ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

FLAP: GRID Molecular Interaction Fields in Virtual Screening. Validation using the DUD Data Set

View Author Information
Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, United Kingdom, and Laboratory for Chemometrics and Cheminformatics, Chemistry Department, University of Perugia, Via Elce di sotto 10, I-06123 Perugia, Italy
* To whom correspondence should be addressed. E-mail: [email protected]
†Molecular Discovery Limited.
‡University of Perugia.
Cite this: J. Chem. Inf. Model. 2010, 50, 8, 1442–1450
Publication Date (Web):August 6, 2010
https://doi.org/10.1021/ci100221g
Copyright © 2010 American Chemical Society

    Article Views

    1594

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The performance of FLAP (Fingerprints for Ligands and Proteins) in virtual screening is assessed using a subset of the DUD (Directory of Useful Decoys) benchmarking data set containing 13 targets each with more than 15 different chemotype classes. A variety of ligand and receptor-based virtual screening approaches are examined, using combinations of individual templates 2D structures of known actives, a cocrystallized ligand, a receptor structure, or a cocrystallized ligand-biased receptor structure. We examine several data fusion approaches to combine the results of the individual virtual screens. In doing so, we show that excellent chemotype enrichment is achieved in both single target ligand-based and receptor-based approaches, of approximately 17-fold over random on average at a false positive rate of 1%. We also show that using as much starting knowledge as possible improves chemotype enrichment, and that data fusion using Pareto ranking is an effective method to do this giving up to 50% improvement in enrichment over the single methods. Finally we show that if inactivity or decoy data is incorporated, automatically training the scoring function in FLAP improves recovery still further, with almost 2-fold improvement over the enrichments shown by the single methods. The results clearly demonstrate the utility of FLAP for virtual screening when either a limited or wide range of prior knowledge is available.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Ranked lists for each approach described for use in generating ROC data. This information is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 81 publications.

    1. Francesca Gado, Rebecca Ferrisi, Beatrice Polini, Kawthar A. Mohamed, Caterina Ricardi, Elena Lucarini, Sara Carpi, Federica Domenichini, Lesley A. Stevenson, Simona Rapposelli, Giuseppe Saccomanni, Paola Nieri, Gabriella Ortore, Roger G. Pertwee, Carla Ghelardini, Lorenzo Di Cesare Mannelli, Grazia Chiellini, Robert B. Laprairie, Clementina Manera. Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. Journal of Medicinal Chemistry 2022, 65 (14) , 9918-9938. https://doi.org/10.1021/acs.jmedchem.2c00582
    2. Mihaela D. Smilova, Peter R. Curran, Chris J. Radoux, Frank von Delft, Jason C. Cole, Anthony R. Bradley, Brian D. Marsden. Fragment Hotspot Mapping to Identify Selectivity-Determining Regions between Related Proteins. Journal of Chemical Information and Modeling 2022, 62 (2) , 284-294. https://doi.org/10.1021/acs.jcim.1c00823
    3. Javier Vázquez, Alessandro Deplano, Albert Herrero, Tiziana Ginex, Enric Gibert, Obdulia Rabal, Julen Oyarzabal, Enric Herrero, F. Javier Luque. Development and Validation of Molecular Overlays Derived from Three-Dimensional Hydrophobic Similarity with PharmScreen. Journal of Chemical Information and Modeling 2018, 58 (8) , 1596-1609. https://doi.org/10.1021/acs.jcim.8b00216
    4. Federica Buonerba, Susan Lepri, Laura Goracci, Bryan D. Schindler, Susan M. Seo, Glenn W. Kaatz, and Gabriele Cruciani . Improved Potency of Indole-Based NorA Efflux Pump Inhibitors: From Serendipity toward Rational Design and Development. Journal of Medicinal Chemistry 2017, 60 (1) , 517-523. https://doi.org/10.1021/acs.jmedchem.6b01281
    5. Andrea Volkamer, Sameh Eid, Samo Turk, Friedrich Rippmann, and Simone Fulle . Identification and Visualization of Kinase-Specific Subpockets. Journal of Chemical Information and Modeling 2016, 56 (2) , 335-346. https://doi.org/10.1021/acs.jcim.5b00627
    6. Francesca Spyrakis, Paolo Benedetti, Sergio Decherchi, Walter Rocchia, Andrea Cavalli, Stefano Alcaro, Francesco Ortuso, Massimo Baroni, and Gabriele Cruciani . A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins. Journal of Chemical Information and Modeling 2015, 55 (10) , 2256-2274. https://doi.org/10.1021/acs.jcim.5b00169
    7. Qiantao Wang, Jihyun Park, Ashwini K. Devkota, Eun Jeong Cho, Kevin N. Dalby, and Pengyu Ren . Identification and Validation of Novel PERK Inhibitors. Journal of Chemical Information and Modeling 2014, 54 (5) , 1467-1475. https://doi.org/10.1021/ci500114r
    8. Giulio Poli, Tiziano Tuccinardi, Flavio Rizzolio, Isabella Caligiuri, Lorenzo Botta, Carlotta Granchi, Gabriella Ortore, Filippo Minutolo, Silvia Schenone, and Adriano Martinelli . Identification of New Fyn Kinase Inhibitors Using a FLAP-Based Approach. Journal of Chemical Information and Modeling 2013, 53 (10) , 2538-2547. https://doi.org/10.1021/ci4002553
    9. Peter Willett . Combination of Similarity Rankings Using Data Fusion. Journal of Chemical Information and Modeling 2013, 53 (1) , 1-10. https://doi.org/10.1021/ci300547g
    10. Francesco Sirci, Enade P. Istyastono, Henry F. Vischer, Albert J. Kooistra, Saskia Nijmeijer, Martien Kuijer, Maikel Wijtmans, Raimund Mannhold, Rob Leurs, Iwan J. P. de Esch, and Chris de Graaf . Virtual Fragment Screening: Discovery of Histamine H3 Receptor Ligands Using Ligand-Based and Protein-Based Molecular Fingerprints. Journal of Chemical Information and Modeling 2012, 52 (12) , 3308-3324. https://doi.org/10.1021/ci3004094
    11. Emanuele Carosati, Anna Tochowicz, Gaetano Marverti, Giambattista Guaitoli, Paolo Benedetti, Stefania Ferrari, Robert M. Stroud, Janet Finer-Moore, Rosaria Luciani, Davide Farina, Gabriele Cruciani, and M. Paola Costi . Inhibitor of Ovarian Cancer Cells Growth by Virtual Screening: A New Thiazole Derivative Targeting Human Thymidylate Synthase. Journal of Medicinal Chemistry 2012, 55 (22) , 10272-10276. https://doi.org/10.1021/jm300850v
    12. Simon Cross, Massimo Baroni, Laura Goracci, and Gabriele Cruciani . GRID-Based Three-Dimensional Pharmacophores I: FLAPpharm, a Novel Approach for Pharmacophore Elucidation. Journal of Chemical Information and Modeling 2012, 52 (10) , 2587-2598. https://doi.org/10.1021/ci300153d
    13. Simon Cross, Francesco Ortuso, Massimo Baroni, Giosuè Costa, Simona Distinto, Federica Moraca, Stefano Alcaro, and Gabriele Cruciani . GRID-Based Three-Dimensional Pharmacophores II: PharmBench, a Benchmark Data Set for Evaluating Pharmacophore Elucidation Methods. Journal of Chemical Information and Modeling 2012, 52 (10) , 2599-2608. https://doi.org/10.1021/ci300154n
    14. Michael Oberlin, Romano Kroemer, Vincent Mikol, Hervé Minoux, Erdogan Tastan, and Nicolas Baurin, . Engineering Protein Therapeutics: Predictive Performances of a Structure-Based Virtual Affinity Maturation Protocol. Journal of Chemical Information and Modeling 2012, 52 (8) , 2204-2214. https://doi.org/10.1021/ci3001474
    15. Fabio Broccatelli, Raimund Mannhold, Alessio Moriconi, Sandra Giuli, and Emanuele Carosati . QSAR Modeling and Data Mining Link Torsades de Pointes Risk to the Interplay of Extent of Metabolism, Active Transport, and hERG Liability. Molecular Pharmaceutics 2012, 9 (8) , 2290-2301. https://doi.org/10.1021/mp300156r
    16. Jui-Hua Hsieh, Shuangye Yin, Xiang S. Wang, Shubin Liu, Nikolay V. Dokholyan, and Alexander Tropsha . Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-Based Pose Scoring and Physical Force Field-Based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 2012, 52 (1) , 16-28. https://doi.org/10.1021/ci2002507
    17. Fredrik Svensson, Anders Karlén, and Christian Sköld . Virtual Screening Data Fusion Using Both Structure- and Ligand-Based Methods. Journal of Chemical Information and Modeling 2012, 52 (1) , 225-232. https://doi.org/10.1021/ci2004835
    18. Fabio Broccatelli, Emanuele Carosati, Annalisa Neri, Maria Frosini, Laura Goracci, Tudor I. Oprea, and Gabriele Cruciani . A Novel Approach for Predicting P-Glycoprotein (ABCB1) Inhibition Using Molecular Interaction Fields. Journal of Medicinal Chemistry 2011, 54 (6) , 1740-1751. https://doi.org/10.1021/jm101421d
    19. Jean Pierre Brincat, Emanuele Carosati, Stefano Sabatini, Giuseppe Manfroni, Arnaldo Fravolini, Jose L. Raygada, Diixa Patel, Glenn W. Kaatz, and Gabriele Cruciani . Discovery of Novel Inhibitors of the NorA Multidrug Transporter of Staphylococcus aureus. Journal of Medicinal Chemistry 2011, 54 (1) , 354-365. https://doi.org/10.1021/jm1011963
    20. Krishna Mohan Poluri, Khushboo Gulati, Deepak Kumar Tripathi, Nupur Nagar. Drug Design Methods to Regulate Protein–Protein Interactions. 2023, 265-341. https://doi.org/10.1007/978-981-99-2423-3_6
    21. Tommaso Palomba, Massimo Baroni, Simon Cross, Gabriele Cruciani, Lydia Siragusa. ELIOT : A platform to navigate the E3 pocketome and aid the design of new PROTACs. Chemical Biology & Drug Design 2023, 101 (1) , 69-86. https://doi.org/10.1111/cbdd.14123
    22. Luca Costantino, Stefania Ferrari, Matteo Santucci, Outi MH Salo-Ahen, Emanuele Carosati, Silvia Franchini, Angela Lauriola, Cecilia Pozzi, Matteo Trande, Gaia Gozzi, Puneet Saxena, Giuseppe Cannazza, Lorena Losi, Daniela Cardinale, Alberto Venturelli, Antonio Quotadamo, Pasquale Linciano, Lorenzo Tagliazucchi, Maria Gaetana Moshella, Remo Guerrini, Salvatore Pacifico, Rosaria Luciani, Filippo Genovese, Stefan Henrich, Silvia Alboni, Nuno Santarem, Anabela da Silva Cordeiro, Elisa Giovannetti, Godefridus J Peters, Paolo Pinton, Alessandro Rimessi, Gabriele Cruciani, Robert M Stroud, Rebecca C Wade, Stefano Mangani, Gaetano Marverti, Domenico D'Arca, Glauco Ponterini, Maria Paola Costi. Destabilizers of the thymidylate synthase homodimer accelerate its proteasomal degradation and inhibit cancer growth. eLife 2022, 11 https://doi.org/10.7554/eLife.73862
    23. Tommaso Palomba, Giusy Tassone, Carmine Vacca, Matteo Bartalucci, Aurora Valeri, Cecilia Pozzi, Simon Cross, Lydia Siragusa, Jenny Desantis. Exploiting ELIOT for Scaffold-Repurposing Opportunities: TRIM33 a Possible Novel E3 Ligase to Expand the Toolbox for PROTAC Design. International Journal of Molecular Sciences 2022, 23 (22) , 14218. https://doi.org/10.3390/ijms232214218
    24. Milica Radan, Teodora Djikic, Katarina Nikolic. Discovery of new chemotypes of dual 5-HT 2A /D 2 receptor antagonists with a strategy of drug design methodologies. Future Medicinal Chemistry 2022, 14 (13) , 963-989. https://doi.org/10.4155/fmc-2021-0340
    25. Francesca Gado, Costanza Ceni, Rebecca Ferrisi, Giulia Sbrana, Lesley A. Stevenson, Marco Macchia, Roger G. Pertwee, Simone Bertini, Clementina Manera, Gabriella Ortore. CB1 receptor binding sites for NAM and PAM: A first approach for studying, new n‑butyl‑diphenylcarboxamides as allosteric modulators. European Journal of Pharmaceutical Sciences 2022, 169 , 106088. https://doi.org/10.1016/j.ejps.2021.106088
    26. Zhiguo Wang, Baofeng Yang. Methods for Rational Design and Discovery of Multitarget Drugs. 2022, 781-814. https://doi.org/10.1007/978-3-031-04998-9_20
    27. Mohammed Khaldoon Altalib, Naomie Salim. Similarity-Based Virtual Screen Using Enhanced Siamese Multi-Layer Perceptron. Molecules 2021, 26 (21) , 6669. https://doi.org/10.3390/molecules26216669
    28. Francesca Spyrakis, Aurijit Sarkar, Glen E. Kellogg. Docking, Scoring, and Virtual Screening in Drug Discovery. 2021, 1-102. https://doi.org/10.1002/0471266949.bmc301
    29. Zahra Khoshbin, Mohammad R. Housaindokht, Mohammad Izadyar, Mohammad R. Bozorgmehr, Asma Verdian. Recent advances in computational methods for biosensor design. Biotechnology and Bioengineering 2021, 118 (2) , 555-578. https://doi.org/10.1002/bit.27618
    30. Javier Vázquez, Manel López, Enric Gibert, Enric Herrero, F. Javier Luque. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020, 25 (20) , 4723. https://doi.org/10.3390/molecules25204723
    31. Reham S. Ibrahim, Rahma SR. Mahrous, Hoda M. Fathy, Abdallah A. Omar, Rasha M. Abu EL-Khair. Anticoagulant activity screening of an in-house database of natural compounds for discovering novel selective factor Xa inhibitors; a combined in silico and in vitro approach. Medicinal Chemistry Research 2020, 29 (4) , 707-726. https://doi.org/10.1007/s00044-020-02516-5
    32. Annamaria Sandomenico, Andrea Caporale, Nunzianna Doti, Simon Cross, Gabriele Cruciani, Angela Chambery, Sandro De Falco, Menotti Ruvo. Synthetic Peptide Libraries: From Random Mixtures to In Vivo Testing. Current Medicinal Chemistry 2020, 27 (6) , 997-1016. https://doi.org/10.2174/0929867325666180716110833
    33. Nadine Homeyer, Ruud van Deursen, Bernardo Ochoa-Montaño, Kathrin Heikamp, Peter Ray, Fabio Zuccotto, Tom L. Blundell, Ian H. Gilbert. A platform for target prediction of phenotypic screening hit molecules. Journal of Molecular Graphics and Modelling 2020, 95 , 107485. https://doi.org/10.1016/j.jmgm.2019.107485
    34. Shailesh Kumar Panday, Indira Ghosh. In Silico Structure-Based Prediction of Receptor–Ligand Binding Affinity: Current Progress and Challenges. 2019, 109-175. https://doi.org/10.1007/978-3-030-05282-9_5
    35. Giovanni Bocci, Amélie Moreau, Philippe Vayer, Claire Denizot, Olivier Fardel, Yannick Parmentier. New insights in the in vitro characterisation and molecular modelling of the P-glycoprotein inhibitory promiscuity. European Journal of Pharmaceutical Sciences 2018, 121 , 85-94. https://doi.org/10.1016/j.ejps.2018.04.039
    36. Giulio Poli, Thomas Seidel, Thierry Langer. Conformational Sampling of Small Molecules With iCon: Performance Assessment in Comparison With OMEGA. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00229
    37. Marco Catto, Daniela Trisciuzzi, Domenico Alberga, Giuseppe Felice Mangiatordi, Orazio Nicolotti. Multitarget Drug Design for Neurodegenerative Diseases. 2018, 93-105. https://doi.org/10.1007/7653_2018_17
    38. Carlotta Granchi, Tiziano Tuccinardi, Filippo Minutolo. Design, Synthesis, and Evaluation of GLUT Inhibitors. 2018, 93-108. https://doi.org/10.1007/978-1-4939-7507-5_8
    39. Maria Grazia Perrone, Paola Vitale, Savina Ferorelli, Angelina Boccarelli, Mauro Coluccia, Alessandra Pannunzio, Federica Campanella, Giuseppe Di Mauro, Carmela Bonaccorso, Cosimo G. Fortuna, Antonio Scilimati. Effect of mofezolac-galactose distance in conjugates targeting cyclooxygenase (COX)-1 and CNS GLUT-1 carrier. European Journal of Medicinal Chemistry 2017, 141 , 404-416. https://doi.org/10.1016/j.ejmech.2017.09.066
    40. Francesco Sirci, Francesco Napolitano, Sandra Pisonero-Vaquero, Diego Carrella, Diego L. Medina, Diego di Bernardo. Comparing structural and transcriptional drug networks reveals signatures of drug activity and toxicity in transcriptional responses. npj Systems Biology and Applications 2017, 3 (1) https://doi.org/10.1038/s41540-017-0022-3
    41. Vladimir Dobričić, Vesna Jaćević, Jelica Vučićević, Katarina Nikolic, Sote Vladimirov, Olivera Čudina. Evaluation of Biological Activity and Computer‐Aided Design of New Soft Glucocorticoids. Archiv der Pharmazie 2017, 350 (5) https://doi.org/10.1002/ardp.201600383
    42. Susan Lepri, Martina Ceccarelli, Nicolò Milani, Sara Tortorella, Andrea Cucco, Aurora Valeri, Laura Goracci, Andreas Brink, Gabriele Cruciani. Structure–metabolism relationships in human- AOX: Chemical insights from a large database of aza-aromatic and amide compounds. Proceedings of the National Academy of Sciences 2017, 114 (16) https://doi.org/10.1073/pnas.1618881114
    43. Rajan Chaudhari, Zhi Tan, Beibei Huang, Shuxing Zhang. Computational polypharmacology: a new paradigm for drug discovery. Expert Opinion on Drug Discovery 2017, 12 (3) , 279-291. https://doi.org/10.1080/17460441.2017.1280024
    44. R. Chaudhari, Z. Tan, S. Zhang. Overview of Drug Polypharmacology and Multitargeted Molecular Design. 2017, 259-275. https://doi.org/10.1016/B978-0-12-409547-2.12323-6
    45. D. Bajusz, A. Rácz, K. Héberger. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. 2017, 329-378. https://doi.org/10.1016/B978-0-12-409547-2.12345-5
    46. P. Tosco, M. Mackey. Lessons and Successes in the Use of Molecular Fields. 2017, 253-296. https://doi.org/10.1016/B978-0-12-409547-2.12353-4
    47. Albert J. Kooistra, Andrea Volkamer. Kinase-Centric Computational Drug Development. 2017, 197-236. https://doi.org/10.1016/bs.armc.2017.08.001
    48. Ismail Babajide Mustapha, Faisal Saeed. Bioactive Molecule Prediction Using Extreme Gradient Boosting. Molecules 2016, 21 (8) , 983. https://doi.org/10.3390/molecules21080983
    49. Jelica Vucicevic, Tatjana Srdic-Rajic, Marco Pieroni, Jonne M.M. Laurila, Vladimir Perovic, Sabrina Tassini, Elisa Azzali, Gabriele Costantino, Sanja Glisic, Danica Agbaba, Mika Scheinin, Katarina Nikolic, Marco Radi, Nevena Veljkovic. A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin. Bioorganic & Medicinal Chemistry 2016, 24 (14) , 3174-3183. https://doi.org/10.1016/j.bmc.2016.05.043
    50. Rama Kaalia, Ashwin Srinivasan, Amit Kumar, Indira Ghosh. ILP-assisted de novo drug design. Machine Learning 2016, 103 (3) , 309-341. https://doi.org/10.1007/s10994-016-5556-x
    51. Zarko Gagic, Branka Ivkovic, Tatjana Srdic-Rajic, Jelica Vucicevic, Katarina Nikolic, Danica Agbaba. Synthesis of the vitamin E amino acid esters with an enhanced anticancer activity and in silico screening for new antineoplastic drugs. European Journal of Pharmaceutical Sciences 2016, 88 , 59-69. https://doi.org/10.1016/j.ejps.2016.04.008
    52. Woong-Hee Shin, Mark Gregory Bures, Daisuke Kihara. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Methods 2016, 93 , 41-50. https://doi.org/10.1016/j.ymeth.2015.09.026
    53. Mohammed Al-Dabbagh, Naomie Salim, Mubarak Himmat, Ali Ahmed, Faisal Saeed. A Quantum-Based Similarity Method in Virtual Screening. Molecules 2015, 20 (10) , 18107-18127. https://doi.org/10.3390/molecules201018107
    54. Emanuele Carosati, Natascha van den Höfel, Manuela Reif, Giuseppe Marco Randazzo, Bettina Stanitzki, Julia Stevens, Helmut E. Gabbert, Gabriele Cruciani, Raimund Mannhold, Csaba Mahotka. Discovery of Novel, Potent, and Specific Cell‐Death Inducers in the Jurkat Acute Lymphoblastic Leukemia Cell Line. ChemMedChem 2015, 10 (10) , 1700-1706. https://doi.org/10.1002/cmdc.201500245
    55. Woong-Hee Shin, Xiaolei Zhu, Mark Bures, Daisuke Kihara. Three-Dimensional Compound Comparison Methods and Their Application in Drug Discovery. Molecules 2015, 20 (7) , 12841-12862. https://doi.org/10.3390/molecules200712841
    56. Rama Kaalia, Amit Kumar, Ashwin Srinivasan, Indira Ghosh. An Ab Initio Method for Designing Multi‐Target Specific Pharmacophores using Complementary Interaction Field of Aspartic Proteases. Molecular Informatics 2015, 34 (6-7) , 380-393. https://doi.org/10.1002/minf.201400157
    57. Lydia Siragusa, Simon Cross, Massimo Baroni, Laura Goracci, Gabriele Cruciani. BioGPS: Navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins: Structure, Function, and Bioinformatics 2015, 83 (3) , 517-532. https://doi.org/10.1002/prot.24753
    58. Mostafa H. Ahmed, Alessio Amadasi, Alexander S. Bayden, Derek J. Cashman, Pietro Cozzini, Chenxiao Da, Deliang L. Chen, Micaela Fornabaio, Vishal N. Koparde, Andrea Mozzarelli, Hardik I. Parikh, Aurijit Sarkar, J. Neel Scarsdale, Francesca Spyrakis, J. Andrew Surface, Ashutosh Tripathi, Saheem A. Zaidi, Glen E. Kellogg. Understanding Water and Its Many Roles in Biological Structure: Ways to Exploit a Resource for Drug Discovery. 2015, 85-110. https://doi.org/10.1007/7653_2015_58
    59. Cosimo G. Fortuna, Roberto Berardozzi, Carmela Bonaccorso, Gianluigi Caltabiano, Lorenzo Di Bari, Laura Goracci, Annalisa Guarcello, Andrea Pace, Antonio Palumbo Piccionello, Gennaro Pescitelli, Paola Pierro, Elena Lonati, Alessandra Bulbarelli, Clementina E.A. Cocuzza, Giuseppe Musumarra, Rosario Musumeci. New potent antibacterials against Gram-positive multiresistant pathogens: Effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles. Bioorganic & Medicinal Chemistry 2014, 22 (24) , 6814-6825. https://doi.org/10.1016/j.bmc.2014.10.037
    60. Ali Ahmed, Faisal Saeed, Naomie Salim, Ammar Abdo. Condorcet and borda count fusion method for ligand-based virtual screening. Journal of Cheminformatics 2014, 6 (1) https://doi.org/10.1186/1758-2946-6-19
    61. Domenico Spinelli, Roberta Budriesi, Barbara Cosimelli, Elda Severi, Matteo Micucci, Massimo Baroni, Fabio Fusi, Pierfranco Ioan, Simon Cross, Maria Frosini, Simona Saponara, Rosanna Matucci, Camillo Rosano, Maurizio Viale, Alberto Chiarini, Emanuele Carosati. Playing with Opening and Closing of Heterocycles: Using the Cusmano-Ruccia Reaction to Develop a Novel Class of Oxadiazolothiazinones, Active as Calcium Channel Modulators and P-Glycoprotein Inhibitors. Molecules 2014, 19 (10) , 16543-16572. https://doi.org/10.3390/molecules191016543
    62. Fabio Broccatelli, Nathan Brown. Molecular Interaction Fields for Predicting the Sites and Products of Metabolism. 2014, 221-242. https://doi.org/10.1002/9783527673261.ch09
    63. Lydia Siragusa, Francesca Spyrakis, Laura Goracci, Simon Cross, Gabriele Cruciani. BioGPS: The Music for the Chemo‐ and Bioinformatics Walzer. Molecular Informatics 2014, 33 (6-7) , 446-453. https://doi.org/10.1002/minf.201400028
    64. Moustafa Zein, Ahmed Abdo, Ammar Adl, Aboul Ella Hassanien, Mohamed F. Tolba, Václav Snášel. Orphan Drug Legislation with Data Fusion Rules Using Multiple Fingerprints Measurements. 2014, 261-270. https://doi.org/10.1007/978-3-319-08156-4_26
    65. Tiziano Tuccinardi, Carlotta Granchi, Jessica Iegre, Ilaria Paterni, Simone Bertini, Marco Macchia, Adriano Martinelli, Yanrong Qian, Xiaozhuo Chen, Filippo Minutolo. Oxime-based inhibitors of glucose transporter 1 displaying antiproliferative effects in cancer cells. Bioorganic & Medicinal Chemistry Letters 2013, 23 (24) , 6923-6927. https://doi.org/10.1016/j.bmcl.2013.09.037
    66. Anna Artese, Simon Cross, Giosuè Costa, Simona Distinto, Lucia Parrotta, Stefano Alcaro, Francesco Ortuso, Gabriele Cruciani. Molecular interaction fields in drug discovery: recent advances and future perspectives. WIREs Computational Molecular Science 2013, 3 (6) , 594-613. https://doi.org/10.1002/wcms.1150
    67. Francesca Spyrakis, Ratna Singh, Pietro Cozzini, Barbara Campanini, Enea Salsi, Paolo Felici, Samanta Raboni, Paolo Benedetti, Gabriele Cruciani, Glen E. Kellogg, Paul F. Cook, Andrea Mozzarelli, . Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS ONE 2013, 8 (10) , e77558. https://doi.org/10.1371/journal.pone.0077558
    68. Cosimo G. Fortuna, Carmela Bonaccorso, Alessandra Bulbarelli, Gianluigi Caltabiano, Laura Rizzi, Laura Goracci, Giuseppe Musumarra, Andrea Pace, Antonio Palumbo Piccionello, Annalisa Guarcello, Paola Pierro, Clementina E.A. Cocuzza, Rosario Musumeci. New linezolid-like 1,2,4-oxadiazoles active against Gram-positive multiresistant pathogens. European Journal of Medicinal Chemistry 2013, 65 , 533-545. https://doi.org/10.1016/j.ejmech.2013.03.069
    69. Ratna Singh, Francesca Spyrakis, Pietro Cozzini, Alessandro Paiardini, Stefano Pascarella, Andrea Mozzarelli. Chemogenomics of pyridoxal 5′-phosphate dependent enzymes. Journal of Enzyme Inhibition and Medicinal Chemistry 2013, 28 (1) , 183-194. https://doi.org/10.3109/14756366.2011.643305
    70. Peter Willett. FUSING SIMILARITY RANKINGS IN LIGAND-BASED VIRTUAL SCREENING. Computational and Structural Biotechnology Journal 2013, 5 (6) , e201302002. https://doi.org/10.5936/csbj.201302002
    71. Valentina Oliveri, Maurizio Viale, Giulia Caron, Cinzia Aiello, Rosaria Gangemi, Graziella Vecchio. Glycosylated copper( ii ) ionophores as prodrugs for β-glucosidase activation in targeted cancer therapy. Dalton Trans. 2013, 42 (6) , 2023-2034. https://doi.org/10.1039/C2DT32429F
    72. Simon Cross, Massimo Baroni, Francesco Ortuso, Stefano Alcaro, Gabriele Cruciani. Disrupting Protein–Protein Interfaces Using GRID Molecular Interaction Fields. 2013, 61-82. https://doi.org/10.1007/978-3-642-37999-4_3
    73. Francesco Sirci, Laura Goracci, David Rodríguez, Jacqueline van Muijlwijk-Koezen, Hugo Gutiérrez-de-Terán, Raimund Mannhold. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A1, A2A, A2B, and A3 receptor antagonists. Journal of Computer-Aided Molecular Design 2012, 26 (11) , 1247-1266. https://doi.org/10.1007/s10822-012-9612-8
    74. Ansgar Schuffenhauer. Computational methods for scaffold hopping. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (6) , 842-867. https://doi.org/10.1002/wcms.1106
    75. Irene Luque Ruiz, Gonzalo Cerruela García, Miguel Ángel Gómez‐Nieto. Structural‐Similarity‐Based Approaches for the Development of Clustering and QSPR/QSAR Models in Chemical Databases. 2012, 201-228. https://doi.org/10.1002/9783527645121.ch7
    76. Marijn P. A. Sanders, Ross McGuire, Luc Roumen, Iwan J. P. de Esch, Jacob de Vlieg, Jan P. G. Klomp, Chris de Graaf. From the protein's perspective: the benefits and challenges of protein structure-based pharmacophore modeling. MedChemComm 2012, 3 (1) , 28-38. https://doi.org/10.1039/C1MD00210D
    77. Filippo Doria, Matteo Nadai, Marco Folini, Marco Di Antonio, Luca Germani, Claudia Percivalle, Claudia Sissi, Nadia Zaffaroni, Stefano Alcaro, Anna Artese, Sara N. Richter, Mauro Freccero. Hybrid ligand–alkylating agents targeting telomeric G-quadruplex structures. Organic & Biomolecular Chemistry 2012, 10 (14) , 2798. https://doi.org/10.1039/c2ob06816h
    78. Pierfranco Ioan, Alessia Ciogli, Francesco Sirci, Roberta Budriesi, Barbara Cosimelli, Marco Pierini, Elda Severi, Alberto Chiarini, Gabriele Cruciani, Francesco Gasparrini, Domenico Spinelli, Emanuele Carosati. Absolute configuration and biological profile of two thiazinooxadiazol-3-ones with L-type calcium channel activity: a study of the structural effects. Organic & Biomolecular Chemistry 2012, 10 (45) , 8994. https://doi.org/10.1039/c2ob25946j
    79. Lorraine Marsh, . Prediction of Ligand Binding Using an Approach Designed to Accommodate Diversity in Protein-Ligand Interactions. PLoS ONE 2011, 6 (8) , e23215. https://doi.org/10.1371/journal.pone.0023215
    80. Gonzalo Cerruela García, Irene Luque Ruiz, Miguel Ángel Gómez-Nieto. Prediction of Drug Activity Using Molecular Fragments-Based Representation and RFE Support Vector Machine Algorithm. 2011, 396-405. https://doi.org/10.1007/978-3-642-21827-9_41
    81. Simon Cross, Gabriele Cruciani. Grid-derived structure-based 3D pharmacophores and their performance compared to docking. Drug Discovery Today: Technologies 2010, 7 (4) , e213-e219. https://doi.org/10.1016/j.ddtec.2010.09.002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect