Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Endocrine Disruptome—An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding
My Activity

Figure 1Loading Img
    Article

    Endocrine Disruptome—An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding
    Click to copy article linkArticle link copied!

    View Author Information
    Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
    Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
    § EN-FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2014, 54, 4, 1254–1267
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci400649p
    Published March 14, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Predicting the endocrine disruption potential of compounds is a daunting but essential task. Here we report a new tool for this purpose that we have termed Endocrine Disruptome. It is a free and simple-to-use Web service that runs on an open source platform called Docking interface for Target Systems (DoTS). The molecular docking is handled via AutoDock Vina. Compounds are docked to 18 integrated and well-validated crystal structures of 14 different human nuclear receptors: androgen receptor; estrogen receptors α and β; glucocorticoid receptor; liver X receptors α and β; mineralocorticoid receptor; peroxisome proliferator activated receptors α, β/δ, and γ; progesterone receptor; retinoid X receptor α; and thyroid receptors α and β. Endocrine Disruptome is free of charge and available at http://endocrinedisruptome.ki.si.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Structure input page (Figure S1); receptor overview page (Figure S2); clustering with RDKit (code snippet S1); functions for calculating ROC, EF1%, and AUC (code snippet S2); script for calculating score, PPV, and NPV at a given Se or Sp (code snippet S3); statistical parameters for each threshold (Table S1); and resolution and ligand data for all of the crystal structures (Table S2). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 106 publications.

    1. Thuy Nguyen, Gloria Appiah Nsiah, Emily Crowder, Sarah Garland, Clinton F. Williams, Otakuye Conroy-Ben. Predicted Endocrine Disrupting Activity of Unregulated Drinking Water Contaminants. ACS ES&T Water 2024, 4 (3) , 1000-1013. https://doi.org/10.1021/acsestwater.3c00156
    2. Zhuohang Yu, Zengrui Wu, Moran Zhou, Kangjia Cao, Weihua Li, Guixia Liu, Yun Tang. EDC-Predictor: A Novel Strategy for Prediction of Endocrine-Disrupting Chemicals by Integrating Pharmacological and Toxicological Profiles. Environmental Science & Technology 2023, 57 (46) , 18013-18025. https://doi.org/10.1021/acs.est.2c08558
    3. Xinwen Zhang, Changqing Wu. In Silico, In Vitro, and In Vivo Evaluation of the Developmental Toxicity, Estrogenic Activity, and Mutagenicity of Four Natural Phenolic Flavonoids at Low Exposure Levels. ACS Omega 2022, 7 (6) , 4757-4768. https://doi.org/10.1021/acsomega.1c04239
    4. Shifa Zhong, Kai Zhang, Majid Bagheri, Joel G. Burken, April Gu, Baikun Li, Xingmao Ma, Babetta L. Marrone, Zhiyong Jason Ren, Joshua Schrier, Wei Shi, Haoyue Tan, Tianbao Wang, Xu Wang, Bryan M. Wong, Xusheng Xiao, Xiong Yu, Jun-Jie Zhu, Huichun Zhang. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science & Technology 2021, 55 (19) , 12741-12754. https://doi.org/10.1021/acs.est.1c01339
    5. Manon Réau, Nathalie Lagarde, Jean-François Zagury, Matthieu Montes. Nuclear Receptors Database Including Negative Data (NR-DBIND): A Database Dedicated to Nuclear Receptors Binding Data Including Negative Data and Pharmacological Profile. Journal of Medicinal Chemistry 2019, 62 (6) , 2894-2904. https://doi.org/10.1021/acs.jmedchem.8b01105
    6. Lixia Sun, Hongbin Yang, Yingchun Cai, Weihua Li, Guixia Liu, Yun Tang. In Silico Prediction of Endocrine Disrupting Chemicals Using Single-Label and Multilabel Models. Journal of Chemical Information and Modeling 2019, 59 (3) , 973-982. https://doi.org/10.1021/acs.jcim.8b00551
    7. Daniela Trisciuzzi, Domenico Alberga, Kamel Mansouri, Richard Judson, Ettore Novellino, Giuseppe Felice Mangiatordi, and Orazio Nicolotti . Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. Journal of Chemical Information and Modeling 2017, 57 (11) , 2874-2884. https://doi.org/10.1021/acs.jcim.7b00420
    8. Ahmet Yildirim, Jin Zhang, Sergio Manzetti, and David van der Spoel . Binding of Pollutants to Biomolecules: A Simulation Study. Chemical Research in Toxicology 2016, 29 (10) , 1679-1688. https://doi.org/10.1021/acs.chemrestox.6b00189
    9. Xianhai Yang, Huihui Liu, Jining Liu, Fei Li, Xuehua Li, Lili Shi, and Jingwen Chen . Rational Selection of the 3D Structure of Biomacromolecules for Molecular Docking Studies on the Mechanism of Endocrine Disruptor Action. Chemical Research in Toxicology 2016, 29 (9) , 1565-1570. https://doi.org/10.1021/acs.chemrestox.6b00245
    10. Teresa Kaserer, Riccardo Rigo, Philipp Schuster, Stefano Alcaro, Claudia Sissi, and Daniela Schuster . Optimized Virtual Screening Workflow for the Identification of Novel G-Quadruplex Ligands. Journal of Chemical Information and Modeling 2016, 56 (3) , 484-500. https://doi.org/10.1021/acs.jcim.5b00658
    11. Diana Montes-Grajales, Gonçalo J. L. Bernardes, and Jesus Olivero-Verbel . Urban Endocrine Disruptors Targeting Breast Cancer Proteins. Chemical Research in Toxicology 2016, 29 (2) , 150-161. https://doi.org/10.1021/acs.chemrestox.5b00342
    12. N. Franko, P. Žižek, A. Kodila, M. Sollner Dolenc. P15-23 In vitro evaluation of immunotoxicity of bisphenol A substitutes using THP-1 cell line. Toxicology Letters 2024, 399 , S238-S239. https://doi.org/10.1016/j.toxlet.2024.07.581
    13. Larisa Đurić, Maja Milanović, Jovana Drljača Lero, Nataša Milošević, Nataša Milić. In silico analysis of endocrine‐disrupting potential of triclosan, bisphenol A, and their analogs and derivatives. Journal of Applied Toxicology 2024, https://doi.org/10.1002/jat.4685
    14. Xinwen Zhang, Jignesh S. Mahajan, Jinglin Zhang, LaShanda T.J. Korley, Thomas H. Epps, Changqing Wu. Lignin-derivable alternatives to bisphenol A with potentially undetectable estrogenic activity and minimal developmental toxicity. Food and Chemical Toxicology 2024, 190 , 114787. https://doi.org/10.1016/j.fct.2024.114787
    15. Janja Sluga, Tihomir Tomašič, Marko Anderluh, Martina Hrast Rambaher, Gregor Bajc, Alen Sevšek, Nathaniel I. Martin, Roland J. Pieters, Marjana Novič, Katja Venko. Targeting N-Acetylglucosaminidase in Staphylococcus aureus with Iminosugar Inhibitors. Antibiotics 2024, 13 (8) , 751. https://doi.org/10.3390/antibiotics13080751
    16. Nina Franko, Anja Kodila, Marija Sollner Dolenc. Adverse outcomes of the newly emerging bisphenol A substitutes. Chemosphere 2024, 16 , 143147. https://doi.org/10.1016/j.chemosphere.2024.143147
    17. Sébastien Grégoire, Anne Moustié, Guillaume Lereaux, Laurène Roussel‐Berlier, Nicky Hewitt. Use of in vitro ADME methods to identify suitable analogs of homosalate and octisalate for use in a read‐across safety assessment. Journal of Applied Toxicology 2024, 44 (7) , 1067-1083. https://doi.org/10.1002/jat.4603
    18. Daniela Dascalu, Alecu Aurel Ciorsac, Adriana Isvoran. Computational assessment of the toxicological profiles of various chemicals to which humans are exposed. A review. Ovidius University Annals of Chemistry 2024, 35 (2) , 83-90. https://doi.org/10.2478/auoc-2024-0011
    19. Michał Wroński, Jakub Trawiński, Robert Skibiński. Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry. Molecules 2024, 29 (9) , 2160. https://doi.org/10.3390/molecules29092160
    20. Cristina Doina Niţu, Maria Mernea, Raluca Ioana Vlasceanu, Bianca Voicu-Balasea, Madalina Andreea Badea, Florentina Monica Raduly, Valentin Rădiţoiu, Alina Rădiţoiu, Speranta Avram, Dan F. Mihailescu, Ionela C. Voinea, Miruna Silvia Stan. Biomedical Promise of Sustainable Microwave-Engineered Symmetric Curcumin Derivatives. Pharmaceutics 2024, 16 (2) , 205. https://doi.org/10.3390/pharmaceutics16020205
    21. A. Najjar, A. Wilm, J. Meinhardt, N. Mueller, M. Boettcher, J. Ebmeyer, A. Schepky, D. Lange. Evaluation of new alternative methods for the identification of estrogenic, androgenic and steroidogenic effects: a comparative in vitro/in silico study. Archives of Toxicology 2024, 98 (1) , 251-266. https://doi.org/10.1007/s00204-023-03616-y
    22. Andrei Bitang, Viorel Bitang, Vlad Grosu, Alecu Ciorsac, Adriana Isvoran. ADMET profiles of selected anabolic steroid derivatives. Journal of the Serbian Chemical Society 2024, 89 (3) , 367-382. https://doi.org/10.2298/JSC230803086B
    23. Yiming Yao, Yarui Liu, Yongcheng Li, Nan Xiao, Haining Luo, Shuo Wang. Environmental Endocrine Disrupting Chemicals in Urine and Follicular Fluid: Association with Steroid Hormones and Risk of Polycystic Ovarian Syndrome. 2024https://doi.org/10.2139/ssrn.4809168
    24. Serhii Kolesnyk, Mykola Prodanchuk, Petro Zhminko, Yana Kolianchuk, Nataliia Bubalo, Alex Odermatt, Martin Smieško. A battery of in silico models application for pesticides exerting reproductive health effects: Assessment of performance and prioritization of mechanistic studies. Toxicology in Vitro 2023, 93 , 105706. https://doi.org/10.1016/j.tiv.2023.105706
    25. Said Kinani, Salma Achawi, Sylvaine Ronga-Pezeret, Aleksandra Piotrowski, Christine Gauthey-Lapize, Ilse Tonk, Mira Wenker, Fabrice Nesslany. Examination of the endocrine-disrupting properties of “active chlorine generated from seawater by electrolysis” in response to the European Biocidal Products Regulation: current knowledge and methodological challenges. Environmental Sciences Europe 2023, 35 (1) https://doi.org/10.1186/s12302-023-00790-9
    26. Sahar S. Alghamdi, Raghad A. Alshafi, Sarah Huwaizi, Rasha S. Suliman, Afrah E. Mohammed, Zeyad I. Alehaideb, Allulu Y. Alturki, Sara A. Alghashem, Ishrat Rahman. Exploring in vitro and in silico Biological Activities of Calligonum Comosum and Rumex Vesicarius: Implications on Anticancer and Antibacterial Therapeutics. Saudi Pharmaceutical Journal 2023, 31 (11) , 101794. https://doi.org/10.1016/j.jsps.2023.101794
    27. J. Ren, T. Jin, R. Li, Y.Y. Zhong, Y.X. Xuan, Y.L. Wang, W. Yao, S.L. Yu, J.T. Yuan. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR and QSAR in Environmental Research 2023, 34 (10) , 847-866. https://doi.org/10.1080/1062936X.2023.2269855
    28. V. Drgan, B. Bajželj, K. Venko. P09-22: Grouping of endocrine disruptors based on molecular descriptors and docking data. Toxicology Letters 2023, 384 , S140. https://doi.org/10.1016/S0378-4274(23)00587-8
    29. Yanrong Su, Faxu Li, Xiangxiang Xiao, Huizhen Li, Dali Wang, Jing You. Ecological risk of galaxolide and its transformation product galaxolidone: evidence from the literature and a case study in Guangzhou waterways. Environmental Science: Processes & Impacts 2023, 25 (8) , 1337-1346. https://doi.org/10.1039/D3EM00139C
    30. Padmika Madushanka Wadanambi, Kapila N. Seneviratne, Nimanthi Jayathilaka. In silico evaluation of coconut milk phenolic antioxidants and their inhibition of oxidative stress in intestinal Lactobacillus spp. in vitro. Chemical Papers 2023, 77 (5) , 2611-2624. https://doi.org/10.1007/s11696-022-02650-x
    31. Linyan Zhu, Parvaneh Hajeb, Patrik Fauser, Katrin Vorkamp. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. Science of The Total Environment 2023, 874 , 162374. https://doi.org/10.1016/j.scitotenv.2023.162374
    32. Huang Chenchen, Hu Keqi, Zeng Yanhong, Jiang Yiye, Tian Yankuan, Luo Xiaojun, Mai Bixian. In vitro hepatic metabolism of polychlorinated biphenyls with different chlorine-substituted structures in rats and humans: Kinetics, metabolism, and potential nuclear receptor affinities. Science of The Total Environment 2023, 864 , 161043. https://doi.org/10.1016/j.scitotenv.2022.161043
    33. Yuyan Zhong, Jing Ren, Rui Li, Yuxin Xuan, Wu Yao, Qianye Yang, Yin Gan, Shuling Yu, Jintao Yuan. Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: An in silico study. Chemosphere 2023, 314 , 137701. https://doi.org/10.1016/j.chemosphere.2022.137701
    34. Xianhai Yang, Huihui Liu, Rebecca Kusko, Huixiao Hong. ED Profiler: Machine Learning Tool for Screening Potential Endocrine-Disrupting Chemicals. 2023, 243-262. https://doi.org/10.1007/978-3-031-20730-3_10
    35. Gulcin Tugcu, Hande Sipahi, Mohammad Charehsaz, Ahmet Aydın, Melek Türker Saçan. Computational toxicology of pharmaceuticals. 2023, 519-537. https://doi.org/10.1016/B978-0-443-18638-7.00007-4
    36. Karolina Nowak, Žiga Jakopin. In silico profiling of endocrine-disrupting potential of bisphenol analogues and their halogenated transformation products. Food and Chemical Toxicology 2023, 40 , 113623. https://doi.org/10.1016/j.fct.2023.113623
    37. Dominika Kowalska, Anita Sosnowska, Natalia Bulawska, Maciej Stępnik, Harrie Besselink, Peter Behnisch, Tomasz Puzyn. How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules 2023, 28 (2) , 479. https://doi.org/10.3390/molecules28020479
    38. Haoyue Tan, Rong Zhang, Qinchang Chen, Chi Zhang, Jing Guo, Xiaowei Zhang, Hongxia Yu, Wei Shi. Computational toxicology studies on the interactions between environmental contaminants and biomacromolecules. Chinese Science Bulletin 2022, 67 (35) , 4180-4191. https://doi.org/10.1360/TB-2022-0613
    39. M.J. McCarthy, Y. Chushak, J.M. Gearhart. Reverse molecular docking and deep-learning to make predictions of receptor activity for neurotoxicology. Computational Toxicology 2022, 24 , 100238. https://doi.org/10.1016/j.comtox.2022.100238
    40. Diana Larisa Roman, Denisa Ioana Voiculescu, Mariana Adina Matica, Victor Baerle, Marioara Nicoleta Filimon, Vasile Ostafe, Adriana Isvoran. Assessment of the Effects of Triticonazole on Soil and Human Health. Molecules 2022, 27 (19) , 6554. https://doi.org/10.3390/molecules27196554
    41. Asma Sellami, Manon Réau, Matthieu Montes, Nathalie Lagarde. Review of in silico studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.986016
    42. Maryam Mehmannavaz, Bahman Nickavar. Biotransformation of testosterone by the filamentous fungus Penicillium pinophilum. Archives of Microbiology 2022, 204 (9) https://doi.org/10.1007/s00203-022-03191-3
    43. Josiane V. Cruz, Silvana Giuliatti, Levy B. Alves, Raí C. Silva, Elenilze F. B. Ferreira, Njogu M. Kimani, Carlos H. T. P. Silva, João S. N. de Souza, José M. Espejo-Román, Cleydson B. R. Santos. Identification of novel potential cyclooxygenase-2 inhibitors using ligand- and structure-based virtual screening approaches. Journal of Biomolecular Structure and Dynamics 2022, 40 (12) , 5386-5408. https://doi.org/10.1080/07391102.2020.1871413
    44. Denisa Ioana Voiculescu, Diana Larisa Roman, Vasile Ostafe, Adriana Isvoran. A Cheminformatics Study Regarding the Human Health Risks Assessment of the Stereoisomers of Difenoconazole. Molecules 2022, 27 (15) , 4682. https://doi.org/10.3390/molecules27154682
    45. Gladys Ouedraogo, Camilla Alexander-White, Dagmar Bury, Harvey J. Clewell, Mark Cronin, Tom Cull, Matthew Dent, Bertrand Desprez, Ann Detroyer, Corie Ellison, Stefania Giammanco, Eric Hack, Nicola J. Hewitt, Gerry Kenna, Martina Klaric, Reinhard Kreiling, Cathy Lester, Catherine Mahony, Enrico Mombelli, Jorge Naciff, John O'Brien, Andreas Schepky, Sarah Tozer, Bart van der Burg, Barbara van Vugt-Lussenburg, Sharon Stuard, Cosmetics Europe. Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment – A case study with parabens. Regulatory Toxicology and Pharmacology 2022, 132 , 105161. https://doi.org/10.1016/j.yrtph.2022.105161
    46. Shuling Yu, Jing Ren, Zhenxia Lv, Rui Li, Yuyan Zhong, Wu Yao, Jintao Yuan. Prediction of the endocrine-disrupting ability of 49 per- and polyfluoroalkyl substances: In silico and epidemiological evidence. Chemosphere 2022, 290 , 133366. https://doi.org/10.1016/j.chemosphere.2021.133366
    47. Nikita Tiwari, Ashutosh Kumar, Anjali Pandey, Anil Mishra. Computational investigation of dioxin-like compounds as human sex hormone-binding globulin inhibitors: DFT calculations, docking study and molecular dynamics simulations. Computational Toxicology 2022, 21 , 100198. https://doi.org/10.1016/j.comtox.2021.100198
    48. Syed Shams ul Hassan, Syed Qamar Abbas, Mubashir Hassan, Hui-Zi Jin. Computational Exploration of Anti-Cancer Potential of GUAIANE Dimers from Xylopia vielana by Targeting B-Raf Kinase Using Chemo-Informatics, Molecular Docking, and MD Simulation Studies. Anti-Cancer Agents in Medicinal Chemistry 2022, 22 (4) , 731-746. https://doi.org/10.2174/1871520621666211013115500
    49. Syed Shams ul Hassan, Syed Qamar Abbas, Fawad Ali, Muhammad Ishaq, Iqra Bano, Mubashir Hassan, Hui-Zi Jin, Simona G. Bungau. A Comprehensive In Silico Exploration of Pharmacological Properties, Bioactivities, Molecular Docking, and Anticancer Potential of Vieloplain F from Xylopia vielana Targeting B-Raf Kinase. Molecules 2022, 27 (3) , 917. https://doi.org/10.3390/molecules27030917
    50. Feng Wang, Shuai Hu, De-Qing Ma, Qiuye Li, Hong-Cheng Li, Jia-Yi Liang, Shan Chang, Ren Kong. ER/AR Multi-Conformational Docking Server: A Tool for Discovering and Studying Estrogen and Androgen Receptor Modulators. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.800885
    51. Soma Mondal Ghorai, Hardeep Kaur. Immunomodulatory Effects of Endocrine-Disrupting Chemicals. 2022, 463-509. https://doi.org/10.1007/978-981-16-6379-6_16
    52. Aashruti Agrawal, Purva Pingle, Harsha Jain, Saurabh Srivastava, Jitender Madan. Chitosan nanoparticles: Integration of computational simulation, modeling, and artificial neural network techniques for augmenting drug delivery in biomedical applications. 2022, 515-552. https://doi.org/10.1016/B978-0-12-822351-2.00015-2
    53. Chenchen Huang, Keqi Hu, Yan-Hong Zeng, Yiye Jiang, Yankuan Tian, Xiaojun Luo, Bixian Mai. In Vitro Hepatic Metabolism of Polychlorinated Biphenyls with Different Chlorine-Substituted Structures In Rats and Humans: Kinetics, Metabolism, and Potential Nuclear Receptor Affinities. SSRN Electronic Journal 2022, 49 https://doi.org/10.2139/ssrn.4118150
    54. Dominika Jurkiewicz, Anita Sosnowska, Natalia Buławska, Maciej Stępnik, Peter Behnisch, Harrie Besselink, Tomasz Puzyn. How the Structure of Per- and Polyfluoroalkyl Substances (Pfas) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors – an in Silico Screening Study. SSRN Electronic Journal 2022, 22 https://doi.org/10.2139/ssrn.4173912
    55. Chenchen Huang, Keqi Hu, Yan-Hong Zeng, Yiye Jiang, Yankuan Tian, Xiaojun Luo, Bixian Mai. In Vitro Hepatic Metabolism of Polychlorinated Biphenyls with Different Chlorine-Substituted Structures In Rats and Humans: Kinetics, Metabolism, and Potential Nuclear Receptor Affinities. SSRN Electronic Journal 2022, 49 https://doi.org/10.2139/ssrn.4202076
    56. Sium Ahmed, Dil Afroj Moni, Kailas Dashrath Sonawane, Kee Yoeup Paek, Abdullah Mohammad Shohael. A comprehensive in silico exploration of pharmacological properties, bioactivities and COX-2 inhibitory potential of eleutheroside B from Eleutherococcus senticosus (Rupr. & Maxim.) Maxim.. Journal of Biomolecular Structure and Dynamics 2021, 39 (17) , 6553-6566. https://doi.org/10.1080/07391102.2020.1803135
    57. Francesca Tencalla, Neslihan Aygun Kocabas, Martijn Rooseboom, Erik Rushton, Nicholas Synhaeve, Thomas Petry. Appraisal of the human health related toxicological information available on dicyclopentadiene (DCPD) in view of assessing the substance's potential to cause endocrine disruption. Regulatory Toxicology and Pharmacology 2021, 126 , 105040. https://doi.org/10.1016/j.yrtph.2021.105040
    58. C Song, Q Wu, J Sun, R Zhang, J Chen, X Wang, L Fang, Z Liu, X Shan, Y Yin. In silico evaluation of interactions between antibiotics in aquaculture and nuclear hormone receptors. Aquaculture Environment Interactions 2021, 13 , 389-397. https://doi.org/10.3354/aei00414
    59. Erica Buoso, Maša Kenda, Mirco Masi, Pasquale Linciano, Valentina Galbiati, Marco Racchi, Marija Sollner Dolenc, Emanuela Corsini. Effects of Bisphenols on RACK1 Expression and Their Immunological Implications in THP-1 Cells. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.743991
    60. Lola Bajard, Chander K. Negi, Vicente Mustieles, Lisa Melymuk, Stéphane Jomini, Johanna Barthelemy-Berneron, Mariana F. Fernandez, Ludek Blaha. Endocrine disrupting potential of replacement flame retardants – Review of current knowledge for nuclear receptors associated with reproductive outcomes. Environment International 2021, 153 , 106550. https://doi.org/10.1016/j.envint.2021.106550
    61. Dagmar Bury, Camilla Alexander-White, Harvey J. Clewell, Mark Cronin, Bertrand Desprez, Ann Detroyer, Alina Efremenko, James Firman, Eric Hack, Nicola J. Hewitt, Gerry Kenna, Martina Klaric, Cathy Lester, Catherine Mahony, Gladys Ouedraogo, Alicia Paini, Andreas Schepky. New framework for a non-animal approach adequately assures the safety of cosmetic ingredients – A case study on caffeine. Regulatory Toxicology and Pharmacology 2021, 123 , 104931. https://doi.org/10.1016/j.yrtph.2021.104931
    62. Paolo Cocci, Gilberto Mosconi, Francesco A. Palermo. An In Silico and In Vitro Study for Investigating Estrogenic Endocrine Effects of Emerging Persistent Pollutants Using Primary Hepatocytes from Grey Mullet (Mugil cephalus). Environments 2021, 8 (6) , 58. https://doi.org/10.3390/environments8060058
    63. Lukman K. Akinola, Adamu Uzairu, Gideon A. Shallangwa, Stephen E. Abechi. A computational insight into endocrine disruption by polychlorinated biphenyls via non-covalent interactions with human nuclear receptors. Ecotoxicology and Environmental Safety 2021, 214 , 112086. https://doi.org/10.1016/j.ecoenv.2021.112086
    64. Xinwen Zhang, Ying Peng, Changqing Wu. Chicken embryonic toxicity and potential in vitro estrogenic and mutagenic activity of carvacrol and thymol in low dose/concentration. Food and Chemical Toxicology 2021, 150 , 112038. https://doi.org/10.1016/j.fct.2021.112038
    65. Mark Stanojević, Marjan Vračko Grobelšek, Marija Sollner Dolenc. Computational evaluation of endocrine activity of biocidal active substances. Chemosphere 2021, 267 , 129284. https://doi.org/10.1016/j.chemosphere.2020.129284
    66. Asma Sellami, Matthieu Montes, Nathalie Lagarde. Predicting Potential Endocrine Disrupting Chemicals Binding to Estrogen Receptor α (ERα) Using a Pipeline Combining Structure-Based and Ligand-Based in Silico Methods. International Journal of Molecular Sciences 2021, 22 (6) , 2846. https://doi.org/10.3390/ijms22062846
    67. Žiga Jakopin. Assessment of the endocrine-disrupting potential of halogenated parabens: An in silico approach. Chemosphere 2021, 264 , 128447. https://doi.org/10.1016/j.chemosphere.2020.128447
    68. Lukman K. Akinola, Adamu Uzairu, Gideon A. Shallangwa, Stephen E. Abechi. Theoretical study on endocrine disrupting effects of polychlorinated dibenzo‐ p ‐dioxins using molecular docking simulation. Journal of Applied Toxicology 2021, 41 (2) , 233-246. https://doi.org/10.1002/jat.4039
    69. Lukman K. Akinola, Adamu Uzairu, Gideon A. Shallangwa, Stephen E. Abechi. In silico prediction of nuclear receptor binding to polychlorinated dibenzofurans and its implication on endocrine disruption in humans and wildlife. Current Research in Toxicology 2021, 2 , 357-365. https://doi.org/10.1016/j.crtox.2021.09.003
    70. Diana Larisa Roman, Adriana Isvoran, Mǎdǎlina Filip, Vasile Ostafe, Manfred Zinn. In silico Assessment of Pharmacological Profile of Low Molecular Weight Oligo-Hydroxyalkanoates. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.584010
    71. Rongfang Xie, Zhenzhen Liu, Zuan Lin, Peiying Shi, Bing Chen, Shaoguang Li, Guangwen Li, Liying Huang, Xinhua Lin, Hong Yao. Potential mechanism of action of Ixeris sonchifolia extract injection against cardiovascular diseases revealed by combination of HPLC-Q-TOF-MS, virtual screening and systems pharmacology approach. RSC Advances 2020, 10 (63) , 38497-38504. https://doi.org/10.1039/D0RA07038F
    72. Maša Kenda, Nataša Karas Kuželički, Mitsuru Iida, Hiroyuki Kojima, Marija Sollner Dolenc. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. Environmental Health Perspectives 2020, 128 (10) https://doi.org/10.1289/EHP6596
    73. Silvana Alfei, Barbara Marengo, Guendalina Zuccari. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins?. Antioxidants 2020, 9 (8) , 707. https://doi.org/10.3390/antiox9080707
    74. Maša Kenda, Marija Sollner Dolenc. Computational Study of Drugs Targeting Nuclear Receptors. Molecules 2020, 25 (7) , 1616. https://doi.org/10.3390/molecules25071616
    75. Xiaoxiang Wang, Rui Zhang, Chao Song, Doug Crump. Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors. Environmental Research 2020, 182 , 108982. https://doi.org/10.1016/j.envres.2019.108982
    76. Oscar González-Davis, Kanchan Chauhan, Santino-Jesuín Zapian-Merino, Rafael Vazquez-Duhalt. Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules 2020, 146 , 415-421. https://doi.org/10.1016/j.ijbiomac.2019.12.272
    77. Darja Gramec Skledar, Václav Tvrdý, Maša Kenda, Anamarija Zega, Milan Pour, Pavel Horký, Přemysl Mladěnka, Marija Sollner Dolenc, Lucija Peterlin Mašič. Applicability of the OECD 455 in-vitro assay for determination of hERa agonistic activity of isoflavonoids. Toxicology and Applied Pharmacology 2020, 386 , 114831. https://doi.org/10.1016/j.taap.2019.114831
    78. Edo D. Pellizzari, Tracey J. Woodruff, Rebecca R. Boyles, Kurunthachalam Kannan, Paloma I. Beamer, Jessie P. Buckley, Aolin Wang, Yeyi Zhu, Deborah H. Bennett, . Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research. Environmental Health Perspectives 2019, 127 (12) https://doi.org/10.1289/EHP5133
    79. J. Devillers, H. Devillers. Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR and QSAR in Environmental Research 2019, 30 (11) , 801-824. https://doi.org/10.1080/1062936X.2019.1665844
    80. Melanie Schneider, Jean-Luc Pons, Gilles Labesse, William Bourguet. In Silico Predictions of Endocrine Disruptors Properties. Endocrinology 2019, 160 (11) , 2709-2716. https://doi.org/10.1210/en.2019-00382
    81. Diana Larisa Roman, Marin Roman, Claudia Som, Mélanie Schmutz, Edgar Hernandez, Peter Wick, Tommaso Casalini, Giuseppe Perale, Vasile Ostafe, Adriana Isvoran. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Frontiers in Bioengineering and Biotechnology 2019, 7 https://doi.org/10.3389/fbioe.2019.00214
    82. Jnyandeep Hazarika, Mausumi Ganguly, Rita Mahanta. Molecular interactions of chlorpyrifos and its environmental degradation products with human sex hormone‐binding globulin: an in silico study. Journal of Applied Toxicology 2019, 39 (7) , 1002-1011. https://doi.org/10.1002/jat.3789
    83. Breanne E. Holmes, Lisa Smeester, Rebecca C. Fry, Howard S. Weinberg. Disinfection Byproducts Bind Human Estrogen Receptor‐α. Environmental Toxicology and Chemistry 2019, 38 (5) , 956-964. https://doi.org/10.1002/etc.4377
    84. Afia Usman, Masood Ahmad. Computational study suggesting reconsideration of BPA analogues based on their endocrine disrupting potential estimated by binding affinities to nuclear receptors. Ecotoxicology and Environmental Safety 2019, 171 , 154-161. https://doi.org/10.1016/j.ecoenv.2018.12.071
    85. Frederic D.L. Leusch, Peta A. Neale, Francesco Busetti, Marcella Card, Andrew Humpage, John D. Orbell, Harry F. Ridgway, Matthew B. Stewart, Jason P. van de Merwe, Beate I. Escher. Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection. Science of The Total Environment 2019, 657 , 1480-1490. https://doi.org/10.1016/j.scitotenv.2018.12.106
    86. Jaeseong Jeong, Hunbeen Kim, Jinhee Choi. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. International Journal of Molecular Sciences 2019, 20 (5) , 1209. https://doi.org/10.3390/ijms20051209
    87. Marin Roman, Diana Larisa Roman, Vasile Ostafe, Alecu Ciorsac, Adriana Isvoran. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids. Pharmaceutical Research 2018, 35 (2) https://doi.org/10.1007/s11095-018-2353-1
    88. Mire Zloh, Stewart B Kirton. The Benefits of In Silico Modeling to Identify Possible Small-Molecule Drugs and Their Off-Target Interactions. Future Medicinal Chemistry 2018, 10 (4) , 423-432. https://doi.org/10.4155/fmc-2017-0151
    89. Daniela Trisciuzzi, Domenico Alberga, Francesco Leonetti, Ettore Novellino, Orazio Nicolotti, Giuseppe F. Mangiatordi. Molecular Docking for Predictive Toxicology. 2018, 181-197. https://doi.org/10.1007/978-1-4939-7899-1_8
    90. J. Devillers, H. Devillers, E. Bro, F. Millot. Expert judgment based multicriteria decision models to assess the risk of pesticides on reproduction failures of grey partridge. SAR and QSAR in Environmental Research 2017, 28 (11) , 889-911. https://doi.org/10.1080/1062936X.2017.1402449
    91. Breanne E. Holmes, Lisa Smeester, Rebecca C. Fry, Howard S. Weinberg. Identification of endocrine active disinfection by-products (DBPs) that bind to the androgen receptor. Chemosphere 2017, 187 , 114-122. https://doi.org/10.1016/j.chemosphere.2017.08.105
    92. Nathalie Lagarde, Solenne Delahaye, Aurore Jérémie, Nesrine Ben Nasr, Hélène Guillemain, Charly Empereur‐mot, Vincent Laville, Taoufik Labib, Manon Réau, Florent Langenfeld, Jean‐François Zagury, Matthieu Montes. Discriminating Agonist from Antagonist Ligands of the Nuclear Receptors Using Different Chemoinformatics Approaches. Molecular Informatics 2017, 36 (10) https://doi.org/10.1002/minf.201700020
    93. P. Ruiz, A. Sack, M. Wampole, S. Bobst, M. Vracko. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors. Chemosphere 2017, 178 , 99-109. https://doi.org/10.1016/j.chemosphere.2017.03.026
    94. Andrija Šmelcerović, Katarina Tomović, Žaklina Šmelcerović, Živomir Petronijević, Gordana Kocić, Tihomir Tomašič, Žiga Jakopin, Marko Anderluh. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity. European Journal of Medicinal Chemistry 2017, 135 , 491-516. https://doi.org/10.1016/j.ejmech.2017.04.031
    95. Md Irshad Ahmad, Afia Usman, Masood Ahmad. Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients. Chemosphere 2017, 173 , 395-403. https://doi.org/10.1016/j.chemosphere.2017.01.054
    96. Sk. Abdul Amin, Plaban Bhattacharya, Souvik Basak, Shovanlal Gayen, Ashis Nandy, Achintya Saha. Pharmacoinformatics study of Piperolactam A from Piper betle root as new lead for non steroidal anti fertility drug development. Computational Biology and Chemistry 2017, 67 , 213-224. https://doi.org/10.1016/j.compbiolchem.2017.01.004
    97. Xiaoxiang Wang, Xiaowei Zhang, Pu Xia, Junjiang Zhang, Yuting Wang, Rui Zhang, John P. Giesy, Wei Shi, Hongxia Yu. A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors. Science of The Total Environment 2017, 576 , 609-616. https://doi.org/10.1016/j.scitotenv.2016.10.093
    98. Nathalie Lagarde, Solenne Delahaye, Jean-François Zagury, Matthieu Montes. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores. Journal of Cheminformatics 2016, 8 (1) https://doi.org/10.1186/s13321-016-0154-2
    99. T. Kaserer, V. Obermoser, A. Weninger, R. Gust, D. Schuster. Evaluation of selected 3D virtual screening tools for the prospective identification of peroxisome proliferator-activated receptor (PPAR) γ partial agonists. European Journal of Medicinal Chemistry 2016, 124 , 49-62. https://doi.org/10.1016/j.ejmech.2016.07.072
    100. Ivana Klopčič, Darja Gramec Skledar, Lucija Peterlin Mašič, Marija Sollner Dolenc. Comparison of in vitro hormone activities of novel flame retardants TBB, TBPH and their metabolites TBBA and TBMEPH using reporter gene assays. Chemosphere 2016, 160 , 244-251. https://doi.org/10.1016/j.chemosphere.2016.06.091
    Load all citations

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2014, 54, 4, 1254–1267
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci400649p
    Published March 14, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2407

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.