ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Thermodynamics of Lithium in TiO2(B) from First Principles

View Author Information
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
Cite this: Chem. Mater. 2012, 24, 9, 1568–1574
Publication Date (Web):April 11, 2012
https://doi.org/10.1021/cm203283v
Copyright © 2012 American Chemical Society

    Article Views

    2864

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (7)»

    Abstract

    Abstract Image

    We use first-principles density functional theory (DFT) calculations combined with statistical mechanical techniques based on the cluster expansion method and Monte Carlo simulations to predict the lithium site occupancies, voltage curves, and phase diagram for TiO2(B), a candidate anode material for lithium ion batteries. We find that Li intercalation is thermodynamically favorable up to a Li/Ti ratio of 1.25, higher than the theoretical maximum usually assumed for TiO2. The calculated phase diagram at 300 K contains three first-order phase transformations corresponding to major changes in the favored intercalation sites at increasing Li concentrations. Calculations based on DFT predict the stability of a new Li site at high Li concentrations in TiO2(B) and the occurrence of a dramatic site-inversion as Li is added to the host.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Energies as calculated by GGA+U and hybrid DFT–Hartree-Fock for selected Li-vacancy configurations, crystallographic information files (CIF) of ground state configurations (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 87 publications.

    1. Dongha Kim, Jingyeong Jeon, Joon Deok Park, Xiao-Guang Sun, Xiang Gao, Ho Nyung Lee, Judith L. MacManus-Driscoll, Deok-Hwang Kwon, Shinbuhm Lee. Stable Supercapacity of Binder-Free TiO2(B) Epitaxial Electrodes for All-Solid-State Nanobatteries. Nano Letters 2023, 23 (15) , 6815-6822. https://doi.org/10.1021/acs.nanolett.3c00596
    2. Ying Wei, Zhaoxin Wang, Jianze Wu, Bao Liu, Yongfan Zhang, Shuping Huang. Effect of Oxygen Vacancies and F-Doping on TiO2(B) as Anode for Mg-Ion Batteries. The Journal of Physical Chemistry C 2023, 127 (29) , 14086-14097. https://doi.org/10.1021/acs.jpcc.3c02555
    3. Samia Said, Zhenyu Zhang, Rebecca R. C. Shutt, Hector J. Lancaster, Dan J. L. Brett, Christopher A. Howard, Thomas S. Miller. Black Phosphorus Degradation during Intercalation and Alloying in Batteries. ACS Nano 2023, 17 (7) , 6220-6233. https://doi.org/10.1021/acsnano.2c08776
    4. Ravindra Kempaiah, Henry Chan, Srilok Srinivasan, Subramanian KRS Sankaranarayanan, Badri Narayanan, Arunkumar Subramanian. Impact of Stabilizing Cations on Lithium Intercalation in Tunneled Manganese Oxide Cathodes. ACS Applied Energy Materials 2021, 4 (11) , 12099-12111. https://doi.org/10.1021/acsaem.1c01598
    5. Simon Fleischmann, James B. Mitchell, Ruocun Wang, Cheng Zhan, De-en Jiang, Volker Presser, Veronica Augustyn. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews 2020, 120 (14) , 6738-6782. https://doi.org/10.1021/acs.chemrev.0c00170
    6. Anton Van der Ven, Zhi Deng, Swastika Banerjee, Shyue Ping Ong. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chemical Reviews 2020, 120 (14) , 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601
    7. Can P. Koçer, Kent J. Griffith, Clare P. Grey, Andrew J. Morris. Cation Disorder and Lithium Insertion Mechanism of Wadsley–Roth Crystallographic Shear Phases from First Principles. Journal of the American Chemical Society 2019, 141 (38) , 15121-15134. https://doi.org/10.1021/jacs.9b06316
    8. Jae-Sang Park, Jae Hyeon Jo, Yauhen Aniskevich, Aliaksei Bakavets, Genady Ragoisha, Eugene Streltsov, Jongsoon Kim, Seung-Taek Myung. Open-Structured Vanadium Dioxide as an Intercalation Host for Zn Ions: Investigation by First-Principles Calculation and Experiments. Chemistry of Materials 2018, 30 (19) , 6777-6787. https://doi.org/10.1021/acs.chemmater.8b02679
    9. Sung Joo Kim, Donghee Chang, Kui Zhang, George Graham, Anton Van der Ven, Xiaoqing Pan. Accordion Strain Accommodation Mechanism within the Epitaxially Constrained Electrode. ACS Energy Letters 2018, 3 (8) , 1848-1853. https://doi.org/10.1021/acsenergylett.8b00829
    10. Shunning Li, Jian-Bo Liu, Qing Wan, Jian Xu, and Bai-Xin Liu . First-Principles Analysis of Li Intercalation in VO2(B). Chemistry of Materials 2017, 29 (23) , 10075-10087. https://doi.org/10.1021/acs.chemmater.7b03750
    11. Xiao Hua, Zheng Liu, Michael G. Fischer, Olaf Borkiewicz, Peter J. Chupas, Karena W. Chapman, Ullrich Steiner, Peter G. Bruce, and Clare P. Grey . Lithiation Thermodynamics and Kinetics of the TiO2 (B) Nanoparticles. Journal of the American Chemical Society 2017, 139 (38) , 13330-13341. https://doi.org/10.1021/jacs.7b05228
    12. Alexandros Vasileiadis and Marnix Wagemaker . Thermodynamics and Kinetics of Na-Ion Insertion into Hollandite-TiO2 and O3-Layered NaTiO2: An Unexpected Link between Two Promising Anode Materials for Na-Ion Batteries. Chemistry of Materials 2017, 29 (3) , 1076-1088. https://doi.org/10.1021/acs.chemmater.6b03928
    13. Oliver Pecher, Javier Carretero-González, Kent J. Griffith, and Clare P. Grey . Materials’ Methods: NMR in Battery Research. Chemistry of Materials 2017, 29 (1) , 213-242. https://doi.org/10.1021/acs.chemmater.6b03183
    14. Julija Vinckevičiu̅tė, Maxwell D. Radin, and Anton Van der Ven . Stacking-Sequence Changes and Na Ordering in Layered Intercalation Materials. Chemistry of Materials 2016, 28 (23) , 8640-8650. https://doi.org/10.1021/acs.chemmater.6b03609
    15. J. A. Dawson and J. Robertson . Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B). The Journal of Physical Chemistry C 2016, 120 (40) , 22910-22917. https://doi.org/10.1021/acs.jpcc.6b08842
    16. Qian Zhang and Payam Kaghazchi . Strong Li-Content Dependence of Li Diffusivity in TiO2-B. The Journal of Physical Chemistry C 2016, 120 (39) , 22163-22168. https://doi.org/10.1021/acs.jpcc.6b06319
    17. Xiao Hua, Zheng Liu, Peter G. Bruce, and Clare P. Grey . The Morphology of TiO2 (B) Nanoparticles. Journal of the American Chemical Society 2015, 137 (42) , 13612-13623. https://doi.org/10.1021/jacs.5b08434
    18. Jie Qu, Jacqueline E. Cloud, Yongan Yang, Jianning Ding, and Ningyi Yuan . Synthesis of Nanoparticles-Deposited Double-Walled TiO2-B Nanotubes with Enhanced Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (24) , 22199-22208. https://doi.org/10.1021/am505893q
    19. Marcus Fehse, Mouna Ben Yahia, Laure Monconduit, Frédéric Lemoigno, Marie-Liesse Doublet, Florent Fischer, Cécile Tessier, and Lorenzo Stievano . New Insights on the Reversible Lithiation Mechanism of TiO2(B) by Operando X-ray Absorption Spectroscopy and X-ray Diffraction Assisted by First-Principles Calculations. The Journal of Physical Chemistry C 2014, 118 (47) , 27210-27218. https://doi.org/10.1021/jp507574e
    20. Xudong Wang, Zhaodong Li, Jian Shi, and Yanhao Yu . One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews 2014, 114 (19) , 9346-9384. https://doi.org/10.1021/cr400633s
    21. Filippo De Angelis, Cristiana Di Valentin, Simona Fantacci, Andrea Vittadini, and Annabella Selloni . Theoretical Studies on Anatase and Less Common TiO2 Phases: Bulk, Surfaces, and Nanomaterials. Chemical Reviews 2014, 114 (19) , 9708-9753. https://doi.org/10.1021/cr500055q
    22. Yuri G. Andreev, Pooja M. Panchmatia, Zheng Liu, Stephen C. Parker, M. Saiful Islam, and Peter G. Bruce . The Shape of TiO2-B Nanoparticles. Journal of the American Chemical Society 2014, 136 (17) , 6306-6312. https://doi.org/10.1021/ja412387c
    23. Chen Ling and Fuminori Mizuno . Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode. Chemistry of Materials 2013, 25 (15) , 3062-3071. https://doi.org/10.1021/cm401250c
    24. David A. Tompsett and M. Saiful Islam . Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation. Chemistry of Materials 2013, 25 (12) , 2515-2526. https://doi.org/10.1021/cm400864n
    25. Anthony G. Dylla, Graeme Henkelman, and Keith J. Stevenson . Lithium Insertion in Nanostructured TiO2(B) Architectures. Accounts of Chemical Research 2013, 46 (5) , 1104-1112. https://doi.org/10.1021/ar300176y
    26. Xiaobo Wang, Yong Yan, Bo Hao, and Ge Chen . Protein-Mediated Layer-by-Layer Synthesis of TiO2(B)/Anatase/Carbon Coating on Nickel Foam as Negative Electrode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces 2013, 5 (9) , 3631-3637. https://doi.org/10.1021/am4000744
    27. G. Pilania, C. C. Wang, K. Wu, N. Sukumar, C. Breneman, G. Sotzing, and R. Ramprasad . New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene. Journal of Chemical Information and Modeling 2013, 53 (4) , 879-886. https://doi.org/10.1021/ci400033h
    28. P. Senguttuvan, G. Rousse, M. E. Arroyo y de Dompablo, Hervé Vezin, J.-M. Tarascon, and M. R. Palacín . Low-Potential Sodium Insertion in a NASICON-Type Structure through the Ti(III)/Ti(II) Redox Couple. Journal of the American Chemical Society 2013, 135 (10) , 3897-3903. https://doi.org/10.1021/ja311044t
    29. Chen Ling and Fuminori Mizuno . Capture Lithium in αMnO2: Insights from First Principles. Chemistry of Materials 2012, 24 (20) , 3943-3951. https://doi.org/10.1021/cm302347j
    30. Anthony G. Dylla, Penghao Xiao, Graeme Henkelman, and Keith J. Stevenson . Morphological Dependence of Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets. The Journal of Physical Chemistry Letters 2012, 3 (15) , 2015-2019. https://doi.org/10.1021/jz300766a
    31. Tshimangadzo S. Munonde, Mpfunzeni C. Raphulu. Review on titanium dioxide nanostructured electrode materials for high-performance lithium batteries. Journal of Energy Storage 2024, 78 , 110064. https://doi.org/10.1016/j.est.2023.110064
    32. Jiamiao Ran, Hui Liu, Hongliang Dong, Peng Gao, Haowei Cheng, Jianing Xu, Hailun Wang, Zixing Wang, Qingfeng Fu, Jiaxu Yan, Jilei Liu. Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy. Green Energy & Environment 2023, 8 (5) , 1371-1379. https://doi.org/10.1016/j.gee.2022.02.008
    33. Touwen Fan, Zixiong Ruan, Faxin Xiao, Yuanzhi Wu, Wei Liu, Yuxin Cao, Tuo Ye, Te Hu, Dongchu Chen. First-principles study of the mixing effects of rare earth solute atoms on the physical properties of Al 2 RE phases in Al-based alloys at finite temperatures. Physica Scripta 2023, 98 (10) , 105906. https://doi.org/10.1088/1402-4896/aceb38
    34. Prashanth S. Adarakatti, Manukumar K. N.. A new class of pseudocapacitive electrode materials for electrochemical energy storage in rechargeable batteries. 2023, 181-224. https://doi.org/10.1039/BK9781839169366-00181
    35. Andreas Østergaard Drejer, Bettina Pilgaard Andersen, Dorthe Bomholdt Ravnsbæk. Structural evolution dependency on depth-of-discharge in VO2(B) Li-ion battery electrodes. Journal of Power Sources 2023, 556 , 232435. https://doi.org/10.1016/j.jpowsour.2022.232435
    36. Hae Woong Park, Kwang Chul Roh. Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. Journal of Power Sources 2023, 557 , 232558. https://doi.org/10.1016/j.jpowsour.2022.232558
    37. Jonas L. Kaufman, Anton Van der Ven. First-principles investigation of phase stability in layered Na x CrO 2 . Physical Review Materials 2022, 6 (11) https://doi.org/10.1103/PhysRevMaterials.6.115401
    38. Suzhe Liang, Xiaoyan Wang, Ruoxuan Qi, Ya‐Jun Cheng, Yonggao Xia, Peter Müller‐Buschbaum, Xile Hu. Bronze‐Phase TiO 2 as Anode Materials in Lithium and Sodium‐Ion Batteries. Advanced Functional Materials 2022, 32 (25) https://doi.org/10.1002/adfm.202201675
    39. Shu Zhao, Boya Wang, Zihe Zhang, Xu Zhang, Shiman He, Haijun Yu. First-principles computational insights into lithium battery cathode materials. Electrochemical Energy Reviews 2022, 5 (1) , 1-31. https://doi.org/10.1007/s41918-021-00115-5
    40. Mengmeng Zhen, Keliang Jiang, Sheng-Qi Guo, Boxiong Shen, Huiling Liu. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Research 2022, 15 (2) , 933-941. https://doi.org/10.1007/s12274-021-3578-6
    41. J. Juan, L. Fernández-Werner, P. Bechthold, M.J. Jiménez, P.V. Jasen, R. Faccio, E.A. Gonzalez. Thermodynamic functions and vibrational properties of Li intercalation in TiO2(B). Applied Surface Science 2021, 566 , 150679. https://doi.org/10.1016/j.apsusc.2021.150679
    42. Qiang Wang, Lei Shen, Tong Xue, Gao Cheng, Cheng Zhi Huang, Hong Jin Fan, Yuan Ping Feng. Single‐Crystalline TiO 2 (B) Nanobelts with Unusual Large Exposed {100} Facets and Enhanced Li‐Storage Capacity. Advanced Functional Materials 2021, 31 (2) https://doi.org/10.1002/adfm.202002187
    43. Julián Juan, Luciana Fernández-Werner, Paula V. Jasen, Pablo Bechthold, Ricardo Faccio, Estela A. González. Theoretical study of Li intercalation in TiO2(B) surfaces. Applied Surface Science 2020, 526 , 146460. https://doi.org/10.1016/j.apsusc.2020.146460
    44. Zhong Su, Jiahua Liu, Meng Li, Yuxuan Zhu, Shangshu Qian, Mouyi Weng, Jiaxin Zheng, Yulin Zhong, Feng Pan, Shanqing Zhang. Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochemical Energy Reviews 2020, 3 (2) , 286-343. https://doi.org/10.1007/s41918-020-00064-5
    45. N. S. Harsha Gunda, Anton Van der Ven. Understanding the interactions between interstitial and substitutional solutes in refractory alloys: The case of Ti-Al-O. Acta Materialia 2020, 191 , 149-157. https://doi.org/10.1016/j.actamat.2020.04.017
    46. Changyan Zhu, Shiru Lin, Min Zhang, Quan Li, Zhongmin Su, Zhongfang Chen. Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B 7 P 2 monolayer with suitable pore size and distribution. Journal of Materials Chemistry A 2020, 8 (20) , 10301-10309. https://doi.org/10.1039/D0TA02767G
    47. Shuaifeng Lou, Yang Zhao, Jiajun Wang, Geping Yin, Chunyu Du, Xueliang Sun. Ti‐Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small 2019, 15 (52) https://doi.org/10.1002/smll.201904740
    48. Denis P. Opra, Sergey V. Gnedenkov, Sergey L. Sinebryukhov. Recent efforts in design of TiO2(B) anodes for high-rate lithium-ion batteries: A review. Journal of Power Sources 2019, 442 , 227225. https://doi.org/10.1016/j.jpowsour.2019.227225
    49. Denglei Gao, Yanlei Wang, Jing Kong, Feng Huo, Sufan Wang, Hongyan He, Suojiang Zhang. First-principles study on screening doped TiO 2 (B) as an anode material with high conductivity and low lithium transport resistance for lithium-ion batteries. Physical Chemistry Chemical Physics 2019, 21 (32) , 17985-17992. https://doi.org/10.1039/C9CP01885A
    50. Weiqiang Tang, Jin Xuan, Huizhi Wang, Shuangliang Zhao, Honglai Liu. Aluminum intercalation and transport in TiO2(B) from first principles. Journal of Energy Storage 2019, 24 , 100800. https://doi.org/10.1016/j.est.2019.100800
    51. Meiling Kang, Yurong Ruan, Yanzhong Lu, Lan Luo, Jinxian Huang, Jian-Min Zhang, Zhensheng Hong. An interlayer defect promoting the doping of the phosphate group into TiO 2 (B) nanowires with unusual structure properties towards ultra-fast and ultra-stable sodium storage. Journal of Materials Chemistry A 2019, 7 (28) , 16937-16946. https://doi.org/10.1039/C9TA05299B
    52. Zhaolong Li, Swapna Ganapathy, Yaolin Xu, Zhou Zhou, Mehmet Sarilar, Marnix Wagemaker. Mechanistic Insight into the Electrochemical Performance of Zn/VO 2 Batteries with an Aqueous ZnSO 4 Electrolyte. Advanced Energy Materials 2019, 9 (22) https://doi.org/10.1002/aenm.201900237
    53. Alison Lennon, Yu Jiang, Charles Hall, Derwin Lau, Ning Song, Patrick Burr, Clare P. Grey, Kent J. Griffith. High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids. MRS Energy & Sustainability 2019, 6 (1) https://doi.org/10.1557/mre.2019.4
    54. Changyan Zhu, Xin Qu, Min Zhang, Jianyun Wang, Quan Li, Yun Geng, Yanming Ma, Zhongmin Su. Planar NiC 3 as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A 2019, 7 (21) , 13356-13363. https://doi.org/10.1039/C9TA03494C
    55. D. P. Opra, S. V. Gnedenkov, S. A. Sinebryukhov, A. Yu. Ustinov, A. B. Podgorbunsky, A. A. Sokolov. Effect of Isovalent Doping by Zr4+ Ions on the Electrochemical Behavior of TiO2(B). Russian Journal of Inorganic Chemistry 2019, 64 (5) , 680-687. https://doi.org/10.1134/S0036023619050140
    56. George Hasegawa, Moeko Tanaka, Junie Jhon M. Vequizo, Akira Yamakata, Hajime Hojo, Makoto Kobayashi, Masato Kakihana, Miki Inada, Hirofumi Akamatsu, Katsuro Hayashi. Sodium titanium oxide bronze nanoparticles synthesized via concurrent reduction and Na + -doping into TiO 2 (B). Nanoscale 2019, 11 (3) , 1442-1450. https://doi.org/10.1039/C8NR08372J
    57. Chikashi Shinagawa, Yusuke Morikawa, Shin‐ichi Nishimura, Hiroshi Ushiyama, Atsuo Yamada, Koichi Yamashita. A Theoretical study on the charge and discharge states of Na‐ion battery cathode material, Na 1+ x FePO 4 F. Journal of Computational Chemistry 2019, 40 (1) , 237-246. https://doi.org/10.1002/jcc.25582
    58. Yuxin Tang, Yanyan Zhang, Oleksandr I. Malyi, Nicolas Bucher, Huarong Xia, Shibo Xi, Zhiqiang Zhu, Zhisheng Lv, Wenlong Li, Jiaqi Wei, Madhavi Srinivasan, Armando Borgna, Markus Antonietti, Yonghua Du, Xiaodong Chen. Identifying the Origin and Contribution of Surface Storage in TiO 2 (B) Nanotube Electrode by In Situ Dynamic Valence State Monitoring. Advanced Materials 2018, 30 (33) https://doi.org/10.1002/adma.201802200
    59. N. S. Harsha Gunda, Anton Van der Ven. First-principles insights on phase stability of titanium interstitial alloys. Physical Review Materials 2018, 2 (8) https://doi.org/10.1103/PhysRevMaterials.2.083602
    60. N. S. Harsha Gunda, Brian Puchala, Anton Van der Ven. Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods. Physical Review Materials 2018, 2 (3) https://doi.org/10.1103/PhysRevMaterials.2.033604
    61. Anirudh Raju Natarajan, John C. Thomas, Brian Puchala, Anton Van der Ven. Symmetry-adapted order parameters and free energies for solids undergoing order-disorder phase transitions. Physical Review B 2017, 96 (13) https://doi.org/10.1103/PhysRevB.96.134204
    62. Yan Zhang, Zhiying Ding, Christopher W. Foster, Craig E. Banks, Xiaoqing Qiu, Xiaobo Ji. Oxygen Vacancies Evoked Blue TiO 2 (B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. Advanced Functional Materials 2017, 27 (27) https://doi.org/10.1002/adfm.201700856
    63. Gregory H. Teichert, N.S. Harsha Gunda, Shiva Rudraraju, Anirudh Raju Natarajan, Brian Puchala, Krishna Garikipati, Anton Van der Ven. A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations. Computational Materials Science 2017, 128 , 127-139. https://doi.org/10.1016/j.commatsci.2016.11.024
    64. Le Shi, Tianshou Zhao. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. Journal of Materials Chemistry A 2017, 5 (8) , 3735-3758. https://doi.org/10.1039/C6TA09831B
    65. Long Pan, Yitao Liu, Xuming Xie, Xiongying Ye, Xiaodong Zhu. Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage. Nano Research 2016, 9 (7) , 2057-2069. https://doi.org/10.1007/s12274-016-1096-8
    66. Guofeng Ren, Md Nadim Ferdous Hoque, Jianwei Liu, Juliusz Warzywoda, Zhaoyang Fan. Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 2016, 21 , 162-171. https://doi.org/10.1016/j.nanoen.2016.01.010
    67. Donghee Chang, Anton Van der Ven. Li intercalation mechanisms in CaTi 5 O 11 , a bronze-B derived compound. Physical Chemistry Chemical Physics 2016, 18 (47) , 32042-32049. https://doi.org/10.1039/C6CP05905H
    68. Xiaoying Chen, Li Liu, Lingguang Yi, Guoxiong Guo, Min Li, Jianjun Xie, Yan Ouyang, Xianyou Wang. High-performance lithium storage of Ti 3+ -doped anatase TiO 2 @C composite spheres. RSC Advances 2016, 6 (102) , 99695-99703. https://doi.org/10.1039/C6RA22105J
    69. Yothin Chimupala, Patcharanan Junploy, Trevor Hardcastle, Aidan Westwood, Andrew Scott, Benjamin Johnson, Rik Brydson. Universal synthesis method for mixed phase TiO 2 (B)/anatase TiO 2 thin films on substrates via a modified low pressure chemical vapour deposition (LPCVD) route. Journal of Materials Chemistry A 2016, 4 (15) , 5685-5699. https://doi.org/10.1039/C6TA01383J
    70. Yi Cai, Hong-En Wang, Shao -Zhuan Huang, Jun Jin, Chao Wang, Yong Yu, Yu Li, Bao-Lian Su. Hierarchical Nanotube-Constructed Porous TiO2-B Spheres for High Performance Lithium Ion Batteries. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep11557
    71. Xiaodong Yan, Zhihui Wang, Min He, Zhaohui Hou, Ting Xia, Gao Liu, Xiaobo Chen. TiO 2 Nanomaterials as Anode Materials for Lithium‐Ion Rechargeable Batteries. Energy Technology 2015, 3 (8) , 801-814. https://doi.org/10.1002/ente.201500039
    72. Marcus Fehse, Edgar Ventosa. Is TiO 2 (B) the Future of Titanium‐Based Battery Materials?. ChemPlusChem 2015, 80 (5) , 785-795. https://doi.org/10.1002/cplu.201500038
    73. Jiayan Zhang, Jianxing Shen, Tailin Wang, Huayong Zhang, Changbao Wei, Kechang Zhang, Yuanzheng Yue. TiO 2 -B nanoribbons anchored with NiO nanosheets as hybrid anode materials for rechargeable lithium ion batteries. CrystEngComm 2015, 17 (7) , 1710-1715. https://doi.org/10.1039/C4CE01719F
    74. Mahesh Datt Bhatt, Colm O'Dwyer. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics 2015, 17 (7) , 4799-4844. https://doi.org/10.1039/C4CP05552G
    75. Donghee Chang, Hua Huo, Karen E. Johnston, Michel Ménétrier, Laure Monconduit, Clare P. Grey, Anton Van der Ven. Elucidating the origins of phase transformation hysteresis during electrochemical cycling of Li–Sb electrodes. Journal of Materials Chemistry A 2015, 3 (37) , 18928-18943. https://doi.org/10.1039/C5TA06183K
    76. Steven G. Rinaldo, Kevin G. Gallagher, Brandon R. Long, Jason R. Croy, Martin Bettge, Daniel P. Abraham, Javier Bareño, Dennis W. Dees. Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides. Journal of The Electrochemical Society 2015, 162 (6) , A897-A904. https://doi.org/10.1149/2.0181506jes
    77. Zichao Yan, Li Liu, Jinli Tan, Qian Zhou, Zhifeng Huang, Dongdong Xia, Hongbo Shu, Xiukang Yang, Xianyou Wang. One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries. Journal of Power Sources 2014, 269 , 37-45. https://doi.org/10.1016/j.jpowsour.2014.06.150
    78. Ladislav Kavan. Lithium insertion into TiO2 (anatase): electrochemistry, Raman spectroscopy, and isotope labeling. Journal of Solid State Electrochemistry 2014, 18 (8) , 2297-2306. https://doi.org/10.1007/s10008-014-2435-x
    79. Barbora Laskova, Marketa Zukalova, Arnost Zukal, Milan Bousa, Ladislav Kavan. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase). Journal of Power Sources 2014, 246 , 103-109. https://doi.org/10.1016/j.jpowsour.2013.07.073
    80. M. Saiful Islam, Craig A. J. Fisher. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43 (1) , 185-204. https://doi.org/10.1039/C3CS60199D
    81. Anton Van der Ven, Brian Puchala, Takeshi Nagase. Ti- and Zr-based metal-air batteries. Journal of Power Sources 2013, 242 , 400-404. https://doi.org/10.1016/j.jpowsour.2013.05.074
    82. Sergei Manzhos, Giacomo Giorgi. Bridging the Fields of Solar Cell and Battery Research to Develop High-Performance Anodes for Photoelectrochemical Cells and Metal Ion Batteries. Challenges 2013, 4 (1) , 116-135. https://doi.org/10.3390/challe4010116
    83. Jesper Kristensen, Ilias Bilionis, Nicholas Zabaras. Relative entropy as model selection tool in cluster expansions. Physical Review B 2013, 87 (17) https://doi.org/10.1103/PhysRevB.87.174112
    84. Chad W. Mason, Ivan Yeo, Kuppan Saravanan, Palani Balaya. Interconnected nanofibrous titanium dioxide bronze: an emerging lithium ion anode material for high rate performance. RSC Advances 2013, 3 (9) , 2935. https://doi.org/10.1039/c2ra22847e
    85. Chen Ling, Fuminori Mizuno. Mechanistic study of the electrochemical extraction of K+ from KFeSO4F. Journal of Materials Chemistry A 2013, 1 (27) , 8000. https://doi.org/10.1039/c3ta10884h
    86. Vinodkumar Etacheri, Yenting Kuo, Anton Van der Ven, Bart M. Bartlett. Mesoporous TiO2–B microflowers composed of (1 1̄ 0) facet-exposed nanosheets for fast reversible lithium-ion storage. Journal of Materials Chemistry A 2013, 1 (39) , 12028. https://doi.org/10.1039/c3ta12920a
    87. Benjamin J. Morgan, Paul A. Madden. Lithium intercalation into TiO 2 (B): A comparison of LDA, GGA, and GGA+ U density functional calculations. Physical Review B 2012, 86 (3) https://doi.org/10.1103/PhysRevB.86.035147

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect