosterism in contemporary medicinal chemistry practice. Wiley Interdisciplinary Reviews: Computational Molecular Science 2013, 3 (4) , 339-354. https://doi.org/10.1002/wcms.1148
  1668. Zhengui Huang, Kejiang Lin, Qidong You. De novo design of novel DNA–gyrase inhibitors based on 2D molecular fingerprints. Bioorganic & Medicinal Chemistry Letters 2013, 23 (14) , 4166-4171. https://doi.org/10.1016/j.bmcl.2013.05.033
  1669. Paula M. Petrone, Anne Mai Wassermann, Eugen Lounkine, Peter Kutchukian, Benjamin Simms, Jeremy Jenkins, Paul Selzer, Meir Glick. Biodiversity of small molecules – a new perspective in screening set selection. Drug Discovery Today 2013, 18 (13-14) , 674-680. https://doi.org/10.1016/j.drudis.2013.02.005
  1670. Jürgen Bajorath. Virtual Screening Methods. 2013,,, 483-505. https://doi.org/10.1002/9781118618110.ch15
  1671. Jürgen Bajorath. Structure-Activity Relationship Data Analysis: Activity Landscapes and Activity Cliffs. 2013,,, 507-531. https://doi.org/10.1002/9781118618110.ch16
  1672. M. Cris Silva-Santisteban, Isaac M. Westwood, Kathy Boxall, Nathan Brown, Sam Peacock, Craig McAndrew, Elaine Barrie, Meirion Richards, Amin Mirza, Antony W. Oliver, Rosemary Burke, Swen Hoelder, Keith Jones, G. Wynne Aherne, Julian Blagg, Ian Collins, Michelle D. Garrett, Rob L. M. van Montfort, . Fragment-Based Screening Maps Inhibitor Interactions in the ATP-Binding Site of Checkpoint Kinase 2. PLoS ONE 2013, 8 (6) , e65689. https://doi.org/10.1371/journal.pone.0065689
  1673. Preeti Iyer, Dagmar Stumpfe, Martin Vogt, J. Bajorath, G. M. Maggiora. Activity Landscapes, Information Theory, and Structure - Activity Relationships. Molecular Informatics 2013, 32 (5-6) , 421-430. https://doi.org/10.1002/minf.201200120
  1674. Petr Skoda, David Hoksza. Chemical space visualization using ViFrame. 2013,,, 541-546. https://doi.org/10.1109/ICIS.2013.6607895
  1675. Richard Cox, Darren V. S. Green, Christopher N. Luscombe, Noj Malcolm, Stephen D. Pickett. QSAR workbench: automating QSAR modeling to drive compound design. Journal of Computer-Aided Molecular Design 2013, 27 (4) , 321-336. https://doi.org/10.1007/s10822-013-9648-4
  1676. Chris de Graaf, Henry F. Vischer, Gerdien E. de Kloe, Albert J. Kooistra, Saskia Nijmeijer, Martien Kuijer, Mark H.P. Verheij, Paul J. England, Jacqueline E. van Muijlwijk-Koezen, Rob Leurs, Iwan J.P. de Esch. Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discovery Today 2013, 18 (7-8) , 323-330. https://doi.org/10.1016/j.drudis.2012.12.003
  1677. Lirong Wang, Chao Ma, Peter Wipf, Haibin Liu, Weiwei Su, Xiang-Qun Xie. TargetHunter: An In Silico Target Identification Tool for Predicting Therapeutic Potential of Small Organic Molecules Based on Chemogenomic Database. The AAPS Journal 2013, 15 (2) , 395-406. https://doi.org/10.1208/s12248-012-9449-z
  1678. Robert W. Huigens III, Karen C. Morrison, Robert W. Hicklin, Timothy A. Flood Jr, Michelle F. Richter, Paul J. Hergenrother. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chemistry 2013, 5 (3) , 195-202. https://doi.org/10.1038/nchem.1549
  1679. G. Piir, S. Sild, U. Maran. Comparative analysis of local and consensus quantitative structure-activity relationship approaches for the prediction of bioconcentration factor. SAR and QSAR in Environmental Research 2013, 24 (3) , 175-199. https://doi.org/10.1080/1062936X.2012.762426
  1680. Gerard J. P. van Westen, Alwin Hendriks, Jörg K. Wegner, Adriaan P. IJzerman, Herman W. T. van Vlijmen, Andreas Bender, . Significantly Improved HIV Inhibitor Efficacy Prediction Employing Proteochemometric Models Generated From Antivirogram Data. PLoS Computational Biology 2013, 9 (2) , e1002899. https://doi.org/10.1371/journal.pcbi.1002899
  1681. Jaime Pérez-Villanueva, Oscar Méndez-Lucio, Olivia Soria-Arteche, Teresa Izquierdo, M. Concepción Lozada, Walter A. Gloria-Greimel, José L. Medina-Franco. Cyclic Systems Distribution Along Similarity Measures: Insights for an Application to Activity Landscape Modeling. Molecular Informatics 2013, 32 (2) , 179-190. https://doi.org/10.1002/minf.201200127
  1682. Michael Reutlinger, Christian P. Koch, Daniel Reker, Nickolay Todoroff, Petra Schneider, Tiago Rodrigues, Gisbert Schneider. Chemically Advanced Template Search (CATS) for Scaffold-Hopping and Prospective Target Prediction for ‘Orphan’ Molecules. Molecular Informatics 2013, 32 (2) , 133-138. https://doi.org/10.1002/minf.201200141
  1683. Ye Hu, Gerald M. Maggiora, Jürgen Bajorath. Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account. Journal of Computer-Aided Molecular Design 2013, 27 (2) , 115-124. https://doi.org/10.1007/s10822-012-9632-4
  1684. Ling Wang, Maolin Wang, Aixia Yan, Bin Dai. Using self-organizing map (SOM) and support vector machine (SVM) for classification of selectivity of ACAT inhibitors. Molecular Diversity 2013, 17 (1) , 85-96. https://doi.org/10.1007/s11030-012-9404-z
  1685. Henry Lin, Maria F Sassano, Bryan L Roth, Brian K Shoichet. A pharmacological organization of G protein–coupled receptors. Nature Methods 2013, 10 (2) , 140-146. https://doi.org/10.1038/nmeth.2324
  1686. Lochana C. Menikarachchi, Mai A. Hamdalla, Dennis W. Hill, David F. Grant. CHEMICAL STRUCTURE IDENTIFICATION IN METABOLOMICS: COMPUTATIONAL MODELING OF EXPERIMENTAL FEATURES. Computational and Structural Biotechnology Journal 2013, 5 (6) , e201302005. https://doi.org/10.5936/csbj.201302005
  1687. Prachee Avasthi, Wallace F. Marshall. Chemical Screening Methods for Flagellar Phenotypes in Chlamydomonas. 2013,,, 351-369. https://doi.org/10.1016/B978-0-12-397944-5.00017-1
  1688. Albert J. Kooistra, Luc Roumen, Rob Leurs, Iwan J.P. de Esch, Chris de Graaf. From Heptahelical Bundle to Hits from the Haystack. 2013,,, 279-336. https://doi.org/10.1016/B978-0-12-407865-9.00015-7
  1689. S.D. Pickett. Library Design: Reactant and Product-Based Approaches. 2013,,https://doi.org/10.1016/B978-0-12-409547-2.02568-3
  1690. Rohan E.J. Beckwith, Rishi K. Jain. Recent Advances in Small Molecule Target Identification Methods. 2013,,, 301-315. https://doi.org/10.1016/B978-0-12-417150-3.00019-3
  1691. Ichigaku Takigawa, Hiroshi Mamitsuka. Graph mining: procedure, application to drug discovery and recent advances. Drug Discovery Today 2013, 18 (1-2) , 50-57. https://doi.org/10.1016/j.drudis.2012.07.016
  1692. Xiaojuan Yu, Xue Zhao, Lili Zhu, Chuanxin Zou, Xiaofeng Liu, Zhenjiang Zhao, Jin Huang, Honglin Li. Discovery of novel inhibitors for human farnesyltransferase (hFTase) via structure-based virtual screening. MedChemComm 2013, 4 (6) , 962. https://doi.org/10.1039/c3md00058c
  1693. Ye Hu, Dagmar Stumpfe, Jürgen Bajorath. Advancing the activity cliff concept. F1000Research 2013, 2 , 199. https://doi.org/10.12688/f1000research.2-199.v1
  1694. Minya Pu, Tomoko Hayashi, Howard Cottam, Joseph Mulvaney, Michelle Arkin, Maripat Corr, Dennis Carson, Karen Messer. Analysis of high-throughput screening assays using cluster enrichment. Statistics in Medicine 2012, 31 (30) , 4175-4189. https://doi.org/10.1002/sim.5455
  1695. Melvin J. Yu, Wanjun Zheng, Karen Tendyke. Atom-based enumeration: New eribulin analogues with low susceptibility to P-glycoprotein-mediated drug efflux. Bioorganic & Medicinal Chemistry Letters 2012, 22 (24) , 7363-7366. https://doi.org/10.1016/j.bmcl.2012.10.077
  1696. Jérémy Besnard, Gian Filippo Ruda, Vincent Setola, Keren Abecassis, Ramona M. Rodriguiz, Xi-Ping Huang, Suzanne Norval, Maria F. Sassano, Antony I. Shin, Lauren A. Webster, Frederick R. C. Simeons, Laste Stojanovski, Annik Prat, Nabil G. Seidah, Daniel B. Constam, G. Richard Bickerton, Kevin D. Read, William C. Wetsel, Ian H. Gilbert, Bryan L. Roth, Andrew L. Hopkins. Automated design of ligands to polypharmacological profiles. Nature 2012, 492 (7428) , 215-220. https://doi.org/10.1038/nature11691
  1697. Narender Singh, Hongmao Sun, Sidhartha Chaudhury, Mohamed Diwan M AbdulHameed, Anders Wallqvist, Gregory Tawa. A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space. Journal of Cheminformatics 2012, 4 (1) https://doi.org/10.1186/1758-2946-4-4
  1698. José L. Medina-Franco, Karina Martínez-Mayorga, Terry L. Peppard, Alberto Del Rio, . Chemoinformatic Analysis of GRAS (Generally Recognized as Safe) Flavor Chemicals and Natural Products. PLoS ONE 2012, 7 (11) , e50798. https://doi.org/10.1371/journal.pone.0050798
  1699. Peter S. Kutchukian, Nadya Y. Vasilyeva, Jordan Xu, Mika K. Lindvall, Michael P. Dillon, Meir Glick, John D. Coley, Natasja Brooijmans, . Inside the Mind of a Medicinal Chemist: The Role of Human Bias in Compound Prioritization during Drug Discovery. PLoS ONE 2012, 7 (11) , e48476. https://doi.org/10.1371/journal.pone.0048476
  1700. Ansgar Schuffenhauer. Computational methods for scaffold hopping. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (6) , 842-867. https://doi.org/10.1002/wcms.1106
  1701. Ori Kalid, Dora Toledo Warshaviak, Sharon Shechter, Woody Sherman, Sharon Shacham. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors. Journal of Computer-Aided Molecular Design 2012, 26 (11) , 1217-1228. https://doi.org/10.1007/s10822-012-9611-9
  1702. Francesco Sirci, Laura Goracci, David Rodríguez, Jacqueline van Muijlwijk-Koezen, Hugo Gutiérrez-de-Terán, Raimund Mannhold. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A1, A2A, A2B, and A3 receptor antagonists. Journal of Computer-Aided Molecular Design 2012, 26 (11) , 1247-1266. https://doi.org/10.1007/s10822-012-9612-8
  1703. Xin Yan, Qiong Gu, Feng Lu, Jiabo Li, Jun Xu. GSA: a GPU-accelerated structure similarity algorithm and its application in progressive virtual screening. Molecular Diversity 2012, 16 (4) , 759-769. https://doi.org/10.1007/s11030-012-9403-0
  1704. Ruifang Li, Jürgen Bajorath. Systematic assessment of scaffold distances in ChEMBL: prioritization of compound data sets for scaffold hopping analysis in virtual screening. Journal of Computer-Aided Molecular Design 2012, 26 (10) , 1101-1109. https://doi.org/10.1007/s10822-012-9603-9
  1705. Ingemar Nilsson, Magnus O. Polla. Composite multi-parameter ranking of real and virtual compounds for design of MC4R agonists: Renaissance of the Free-Wilson methodology. Journal of Computer-Aided Molecular Design 2012, 26 (10) , 1143-1157. https://doi.org/10.1007/s10822-012-9605-7
  1706. Atilla Akdemir, Ewald Edink, Andrew J. Thompson, Sarah C.R. Lummis, Albert J. Kooistra, Chris de Graaf, Iwan J.P. de Esch. Identification of novel α7 nicotinic receptor ligands by in silico screening against the crystal structure of a chimeric α7 receptor ligand binding domain. Bioorganic & Medicinal Chemistry 2012, 20 (19) , 5992-6002. https://doi.org/10.1016/j.bmc.2012.06.054
  1707. J. B. Brown, Satoshi Niijima, Akira Shiraishi, Masahiko Nakatsui, Yasushi Okuno. Chemogenomic approach to comprehensive predictions of ligand-target interactions: A comparative study. 2012,,, 136-142. https://doi.org/10.1109/BIBMW.2012.6470295
  1708. Kathrin Heikamp, Jürgen Bajorath. Fingerprint design and engineering strategies: rationalizing and improving similarity search performance. Future Medicinal Chemistry 2012, 4 (15) , 1945-1959. https://doi.org/10.4155/fmc.12.126
  1709. Volker Hähnke, Nickolay Todoroff, Tiago Rodrigues, Gisbert Schneider. Significance estimation for sequence-based chemical similarity searching (PhAST) and application to AuroraA kinase inhibitors. Future Medicinal Chemistry 2012, 4 (15) , 1897-1906. https://doi.org/10.4155/fmc.12.148
  1710. Jacob Waddell, José L. Medina-Franco. Bioactivity landscape modeling: Chemoinformatic characterization of structure–activity relationships of compounds tested across multiple targets. Bioorganic & Medicinal Chemistry 2012, 20 (18) , 5443-5452. https://doi.org/10.1016/j.bmc.2011.11.051
  1711. Eugen Lounkine, Peter Kutchukian, Paula Petrone, John W. Davies, Meir Glick. Chemotography for multi-target SAR analysis in the context of biological pathways. Bioorganic & Medicinal Chemistry 2012, 20 (18) , 5416-5427. https://doi.org/10.1016/j.bmc.2012.02.034
  1712. Chia-Wei Chu, John D. Holliday, Peter Willett. Combining multiple classifications of chemical structures using consensus clustering. Bioorganic & Medicinal Chemistry 2012, 20 (18) , 5366-5371. https://doi.org/10.1016/j.bmc.2012.03.010
  1713. Martin Vogt, Jürgen Bajorath. Chemoinformatics: A view of the field and current trends in method development. Bioorganic & Medicinal Chemistry 2012, 20 (18) , 5317-5323. https://doi.org/10.1016/j.bmc.2012.03.030
  1714. Sandeep Modi, Jin Li, Sophie Malcomber, Claire Moore, Andrew Scott, Andrew White, Paul Carmichael. Integrated in silico approaches for the prediction of Ames test mutagenicity. Journal of Computer-Aided Molecular Design 2012, 70 https://doi.org/10.1007/s10822-012-9595-5
  1715. E. Gregori-Puigjane, V. Setola, J. Hert, B. A. Crews, J. J. Irwin, E. Lounkine, L. Marnett, B. L. Roth, B. K. Shoichet. Identifying mechanism-of-action targets for drugs and probes. Proceedings of the National Academy of Sciences 2012, 109 (28) , 11178-11183. https://doi.org/10.1073/pnas.1204524109
  1716. John D. Holliday, Peter Willett, Hua Xiang. Interactions Between Weighting Scheme and Similarity Coefficient in Similarity-Based Virtual Screening. International Journal of Chemoinformatics and Chemical Engineering 2012, 2 (2) , 28-41. https://doi.org/10.4018/ijcce.2012070103
  1717. Oscar Méndez-Lucio, Jaime Pérez-Villanueva, Rafael Castillo, José L. Medina-Franco. Activity landscape modeling of PPAR ligands with dual-activity difference maps. Bioorganic & Medicinal Chemistry 2012, 20 (11) , 3523-3532. https://doi.org/10.1016/j.bmc.2012.04.005
  1718. Lei Di-wu, Lin-Li Li, Wen-Jing Wang, Huan-Zhang Xie, Jiao Yang, Chun-Hui Zhang, Qi Huang, Lei Zhong, Shan Feng, Sheng-Yong Yang. Identification of CK2 inhibitors with new scaffolds by a hybrid virtual screening approach based on Bayesian model; pharmacophore hypothesis and molecular docking. Journal of Molecular Graphics and Modelling 2012, 36 , 42-47. https://doi.org/10.1016/j.jmgm.2012.03.004
  1719. Eugen Lounkine, Michael J. Keiser, Steven Whitebread, Dmitri Mikhailov, Jacques Hamon, Jeremy L. Jenkins, Paul Lavan, Eckhard Weber, Allison K. Doak, Serge Côté, Brian K. Shoichet, Laszlo Urban. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012, 486 (7403) , 361-367. https://doi.org/10.1038/nature11159
  1720. Chaoqian Cai, Jiayu Gong, Xiaofeng Liu, Hualiang Jiang, Daqi Gao, Honglin Li. A novel, customizable and optimizable parameter method using spherical harmonics for molecular shape similarity comparisons. Journal of Molecular Modeling 2012, 18 (4) , 1597-1610. https://doi.org/10.1007/s00894-011-1173-6
  1721. Simona Distinto, Francesca Esposito, Johannes Kirchmair, M. Cristina Cardia, Marco Gaspari, Elias Maccioni, Stefano Alcaro, Patrick Markt, Gerhard Wolber, Luca Zinzula, Enzo Tramontano. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint- and pharmacophore-based virtual screening approach. European Journal of Medicinal Chemistry 2012, 50 , 216-229. https://doi.org/10.1016/j.ejmech.2012.01.056
  1722. Peter Ripphausen, Dagmar Stumpfe, Jürgen Bajorath. Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Medicinal Chemistry 2012, 4 (5) , 603-613. https://doi.org/10.4155/fmc.12.18
  1723. François Bertelli. What Does an HTS File of the Future Look Like?. 2012,,, 275-304. https://doi.org/10.1002/9783527645251.ch15
  1724. Anne-Gaëlle Planson, Pablo Carbonell, Elodie Paillard, Nicolas Pollet, Jean-Loup Faulon. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli. Biotechnology and Bioengineering 2012, 109 (3) , 846-850. https://doi.org/10.1002/bit.24356
  1725. Christian Laggner, David Kokel, Vincent Setola, Alexandra Tolia, Henry Lin, John J Irwin, Michael J Keiser, Chung Yan J Cheung, Daniel L Minor, Bryan L Roth, Randall T Peterson, Brian K Shoichet. Chemical informatics and target identification in a zebrafish phenotypic screen. Nature Chemical Biology 2012, 8 (2) , 144-146. https://doi.org/10.1038/nchembio.732
  1726. Indrani Dasgupta, Eric A. Tanifum, Mayank Srivastava, Sharangdhar S. Phatak, Claudio N. Cavasotto, Mostafa Analoui, Ananth Annapragada, . Non Inflammatory Boronate Based Glucose-Responsive Insulin Delivery Systems. PLoS ONE 2012, 7 (1) , e29585. https://doi.org/10.1371/journal.pone.0029585
  1727. Xiaoying Hu, Aixia Yan. In Silico Models to Discriminate Compounds Inducing and Noninducing Toxic Myopathy. Molecular Informatics 2012, 31 (1) , 27-39. https://doi.org/10.1002/minf.201100067
  1728. Hongming Chen, Ola Engkvist, Niklas Blomberg, Jin Li. A comparative analysis of the molecular topologies for drugs, clinical candidates, natural products, human metabolites and general bioactive compounds. Med. Chem. Commun. 2012, 3 (3) , 312-321. https://doi.org/10.1039/C2MD00238H
  1729. Tetyana Petrova, Alexander Chuprina, Raman Parkesh, Alexei Pushechnikov. Structural enrichment of HTS compounds from available commercial libraries. MedChemComm 2012, 3 (5) , 571. https://doi.org/10.1039/c2md00302c
  1730. Motoki SHIGA, Yoshimasa TAKAHASHI. Compression of Topological Fragment Spectra (TFS) for Accelerating Chemical Data Mining. Journal of Computer Chemistry, Japan 2012, 11 (2) , 104-111. https://doi.org/10.2477/jccj.2012-0002
  1731. Julio E. Peironcely, Theo Reijmers, Leon Coulier, Andreas Bender, Thomas Hankemeier, . Understanding and Classifying Metabolite Space and Metabolite-Likeness. PLoS ONE 2011, 6 (12) , e28966. https://doi.org/10.1371/journal.pone.0028966
  1732. J.-L. Reymond, Ruud van Deursen, D. Bertrand. What we have learned from crystal structures of proteins to receptor function. Biochemical Pharmacology 2011, 82 (11) , 1521-1527. https://doi.org/10.1016/j.bcp.2011.07.061
  1733. Lars Rosenbaum, Georg Hinselmann, Andreas Jahn, Andreas Zell. Interpreting linear support vector machine models with heat map molecule coloring. Journal of Cheminformatics 2011, 3 (1) https://doi.org/10.1186/1758-2946-3-11
  1734. Georg Hinselmann, Lars Rosenbaum, Andreas Jahn, Nikolas Fechner, Andreas Zell. jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints. Journal of Cheminformatics 2011, 3 (1) https://doi.org/10.1186/1758-2946-3-3
  1735. Varun Khanna, Shoba Ranganathan. Structural diversity of biologically interesting datasets: a scaffold analysis approach. Journal of Cheminformatics 2011, 3 (1) https://doi.org/10.1186/1758-2946-3-30
  1736. Patrick McCarren, Clayton Springer, Lewis Whitehead. An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. Journal of Cheminformatics 2011, 3 (1) https://doi.org/10.1186/1758-2946-3-51
  1737. Samantha J. Hughes, David S. Millan, Iain C. Kilty, Russell A. Lewthwaite, John P. Mathias, Mark A. O’Reilly, Andrew Pannifer, Anne Phelan, Frank Stühmeier, Darren A. Baldock, David G. Brown. Fragment based discovery of a novel and selective PI3 kinase inhibitor. Bioorganic & Medicinal Chemistry Letters 2011, 21 (21) , 6586-6590. https://doi.org/10.1016/j.bmcl.2011.07.117
  1738. Preeti Iyer, Jürgen Bajorath. Representation of Multi-Target Activity Landscapes Through Target Pair-Based Compound Encoding in Self-Organizing Maps. Chemical Biology & Drug Design 2011, 78 (5) , 778-786. https://doi.org/10.1111/j.1747-0285.2011.01235.x
  1739. Ramzi Nasr, Thomas Kristensen, Pierre Baldi. Tree and Hashing Data Structures to Speed up Chemical Searches: Analysis and Experiments. Molecular Informatics 2011, 30 (9) , 791-800. https://doi.org/10.1002/minf.201100089
  1740. Ansgar Schuffenhauer, Thibault Varin. Rule-Based Classification of Chemical Structures by Scaffold. Molecular Informatics 2011, 30 (8) , 646-664. https://doi.org/10.1002/minf.201100078
  1741. Anne M. Wassermann, Dilyana Dimova, Jürgen Bajorath. Comprehensive Analysis of Single- and Multi-Target Activity Cliffs Formed by Currently Available Bioactive Compounds. Chemical Biology & Drug Design 2011, 78 (2) , 224-228. https://doi.org/10.1111/j.1747-0285.2011.01150.x
  1742. Wendy A. Warr. Representation of chemical structures. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1 (4) , 557-579. https://doi.org/10.1002/wcms.36
  1743. Ruud van Deursen, Lorenz C. Blum, Jean-Louis Reymond. Visualisation of the chemical space of fragments, lead-like and drug-like molecules in PubChem. Journal of Computer-Aided Molecular Design 2011, 25 (7) , 649-662. https://doi.org/10.1007/s10822-011-9437-x
  1744. Nathanael Weill, Christel Valencia, Sophie Gioria, Pascal Villa, Marcel Hibert, Didier Rognan. Identification of Nonpeptide Oxytocin Receptor Ligands by Receptor-Ligand Fingerprint Similarity Search. Molecular Informatics 2011, 30 (6-7) , 521-526. https://doi.org/10.1002/minf.201100026
  1745. Richard L. Marchese Robinson, Robert C. Glen, John B. O. Mitchell. Development and Comparison of hERG Blocker Classifiers: Assessment on Different Datasets Yields Markedly Different Results. Molecular Informatics 2011, 30 (5) , 443-458. https://doi.org/10.1002/minf.201000159
  1746. Stephan C. Schürer, Uma Vempati, Robin Smith, Mark Southern, Vance Lemmon. BioAssay Ontology Annotations Facilitate Cross-Analysis of Diverse High-Throughput Screening Data Sets. Journal of Biomolecular Screening 2011, 16 (4) , 415-426. https://doi.org/10.1177/1087057111400191
  1747. Ulf Johansson, Cecilia Sönströd, Ulf Norinder, Henrik Boström. Trade-off between accuracy and interpretability for predictive in silico modeling. Future Medicinal Chemistry 2011, 3 (6) , 647-663. https://doi.org/10.4155/fmc.11.23
  1748. Tim Knehans, Andreas Schüller, Danny N. Doan, Kassoum Nacro, Jeffrey Hill, Peter Güntert, M. S. Madhusudhan, Tanja Weil, Subhash G. Vasudevan. Structure-guided fragment-based in silico drug design of dengue protease inhibitors. Journal of Computer-Aided Molecular Design 2011, 25 (3) , 263-274. https://doi.org/10.1007/s10822-011-9418-0
  1749. Guo-Bo Li, Ling-Ling Yang, Shan Feng, Jian-Ping Zhou, Qi Huang, Huan-Zhang Xie, Lin-Li Li, Sheng-Yong Yang. Discovery of novel mGluR1 antagonists: A multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor. Bioorganic & Medicinal Chemistry Letters 2011, 21 (6) , 1736-1740. https://doi.org/10.1016/j.bmcl.2011.01.087
  1750. Jonas Boström, Niklas Falk, Christian Tyrchan. Exploiting personalized information for reagent selection in drug design. Drug Discovery Today 2011, 16 (5-6) , 181-187. https://doi.org/10.1016/j.drudis.2011.01.006
  1751. Eleanor J Gardiner, John D Holliday, Caroline O’Dowd, Peter Willett. Effectiveness of 2D fingerprints for scaffold hopping. Future Medicinal Chemistry 2011, 3 (4) , 405-414. https://doi.org/10.4155/fmc.11.4
  1752. Varun Khanna, Shoba Ranganathan. Molecular similarity and diversity approaches in chemoinformatics. Drug Development Research 2011, 72 (1) , 74-84. https://doi.org/10.1002/ddr.20404
  1753. Nathan Brown. . WIREs Computational Molecular Science 2011,,, 716. https://doi.org/10.1002/wcms.42
  1754. Peter Willett. . WIREs Data Mining and Knowledge Discovery 2011,,, 241. https://doi.org/10.1002/widm.26
  1755. Brett A. Tounge, Michael H. Parker. Designing a Diverse High-Quality Library for Crystallography-Based FBDD Screening. 2011,,, 3-20. https://doi.org/10.1016/B978-0-12-381274-2.00001-7
  1756. Renee L. DesJarlais. Using Computational Techniques in Fragment-Based Drug Discovery. 2011,,, 137-155. https://doi.org/10.1016/B978-0-12-381274-2.00006-6
  1757. Gerard J. P. van Westen, Jörg K. Wegner, Adriaan P. IJzerman, Herman W. T. van Vlijmen, A. Bender. Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. MedChemComm 2011, 2 (1) , 16-30. https://doi.org/10.1039/C0MD00165A
  1758. Anne M. Wassermann, Kathrin Heikamp, Jürgen Bajorath. Potency-Directed Similarity Searching Using Support Vector Machines. Chemical Biology & Drug Design 2011, 77 (1) , 30-38. https://doi.org/10.1111/j.1747-0285.2010.01059.x
  1759. Fiorella Ruggiu, Gilles Marcou, Alexandre Varnek, Dragos Horvath. ISIDA Property-Labelled Fragment Descriptors. Molecular Informatics 2010, 29 (12) , 855-868. https://doi.org/10.1002/minf.201000099
  1760. Nikil Wale. An Empirical Comparison of Platt Calibration and Inductive Confidence Machines for Predictions in Drug Discovery. 2010,,, 771-778. https://doi.org/10.1109/ICDMW.2010.111
  1761. Thashmee Karunaratne, Henrik Bostrom, Ulf Norinder. Pre-Processing Structured Data for Standard Machine Learning Algorithms by Supervised Graph Propositionalization - A Case Study with Medicinal Chemistry Datasets. 2010,,, 828-833. https://doi.org/10.1109/ICMLA.2010.128
  1762. Andreas Bender. How similar are those molecules after all? Use two descriptors and you will have three different answers. Expert Opinion on Drug Discovery 2010, 5 (12) , 1141-1151. https://doi.org/10.1517/17460441.2010.517832
  1763. Martin Vogt, Anne Mai Wassermann, Jürgen Bajorath. Application of Information—Theoretic Concepts in Chemoinformatics. Information 2010, 1 (2) , 60-73. https://doi.org/10.3390/info1020060
  1764. Kiyoshi Hasegawa, Migita Keiya, Kimito Funatsu. Visualization of Molecular Selectivity and Structure Generation for Selective Dopamine Inhibitors. Molecular Informatics 2010, 29 (11) , 793-800. https://doi.org/10.1002/minf.201000096
  1765. Sylvain Lozano, Marie-Pierre Halm-Lemeille, Alban Lepailleur, Sylvain Rault, Ronan Bureau. Consensus QSAR Related to Global or MOA Models: Application to Acute Toxicity for Fish. Molecular Informatics 2010, 29 (11) , 803-813. https://doi.org/10.1002/minf.201000104
  1766. P. A. Clemons, N. E. Bodycombe, H. A. Carrinski, J. A. Wilson, A. F. Shamji, B. K. Wagner, A. N. Koehler, S. L. Schreiber. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proceedings of the National Academy of Sciences 2010, 107 (44) , 18787-18792. https://doi.org/10.1073/pnas.1012741107
  1767. Sai Chetan K. Sukuru, Florian Nigsch, Jean Quancard, Martin Renatus, Rajiv Chopra, Natasja Brooijmans, Dmitri Mikhailov, Zhan Deng, Allen Cornett, Jeremy L. Jenkins, Ulrich Hommel, John W. Davies, Meir Glick. A lead discovery strategy driven by a comprehensive analysis of proteases in the peptide substrate space. Protein Science 2010, 19 (11) , 2096-2109. https://doi.org/10.1002/pro.490
  1768. Jaime Pérez-Villanueva, Radleigh Santos, Alicia Hernández-Campos, Marc A. Giulianotti, Rafael Castillo, Jose L. Medina-Franco. Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. Bioorganic & Medicinal Chemistry 2010, 18 (21) , 7380-7391. https://doi.org/10.1016/j.bmc.2010.09.019
  1769. Moises Hassan, Robert D. Brown, Shikha Varma-O’Brien, David Rogers. Cheminformatics analysis and learning in a data pipelining environment. Molecular Diversity 2006, 10 (3) , 283-299. https://doi.org/10.1007/s11030-006-9041-5
  1770. John D. Holliday, Peter Willett, Hua Xiang. Interactions Between Weighting Scheme and Similarity Coefficient in Similarity-Based Virtual Screening. ,,, 310-321. https://doi.org/10.4018/978-1-4666-4010-8.ch020

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

OOPS

You have to login with your ACS ID befor you can login with your Mendeley account.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE