ACS Publications. Most Trusted. Most Cited. Most Read
Encapsulated HRh(CO)(PPh3)3 in Microporous and Mesoporous Supports:  Novel Heterogeneous Catalysts for Hydroformylation
My Activity
    Article

    Encapsulated HRh(CO)(PPh3)3 in Microporous and Mesoporous Supports:  Novel Heterogeneous Catalysts for Hydroformylation
    Click to copy article linkArticle link copied!

    View Author Information
    Homogeneous Catalysis Division and Physical Chemistry (SIL) Division, National Chemical Laboratory, Pune 411008, India
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 2003, 15, 9, 1766–1777
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm020752n
    Published April 4, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Novel heterogeneous catalysts for hydroformylation of olefins to aldehydes using encapsulation and anchoring methodologies for HRh(CO)(PPh3)3 in zeolite Na−Y and MCM-41 and MCM-48 mesoporous materials have been reported. The heterogeneous catalysts were characterized and used for hydroformylation of linear and branched olefins to show high activity and recyclability without leaching of the Rh metal during the course of reactions. Using CP-MAS NMR, FT-IR, TEM, XPS, and powder XRD studies, characterization of the Rh complex inside the porous structures of the heterogeneous catalysts has been investigated. 31P CP-MAS NMR spectra of the encapsulated Rh complex catalyst inside zeolite Na−Y and mesoporous MCM-41 and MCM-48 supports showed a possible encapsulation of the Rh complex in the pores. TEM images and the diffraction patterns of the heterogenized Rh complex in mesoporous and zeolitic supports further supported a possible entrapment of the complex inside the porous frameworks. Rhodium is present as Rh(I) in the encapsulated catalysts before and after the experiments, as envisaged by XPS spectra. In contrast to other heterogeneous catalytic systems for hydroformylation, the catalysts reported here are highly stable, easily separable, and recyclable. The TON/TOF values of these catalysts were also found to be significantly higher than those of the previously reported heterogeneous catalysts.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Homogeneous Catalysis Division.

     Physical Chemistry (SIL) Division.

    *

     Corresponding author. E-mail:  [email protected]. Fax:  0091-20-5893260.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 79 publications.

    1. Daniel Delgado, Gregor Koch, Shan Jiang, Jinhu Dong, Jutta Kröhnert, Franz-Philipp Schmidt, Thomas Lunkenbein, Carmen Galdeano Ruano, José Gaona-Miguélez, Diego Troya, Pascual Oña-Burgos, Annette Trunschke. Low-Temperature Exsolution of Rh from Mixed ZnFeRh Oxides toward Stable and Selective Catalysts in Liquid-Phase Hydroformylation. Journal of the American Chemical Society 2025, 147 (7) , 5887-5903. https://doi.org/10.1021/jacs.4c14839
    2. Dmitry Gorbunov, Darya Safronova, Yulia Kardasheva, Anton Maximov, Edward Rosenberg, Eduard Karakhanov. New Heterogeneous Rh-Containing Catalysts Immobilized on a Hybrid Organic–Inorganic Surface for Hydroformylation of Unsaturated Compounds. ACS Applied Materials & Interfaces 2018, 10 (31) , 26566-26575. https://doi.org/10.1021/acsami.8b02797
    3. Qi Sun, Zhifeng Dai, Xiaolong Liu, Na Sheng, Feng Deng, Xiangju Meng, and Feng-Shou Xiao . Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. Journal of the American Chemical Society 2015, 137 (15) , 5204-5209. https://doi.org/10.1021/jacs.5b02122
    4. Sankaranarayanapillai Shylesh, David Hanna, Sebastian Werner, and Alexis T. Bell . Factors Influencing the Activity, Selectivity, and Stability of Rh-Based Supported Ionic Liquid Phase (SILP) Catalysts for Hydroformylation of Propene. ACS Catalysis 2012, 2 (4) , 487-493. https://doi.org/10.1021/cs2004888
    5. Xijie Lan, Weiping Zhang, Li Yan, Yunjie Ding, Xiuwen Han, Liwu Lin and Xinhe Bao. Structure, Activity, and Stability of Triphenyl Phosphine-Modified Rh/SBA-15 Catalyst for Hydroformylation of Propene: A High-Resolution Solid-State NMR Study. The Journal of Physical Chemistry C 2009, 113 (16) , 6589-6595. https://doi.org/10.1021/jp810432p
    6. Jianhong Bi, Lingtao Kong, Zixiang Huang and Jinhuai Liu. Self-Encapsulation of [MII(phen)2(H2O)2]2+ (M = Co, Zn) in One-Dimensional Nanochannels of [MII(H2O)6(BTC)2]4− (M = Co, Cu, Mn): A High HQ/CAT Ratio Catalyst for Hydroxylation of Phenols. Inorganic Chemistry 2008, 47 (11) , 4564-4569. https://doi.org/10.1021/ic7022049
    7. Yasuo Izumi,, Kazushi Konishi,, Masayasu Tsukahara,, Diaa Mosbah Obaid, and, Ken-ichi Aika. Selective Butanol Synthesis over Rhodium−Molybdenum Catalysts Supported in Ordered Mesoporous Silica. The Journal of Physical Chemistry C 2007, 111 (27) , 10073-10081. https://doi.org/10.1021/jp072616h
    8. Xianlong Wang and, Edward A. Wovchko. Surface Photochemistry of Rh(CO)2 on Zeolite YProduction of a Stable Coordinatively Unsaturated Rhodium Monocarbonyl Surface Species at Room Temperature. The Journal of Physical Chemistry B 2005, 109 (34) , 16363-16371. https://doi.org/10.1021/jp047673e
    9. Saikat Mandal,, Debdut Roy,, Raghunath V. Chaudhari, and, Murali Sastry. Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite: Excellent Catalysts for Hydrogenation and Heck Reactions. Chemistry of Materials 2004, 16 (19) , 3714-3724. https://doi.org/10.1021/cm0352504
    10. Sébastien Siradze, Jeroen Poissonnier, Silje F. Håkonsen, Morten Frøseth, Knut Thorshaug, Richard H. Heyn, Joris W. Thybaut. Kinetics assessment of gas-phase ethylene hydroformylation on a heterogenized Rh-functionalized MOF catalyst. Chemical Engineering Journal 2025, 112 , 163794. https://doi.org/10.1016/j.cej.2025.163794
    11. Zuowei Sun, Hu Fang, Mingjie Mei, Haiyan Fu, Weichao Xue, Jiaqi Xu, Ruixiang Li, Hua Chen, Xueli Zheng. Heterometallic Coordination Assembly Catalysts RhIAgIL for Hydroformylation of Long-Chain Alkenes. Catalysis Letters 2024, 154 (10) , 5660-5668. https://doi.org/10.1007/s10562-024-04722-x
    12. Da Yang, Shu Tao, Houyu Zhu, Zhidong Wang, Wenwen Gao, Jinggang Yu, Minmin Wang, Guangxun Sun, Junxi Li, Hsiao-Chien Chen, Bin Liu, Yongming Chai, Yuan Pan. Construction of Rh-N4 single atoms and Rh clusters dual-active sites for synergistic heterogeneous hydroformylation of olefins with ultra-high turnover frequency. Chemical Engineering Journal 2024, 479 , 147505. https://doi.org/10.1016/j.cej.2023.147505
    13. Siquan Feng, Miao Jiang, Xiangen Song, Panzhe Qiao, Li Yan, Yutong Cai, Bin Li, Cunyao Li, lili Ning, Siyue Liu, Weiqing Zhang, Guorong Wu, Jiayue Yang, Wenrui Dong, Xueming Yang, Zheng Jiang, Yunjie Ding. Sulfur Poisoning and Self‐Recovery of Single‐Site Rh 1 /Porous Organic Polymer Catalysts for Olefin Hydroformylation. Angewandte Chemie 2023, 135 (30) https://doi.org/10.1002/ange.202304282
    14. Siquan Feng, Miao Jiang, Xiangen Song, Panzhe Qiao, Li Yan, Yutong Cai, Bin Li, Cunyao Li, lili Ning, Siyue Liu, Weiqing Zhang, Guorong Wu, Jiayue Yang, Wenrui Dong, Xueming Yang, Zheng Jiang, Yunjie Ding. Sulfur Poisoning and Self‐Recovery of Single‐Site Rh 1 /Porous Organic Polymer Catalysts for Olefin Hydroformylation. Angewandte Chemie International Edition 2023, 62 (30) https://doi.org/10.1002/anie.202304282
    15. Xiaxin Guo, Luyang Qiao, Shanshan Zong, Runping Ye, Yuntao He, Jiankai Cheng, Xinyi Cao, Zhangfeng Zhou, Yuangen Yao. Effect of NaY Zeolite at Different Calcination Temperatures on the Activity in Hydroformylation of Formaldehyde. ChemistrySelect 2022, 7 (36) https://doi.org/10.1002/slct.202201574
    16. Boyang Liu, Ning Huang, Yu Wang, Xiaocheng Lan, Tiefeng Wang. Regioselectivity regulation of styrene hydroformylation over Rh-based Phosphides: Combination of DFT calculations and kinetic studies. Chemical Engineering Journal 2022, 441 , 136101. https://doi.org/10.1016/j.cej.2022.136101
    17. Siyu Zhang, Xiaomin Zhang, Lei Dong, Shengjie Zhu, Yangyang Yuan, Lei Xu. In situ synthesis of Pt nanoparticles encapsulated in silicalite-1 zeolite via a steam-assisted dry-gel conversion method. CrystEngComm 2022, 24 (14) , 2697-2704. https://doi.org/10.1039/D1CE01718G
    18. . Part I References. 2021, 187-216. https://doi.org/10.1002/9783527825622.ref1
    19. Shepherd Siangwata, Cody Williams, Nikechukwu Omosun, Siyabonga Ngubane, Gregory S. Smith. Core- and peripheral-functionalised metallodendrimers for hydroformylation reactions: A review. Applied Catalysis A: General 2021, 626 , 118362. https://doi.org/10.1016/j.apcata.2021.118362
    20. Bin Li, Xiangen Song, Siquan Feng, Qiao Yuan, Miao Jiang, Li Yan, Yunjie Ding. Direct conversion of methane to oxygenates on porous organic polymers supported Rh mononuclear complex catalyst under mild conditions. Applied Catalysis B: Environmental 2021, 293 , 120208. https://doi.org/10.1016/j.apcatb.2021.120208
    21. Nitin S. Pagar, Prashant R. Karandikar, Asha J. Chandwadkar, Raj M. Deshpande. Synthesis, characterization and catalytic study of mesoporous carbon materials prepared via mesoporous silica using non-surfactant templating agents. Journal of Porous Materials 2021, 28 (2) , 423-433. https://doi.org/10.1007/s10934-020-01003-x
    22. Zhou Ren, Yang Liu, Yuan Lyu, Xiangen Song, Changyong Zheng, Zheng Jiang, Yunjie Ding. Quaternary phosphonium polymer-supported dual-ionically bound [Rh(CO)I3]2– catalyst for heterogeneous ethanol carbonylation. Chinese Journal of Catalysis 2021, 42 (4) , 606-617. https://doi.org/10.1016/S1872-2067(20)63676-2
    23. C.D. Frohning. encapsulated catalysts. 2020https://doi.org/10.1002/9783527809080.cataz06331
    24. Maqsood Ahmed, Ayyamperumal Sakthivel. Amine functionalized AFI type microporous SAPO-5 materials: preparation, unique method on template extraction, characterization and its catalytic application on epoxide ring opening. Journal of Porous Materials 2019, 26 (2) , 319-326. https://doi.org/10.1007/s10934-018-0598-z
    25. Xiaoli Yang, Qinggang Liu, Yaru Zhang, Xiong Su, Yanqiang Huang, Tao Zhang. In situ synthesis of metal clusters encapsulated within small-pore zeolites via a dry gel conversion method. Nanoscale 2018, 10 (24) , 11320-11327. https://doi.org/10.1039/C8NR00549D
    26. Qi Sun, Zhifeng Dai, Xiangju Meng, Feng-Shou Xiao. Enhancement of hydroformylation performance via increasing the phosphine ligand concentration in porous organic polymer catalysts. Catalysis Today 2017, 298 , 40-45. https://doi.org/10.1016/j.cattod.2017.06.007
    27. Zhou Ren, Yuan Lyu, Siquan Feng, Xiangen Song, Yunjie Ding. A highly efficient single site Rh-POL-PPh3 catalyst for heterogeneous methanol carbonylation. Molecular Catalysis 2017, 442 , 83-88. https://doi.org/10.1016/j.mcat.2017.09.007
    28. Solomon Legese Hailu, Balachandran Unni Nair, Mesfin Redi-Abshiro, Isabel Diaz, Merid Tessema. Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. Journal of Environmental Chemical Engineering 2017, 5 (4) , 3319-3329. https://doi.org/10.1016/j.jece.2017.06.039
    29. Kazu Okumura, Hiroki Takahashi, Hiromitsu Takaba. Direct inclusion of triphenylmethane and triphenylsilane into the pores of zeolite Y. Microporous and Mesoporous Materials 2017, 248 , 122-128. https://doi.org/10.1016/j.micromeso.2017.04.012
    30. . 9 Natural and Synthetic Gas for Productions of Liquid Fuels and Their Additives. 2017, 543-612. https://doi.org/10.1201/9781315302355-10
    31. Kazu Okumura, Masakazu Nakanishi, Hiromitsu Takaba. Direct inclusion of triphenylphosphine derivatives into the zeolite Y supercage. Microporous and Mesoporous Materials 2017, 241 , 400-408. https://doi.org/10.1016/j.micromeso.2016.11.026
    32. Samira Bagheri. Design of Catalysts, Characterization, Kinetics and Mechanisms of Reactions, Deactivation/Regeneration. 2017, 1-23. https://doi.org/10.1007/978-3-319-43104-8_1
    33. Sumeet K. Sharma, Raksh V. Jasra. Encapsulated Catalysts for Synthesis of Bulk and Fine Chemicals. 2017, 477-504. https://doi.org/10.1016/B978-0-12-803836-9.00014-6
    34. Maqsood Ahmed, Ayyamperumal Sakthivel. Covalent grafting of cobalt carbonyl cluster on functionalized mesoporous SBA- 15 molecular sieve and its applications towards hydroformylation of 1-octene. Journal of Molecular Catalysis A: Chemical 2016, 424 , 85-90. https://doi.org/10.1016/j.molcata.2016.08.016
    35. Venkata Subba Rao Ganga, Aasif A. Dabbawala, K. Munusamy, Sayed H.R. Abdi, Rukhsana I. Kureshy, Noor-ul H. Khan, Hari C. Bajaj. Rhodium complexes supported on nanoporous activated carbon for selective hydroformylation of olefins. Catalysis Communications 2016, 84 , 21-24. https://doi.org/10.1016/j.catcom.2016.05.021
    36. Anish Lazar, Shoy C. George, P.R. Jithesh, C.P. Vinod, A.P. Singh. Correlating the role of hydrophilic/hydrophobic nature of Rh(I) and Ru(II) supported organosilica/silica catalysts in organotransformation reactions. Applied Catalysis A: General 2016, 513 , 138-146. https://doi.org/10.1016/j.apcata.2015.12.026
    37. A.A. Kelkar. Carbonylations and Hydroformylations for Fine Chemicals. 2016, 663-692. https://doi.org/10.1016/B978-0-12-801457-8.00014-8
    38. Cunyao Li, Li Yan, Lanlu Lu, Kai Xiong, Wenlong Wang, Miao Jiang, Jia Liu, Xiangen Song, Zhuangping Zhan, Zheng Jiang, Yunjie Ding. Single atom dispersed Rh-biphephos&PPh 3 @porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chemistry 2016, 18 (10) , 2995-3005. https://doi.org/10.1039/C6GC00728G
    39. Solomon Legese Hailu, Balachandran Unni Nair, Mesfin Redi-Abshiro, Rathinam Aravindhan, Isabel Diaz, Merid Tessema. Synthesis, characterization and catalytic application of zeolite based heterogeneous catalyst of iron(III), nickel(II) and copper(II) salen complexes for oxidation of organic pollutants. Journal of Porous Materials 2015, 22 (5) , 1363-1373. https://doi.org/10.1007/s10934-015-0015-9
    40. Miao Jiang, Li Yan, Yunjie Ding, Qi Sun, Jia Liu, Hejun Zhu, Ronghe Lin, Fengshou Xiao, Zheng Jiang, Jingyue Liu. Ultrastable 3V-PPh3 polymers supported single Rh sites for fixed-bed hydroformylation of olefins. Journal of Molecular Catalysis A: Chemical 2015, 404-405 , 211-217. https://doi.org/10.1016/j.molcata.2015.05.008
    41. Munir D. Khokhar, Ram S. Shukla, Raksh V. Jasra. Rh complex encapsulated hexagonal mesoporous silica as an efficient heterogeneous catalyst for the selective hydroformylation of styrene. Reaction Kinetics, Mechanisms and Catalysis 2015, 114 (1) , 265-277. https://doi.org/10.1007/s11144-014-0788-x
    42. Miao Jiang, Yunjie Ding, Li Yan, Xiangen Song, Ronghe Lin. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins. Chinese Journal of Catalysis 2014, 35 (9) , 1456-1464. https://doi.org/10.1016/S1872-2067(14)60068-1
    43. Qi Sun, Miao Jiang, Zhenju Shen, Yinying Jin, Shuxiang Pan, Liang Wang, Xiangju Meng, Wangzhi Chen, Yunjie Ding, Jixue Li, Feng-Shou Xiao. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chem. Commun. 2014, 50 (80) , 11844-11847. https://doi.org/10.1039/C4CC03884C
    44. N. Sudheesh, Ram S. Shukla. Rhodium complex encapsulated functionalized hexagonal mesoporous silica for heterogeneous hydroaminomethylation. Applied Catalysis A: General 2013, 453 , 159-166. https://doi.org/10.1016/j.apcata.2012.12.021
    45. Maija-Liisa Kontkanen, Matti Haukka. Microencapsulated ruthenium catalyst for the hydroformylation of 1-hexene. Catalysis Communications 2012, 23 , 25-29. https://doi.org/10.1016/j.catcom.2012.02.019
    46. N. Sudheesh, Jaydeep N. Parmar, Ram S. Shukla. Hydroformylation of propene heterogeneously catalyzed by HRh(CO)(PPh3)3 encapsulated in to hexagonal mesoporous silica—Parametric variation and mass transfer study. Applied Catalysis A: General 2012, 415-416 , 124-131. https://doi.org/10.1016/j.apcata.2011.12.017
    47. Maija-Liisa Kontkanen, Liubov Vlasova, Sari Suvanto, Matti Haukka. Microencapsulated rhodium/cross-linked PVP catalysts in the hydroformylation of 1-hexene. Applied Catalysis A: General 2011, 401 (1-2) , 141-146. https://doi.org/10.1016/j.apcata.2011.05.008
    48. Wan-Zhong Lang, Xun-Wen Liu, Ya-Jun Guo, Bo Su, Lian-Feng Chu, Cui-Xiang Guo. A novel MCM-41-supported bi-functional catalyst by immobilizing organoamine and Rh–P complex for one-pot synthesis of 2-ethylhexenal from propene. Microporous and Mesoporous Materials 2011, 142 (1) , 7-16. https://doi.org/10.1016/j.micromeso.2010.07.019
    49. Taejin Kim, Fuat E. Celik, David G. Hanna, S. Shylesh, Sebastian Werner, Alexis T. Bell. Gas-Phase Hydroformylation of Propene over Silica-Supported PPh3-Modified Rhodium Catalysts. Topics in Catalysis 2011, 54 (5-7) , 299-307. https://doi.org/10.1007/s11244-011-9664-3
    50. Ki-Chang Song, Ji Yeon Baek, Jung A Bae, Jin-Heong Yim, Young Soo Ko, Do Heui Kim, Young-Kwon Park, Jong-Ki Jeon. Octene hydroformylation by using rhodium complexes tethered onto selectively functionalized mesoporous silica and in situ high pressure IR study. Catalysis Today 2011, 164 (1) , 561-565. https://doi.org/10.1016/j.cattod.2010.10.065
    51. Mahasweta Nandi, Paramita Mondal, Manirul Islam, Asim Bhaumik. Highly Efficient Hydroformylation of 1‐Hexene over an ortho ‐Metallated Rhodium(I) Complex Anchored on a 2D‐Hexagonal Mesoporous Material. European Journal of Inorganic Chemistry 2011, 2011 (2) , 221-227. https://doi.org/10.1002/ejic.201000844
    52. Li YAN, Yunjie DING, Jia LIU, Hejun ZHU, Liwu LIN. Influence of Phosphine Concentration on Propylene Hydroformylation over the PPh3-Rh/SiO2 Catalyst. Chinese Journal of Catalysis 2011, 32 (1-2) , 31-35. https://doi.org/10.1016/S1872-2067(10)60156-8
    53. Torsten Gutmann, Tomasz Ratajczyk, Yeping Xu, Hergen Breitzke, Anna Grünberg, Sonja Dillenberger, Ute Bommerich, Thomas Trantzschel, Johannes Bernarding, Gerd Buntkowsky. Understanding the leaching properties of heterogenized catalysts: A combined solid-state and PHIP NMR study. Solid State Nuclear Magnetic Resonance 2010, 38 (4) , 90-96. https://doi.org/10.1016/j.ssnmr.2011.03.001
    54. Hanna S. Abbo, Salam J. J. Titinchi. Synthesis and Catalytic Activity of Cu(II), Fe(III) and Bi(III) Complexes of Thio-Schiff Base Encapsulated in Zeolite-Y for Hydroxylation of Phenol. Topics in Catalysis 2010, 53 (3-4) , 254-264. https://doi.org/10.1007/s11244-009-9408-9
    55. Zhou Zhou, Qingguo Meng, Andreas Seifert, Alex Wagener, Yu Sun, S. Ernst, Werner R. Thiel. Hybrid mesoporous materials containing covalently anchored N-phenylthiazolium salts as organo catalysts. Microporous and Mesoporous Materials 2009, 121 (1-3) , 145-151. https://doi.org/10.1016/j.micromeso.2009.01.022
    56. Li Yan, Yun J. Ding, Li W. Lin, He J. Zhu, Hong M. Yin, Xian M. Li, Yuan Lu. In situ formation of HRh(CO)2(PPh3)2 active species on the surface of a SBA-15 supported heterogeneous catalyst and the effect of support pore size on the hydroformylation of propene. Journal of Molecular Catalysis A: Chemical 2009, 300 (1-2) , 116-120. https://doi.org/10.1016/j.molcata.2008.10.050
    57. N. Sudheesh, Sumeet K. Sharma, Ram S. Shukla, Raksh V. Jasra. HRh(CO)(PPh3)3 encapsulated mesopores of hexagonal mesoporous silica (HMS) acting as nanophase reactors for effective catalytic hydroformylation of olefins. Journal of Molecular Catalysis A: Chemical 2008, 296 (1-2) , 61-70. https://doi.org/10.1016/j.molcata.2008.08.019
    58. Guohua Liu, Mei Yao, Jianyao Wang, Xiaoquan Lu, Mouming Liu, Fang Zhang, Hexing Li. Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by a Mesoporous Silica‐Supported Iridium Catalyst. Advanced Synthesis & Catalysis 2008, 350 (10) , 1464-1468. https://doi.org/10.1002/adsc.200800110
    59. Yatendra S. Chaudhary, Soumen K. Manna, Shyamalava Mazumdar, Deepa Khushalani. Protein encapsulation into mesoporous silica hosts. Microporous and Mesoporous Materials 2008, 109 (1-3) , 535-541. https://doi.org/10.1016/j.micromeso.2007.06.001
    60. P. Li, S. Kawi. Dendritic SBA-15 supported Wilkinson's catalyst for hydroformylation of styrene. Catalysis Today 2008, 131 (1-4) , 61-69. https://doi.org/10.1016/j.cattod.2007.10.090
    61. Min Wei, Xian Zhang, David G. Evans, Xue Duan, Xianjun Li, Hua Chen. Rh‐TPPTS intercalated layered double hydroxides as hydroformylation catalyst. AIChE Journal 2007, 53 (11) , 2916-2924. https://doi.org/10.1002/aic.11324
    62. Bhasker Bantu, Klaus Wurst, Michael R. Buchmeiser. N-Acetyl-N,N-dipyrid-2-yl (cyclooctadiene) rhodium (I) and iridium (I) complexes: Synthesis, X-ray structures, their use in hydroformylation and carbonyl hydrosilylation reactions and in the polymerization of diazocompounds. Journal of Organometallic Chemistry 2007, 692 (23) , 5272-5278. https://doi.org/10.1016/j.jorganchem.2007.08.009
    63. Bibhas R. Sarkar, Kausik Mukhopadhyay, Raghunath V. Chaudhari. Tethered Pd-complex on solid support: Catalyst for acid-free carbonylation reactions. Catalysis Communications 2007, 8 (9) , 1386-1392. https://doi.org/10.1016/j.catcom.2006.11.028
    64. Ying Wan, Fang Zhang, Yunfeng Lu, Hexing Li. Immobilization of Ru(II) complex on functionalized SBA-15 and its catalytic performance in aqueous homoallylic alcohol isomerization. Journal of Molecular Catalysis A: Chemical 2007, 267 (1-2) , 165-172. https://doi.org/10.1016/j.molcata.2006.11.029
    65. Maree P. Collis, Patrick Perlmutter, Raghunath Vitthal Chaudhari. Carbonylhydridotris(triphenylphosphine)rhodium(I). 2007https://doi.org/10.1002/9780470842898.rc026.pub2
    66. N. S. Pagar, R. M. Deshpande, R. V. Chaudhari. Hydroformylation of olefins using dispersed molecular catalysts on solid supports. Catalysis Letters 2006, 110 (1-2) , 129-133. https://doi.org/10.1007/s10562-006-0095-x
    67. Hong Jin, Bala Subramaniam, Anindya Ghosh, Jon Tunge. Intensification of catalytic olefin hydroformylation in CO 2 ‐expanded media. AIChE Journal 2006, 52 (7) , 2575-2581. https://doi.org/10.1002/aic.10882
    68. Bassam El Ali, Jimoh Tijani, Mohammed Fettouhi. Hydroformylation of alkyl alkenes catalyzed by rhodium supported on MCM-41: The effect of H3PW12O40 on the catalytic activity and recycling. Journal of Molecular Catalysis A: Chemical 2006, 250 (1-2) , 153-162. https://doi.org/10.1016/j.molcata.2006.01.057
    69. J. N. H. Reek, P. W. N. M. Van Leeuwen, A. G. J. Van Der Ham, A. B. De Haan. Supported Catalysts. 2006, 39-72. https://doi.org/10.1007/1-4020-4087-3_3
    70. Boy Cornils, Emile G. Kuntz. Typical Reactions. 2005, 148-290. https://doi.org/10.1002/9783527619597.ch2d
    71. Li Yan, Yun J. Ding, He J. Zhu, Jian M. Xiong, Tao Wang, Zhen D. Pan, Li W. Lin. Ligand modified real heterogeneous catalysts for fixed-bed hydroformylation of propylene. Journal of Molecular Catalysis A: Chemical 2005, 234 (1-2) , 1-7. https://doi.org/10.1016/j.molcata.2005.01.047
    72. Martin Bortenschlager, Monika Mayr, Oskar Nuyken, Michael R. Buchmeiser. Hydroformylation of 1-octene using rhodium-1,3-R2-3,4,5,6-tetrahydropyrimidin-2-ylidenes (R=2-Pr, mesityl). Journal of Molecular Catalysis A: Chemical 2005, 233 (1-2) , 67-71. https://doi.org/10.1016/j.molcata.2005.02.005
    73. B. El Ali, J. Tijani, M. Fettouhi, M. El-Faer, A. Al-Arfaj. Rhodium(I) and rhodium(III)–heteropolyacids supported on MCM-41 for the catalytic hydroformylation of styrene derivatives. Applied Catalysis A: General 2005, 283 (1-2) , 185-196. https://doi.org/10.1016/j.apcata.2005.01.005
    74. Raghunath V. Chaudhari, Patrick L. Mills. Multiphase catalysis and reaction engineering for emerging pharmaceutical processes. Chemical Engineering Science 2004, 59 (22-23) , 5337-5344. https://doi.org/10.1016/j.ces.2004.07.105
    75. Hong Jin, Bala Subramaniam. Homogeneous catalytic hydroformylation of 1-octene in CO2-expanded solvent media. Chemical Engineering Science 2004, 59 (22-23) , 4887-4893. https://doi.org/10.1016/j.ces.2004.09.034
    76. Qingrong Peng, Yong Yang, Youzhu Yuan. Immobilization of rhodium complexes ligated with triphenyphosphine analogs on amino-functionalized MCM-41 and MCM-48 for 1-hexene hydroformylation. Journal of Molecular Catalysis A: Chemical 2004, 219 (1) , 175-181. https://doi.org/10.1016/j.molcata.2004.05.003
    77. Ferenc Ungváry. Application of transition metals in hydroformylation annual survey covering the year 2003. Coordination Chemistry Reviews 2004, 248 (9-10) , 867-880. https://doi.org/10.1016/j.ccr.2003.02.001
    78. K. Mukhopadhyay, A. Ghosh, R. Kumar. Keggin anions promoted synthesis of zeolites and mesoporous materials. 2004, 461-467. https://doi.org/10.1016/S0167-2991(04)80837-1
    79. Luís Mafra, Jacek Klinowski. Advanced Solid-State NMR Techniques for the Study of Molecular Sieves. 1996https://doi.org/10.1002/9780470034590.emrstm1307

    Chemistry of Materials

    Cite this: Chem. Mater. 2003, 15, 9, 1766–1777
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm020752n
    Published April 4, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    1579

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.