ACS Publications. Most Trusted. Most Cited. Most Read
Incorporation of a Recombinant Biomineralization Fusion Protein into the Crystalline Lattice of Calcite
My Activity
    Article

    Incorporation of a Recombinant Biomineralization Fusion Protein into the Crystalline Lattice of Calcite
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion Israel Institute of Technology, Haifa 32000, Israel
    INM-Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbruecken, Germany
    § European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex, France
    Other Access OptionsSupporting Information (3)

    Chemistry of Materials

    Cite this: Chem. Mater. 2014, 26, 17, 4925–4932
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm500450s
    Published July 2, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    High-resolution synchrotron X-ray powder diffraction (XRD) combined with the Rietveld refinement method and confocal laser scanning microscopy (CLSM) were utilized in this study to elucidate the interaction between a recombinant biomineralization protein (perlucin) fused to green fluorescent protein (GFP) and synthetic calcite. Although recombinant perlucin is insoluble, its solubility was increased via fusion to the highly soluble GFP. We demonstrate that GFP-perlucin derivatives become incorporated into the calcite structure and induce concentration-dependent anisotropic lattice distortions along the host’s c-axis. In contrast, GFP alone is hardly incorporated at all. The observed lattice distortions and peculiar microstructure of the crystals are comparable to those previously observed in biogenic calcite. Taking advantage of biotechnology to optimize individual protein properties, such as the solubility of an otherwise insoluble protein derivative, is a promising route toward the synthesis of new and improved biocomposite materials.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Silver stained SDS–PAGE of purified His-tagged GFP and His-tagged GFP-perlucin as well as high-resolution powder XRD pattern of all calcite samples, and modeling results of the 3D structure of perlucin proteins. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. David C. Green, Robert Darkins, Bartosz Marzec, Mark A. Holden, Ian J. Ford, Stanley W. Botchway, Bart Kahr, Dorothy M. Duffy, Fiona C. Meldrum. Dichroic Calcite Reveals the Pathway from Additive Binding to Occlusion. Crystal Growth & Design 2021, 21 (7) , 3746-3755. https://doi.org/10.1021/acs.cgd.1c00068
    2. Klaudia Bielak, Mirosława Olga Różycka, Anna Zoglowek, Andrzej Ożyhar, Piotr Dobryszycki. Counter-Diffusion System as an in Vitro Model in the Investigation of Proteins Involved in the Formation of Calcium Carbonate Biominerals. Crystal Growth & Design 2021, 21 (3) , 1389-1400. https://doi.org/10.1021/acs.cgd.0c01695
    3. Sylwia Mijowska, Iryna Polishchuk, Arad Lang, Eva Seknazi, Catherine Dejoie, Simona Fermani, Giuseppe Falini, Nicola Demitri, Maurizio Polentarutti, Alexander Katsman, Boaz Pokroy. High Amino Acid Lattice Loading at Nonambient Conditions Causes Changes in Structure and Expansion Coefficient of Calcite. Chemistry of Materials 2020, 32 (10) , 4205-4212. https://doi.org/10.1021/acs.chemmater.0c00428
    4. David C. Green, Yosuke Shida, Nobuyuki Honma, Mark A. Holden, Yi-Yeoun Kim, Alexander N. Kulak, Wataru Ogasawara, Fiona C. Meldrum. Skin-Deep Surface Patterning of Calcite. Chemistry of Materials 2019, 31 (21) , 8725-8733. https://doi.org/10.1021/acs.chemmater.9b02421
    5. Meng Li, Jing Zhang, Lijun Wang, Baoshan Wang, and Christine V. Putnis . Mechanisms of Modulation of Calcium Phosphate Pathological Mineralization by Mobile and Immobile Small-Molecule Inhibitors. The Journal of Physical Chemistry B 2018, 122 (5) , 1580-1587. https://doi.org/10.1021/acs.jpcb.7b10956
    6. Alexander G. Shtukenberg, Michael D. Ward, and Bart Kahr . Crystal Growth with Macromolecular Additives. Chemical Reviews 2017, 117 (24) , 14042-14090. https://doi.org/10.1021/acs.chemrev.7b00285
    7. Chuang Liu, Jinzhe Du, Liping Xie, and Rongqing Zhang . Direct Observation of Nacre Proteins in the Whole Calcite by Super-resolution Microscopy Reveals Diverse Occlusion Patterns. Crystal Growth & Design 2017, 17 (4) , 1966-1976. https://doi.org/10.1021/acs.cgd.6b01897
    8. Eduardo R. Cruz-Chú, Shijun Xiao, Sandeep P. Patil, Konstantinos Gkagkas, and Frauke Gräter . Organic Filling Mitigates Flaw-Sensitivity of Nanoscale Aragonite. ACS Biomaterials Science & Engineering 2017, 3 (3) , 260-268. https://doi.org/10.1021/acsbiomaterials.6b00504
    9. Alexander G. Shtukenberg, Kelly Tripathi, Remi Ketchum, Jenny Jaehee Jeon, Ahmed Sanda, and Bart Kahr . Incorporation of Macromolecules into α-Lactose Monohydrate Crystals. Crystal Growth & Design 2016, 16 (8) , 4589-4598. https://doi.org/10.1021/acs.cgd.6b00686
    10. Linfeng Chen, Iryna Polishchuk, Eva Weber, Andy N. Fitch, and Boaz Pokroy . Hybrid Gold Single Crystals Incorporating Amino Acids. Crystal Growth & Design 2016, 16 (5) , 2972-2978. https://doi.org/10.1021/acs.cgd.6b00345
    11. Eric P. Chang, Gabrielle Williamson, and John Spencer Evans . Focused Ion Beam Tomography Reveals the Presence of Micro-, Meso-, and Macroporous Intracrystalline Regions Introduced into Calcite Crystals by the Gastropod Nacre Protein AP7. Crystal Growth & Design 2015, 15 (4) , 1577-1582. https://doi.org/10.1021/acs.cgd.5b00225
    12. Wenting Chen, Pei Liu, Xia Sun, Biao Xiong, Huahua Cui, Zhenghong Zhao, Yin Ning. Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures. Angewandte Chemie 2024, 136 (43) https://doi.org/10.1002/ange.202410908
    13. Wenting Chen, Pei Liu, Xia Sun, Biao Xiong, Huahua Cui, Zhenghong Zhao, Yin Ning. Spatioselective Occlusion of Copolymer Nanoparticles within Calcite Crystals Generates Organic‐Inorganic Hybrid Materials with Controlled Internal Structures. Angewandte Chemie International Edition 2024, 5 https://doi.org/10.1002/anie.202410908
    14. Huseyin Burak Caliskan, Fatma Isik Ustok. Implications of intracrystalline OC17 on the protection of lattice incorporated proteins. Soft Matter 2024, 20 (25) , 4886-4894. https://doi.org/10.1039/D4SM00371C
    15. Kohei Takashina, Hiroto Watanabe, Yuya Oaki, Yoshikazu Ohno, Ko Yasumoto, Hiroaki Imai. Coral-mimetic production of aragonite films from CO 2 captured by biogenic polyamines. CrystEngComm 2024, 26 (15) , 2065-2071. https://doi.org/10.1039/D4CE00126E
    16. Ya-Xin Li, Yuan Jiang. Synergistic Occlusion of Doxorubicin and Hydrogels in CaCO3 Composites for Controlled Drug Release. Crystals 2023, 13 (1) , 132. https://doi.org/10.3390/cryst13010132
    17. Arad Lang, Iryna Polishchuk, Giorgia Confalonieri, Catherine Dejoie, Ariel Maniv, Daniel Potashnikov, El'ad N. Caspi, Boaz Pokroy. Tuning the Magnetization of Manganese (II) Carbonate by Intracrystalline Amino Acids. Advanced Materials 2022, 34 (34) https://doi.org/10.1002/adma.202201652
    18. Arad Lang, Anastasia Brif, Iryna Polishchuk, Andrew N. Fitch, Jochen Feldmann, Boaz Pokroy. Excessive Increase in the Optical Band Gap of Near‐Infrared Semiconductor Lead (II) Sulfide via the Incorporation of Amino Acids. Advanced Optical Materials 2022, 10 (14) https://doi.org/10.1002/adom.202200203
    19. Arad Lang, Sylwia Mijowska, Iryna Polishchuk, Simona Fermani, Giuseppe Falini, Alexander Katsman, Frédéric Marin, Boaz Pokroy. Acidic Monosaccharides become Incorporated into Calcite Single Crystals**. Chemistry – A European Journal 2020, 26 (70) , 16860-16868. https://doi.org/10.1002/chem.202003344
    20. Arad Lang, Iryna Polishchuk, Eva Seknazi, Jochen Feldmann, Alexander Katsman, Boaz Pokroy. Bioinspired Molecular Bridging in a Hybrid Perovskite Leads to Enhanced Stability and Tunable Properties. Advanced Functional Materials 2020, 30 (42) https://doi.org/10.1002/adfm.202005136
    21. Eva Seknazi, Davide Levy, Iryna Polishchuk, Alex Katsman, Boaz Pokroy. Experimental and Theoretical Insights into the Bioinspired Formation of Disordered Ba‐Calcite. Advanced Functional Materials 2020, 30 (18) https://doi.org/10.1002/adfm.201805028
    22. Iryna Polishchuk, Nuphar Bianco‐Stein, Arad Lang, Mariam Kurashvili, Maytal Caspary Toroker, Alexander Katsman, Jochen Feldmann, Boaz Pokroy. Strong Band Gap Blueshift in Copper (I) Oxide Semiconductor via Bioinspired Route. Advanced Functional Materials 2020, 30 (13) https://doi.org/10.1002/adfm.201910405
    23. Yi-Yeoun Kim, Robert Darkins, Alexander Broad, Alexander N. Kulak, Mark A. Holden, Ouassef Nahi, Steven P. Armes, Chiu C. Tang, Rebecca F. Thompson, Frederic Marin, Dorothy M. Duffy, Fiona C. Meldrum. Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13422-9
    24. Mirosława Różycka, Ismael Coronado, Katarzyna Brach, Joanna Olesiak‐Bańska, Marek Samoć, Mirosław Zarębski, Jerzy Dobrucki, Maciej Ptak, Eva Weber, Iryna Polishchuk, Boaz Pokroy, Jarosław Stolarski, Andrzej Ożyhar. Lattice Shrinkage by Incorporation of Recombinant Starmaker‐Like Protein within Bioinspired Calcium Carbonate Crystals. Chemistry – A European Journal 2019, 25 (55) , 12740-12750. https://doi.org/10.1002/chem.201902157
    25. Ingrid M. Weiss. Mineral-Chitin Composites in Molluscs. 2019, 57-93. https://doi.org/10.1007/978-3-030-12919-4_2
    26. Rongqing Zhang, Liping Xie, Zhenguang Yan. Study of Shell Structure. 2019, 695-737. https://doi.org/10.1007/978-981-13-1459-9_8
    27. Verónica Fernández‐Luna, Pedro B. Coto, Rubén D. Costa. Wenn fluoreszierende Proteine und Weißlicht emittierende Dioden aufeinandertreffen. Angewandte Chemie 2018, 130 (29) , 8962-8973. https://doi.org/10.1002/ange.201711433
    28. Verónica Fernández‐Luna, Pedro B. Coto, Rubén D. Costa. When Fluorescent Proteins Meet White Light‐Emitting Diodes. Angewandte Chemie International Edition 2018, 57 (29) , 8826-8836. https://doi.org/10.1002/anie.201711433
    29. Marieh B. Al‐Handawi, Patrick Commins, Sourabh Shukla, Pascal Didier, Masahiko Tanaka, Gijo Raj, Frank A. Veliz, Renu Pasricha, Nicole F. Steinmetz, Panče Naumov. Encapsulation of Plant Viral Particles in Calcite Crystals. Advanced Biosystems 2018, 2 (5) https://doi.org/10.1002/adbi.201700176
    30. Elena Baldi, Grazia Marino, Moreno Toselli, Claudio Marzadori, Claudio Ciavatta, Marta Tavoni, Matteo Di Giosia, Matteo Calvaresi, Giuseppe Falini, Francesco Zerbetto. Delivery systems for agriculture: Fe-EDDHSA/CaCO 3 hybrid crystals as adjuvants for prevention of iron chlorosis. Chemical Communications 2018, 54 (13) , 1635-1638. https://doi.org/10.1039/C7CC08215K
    31. Yuta Nagai, Yuya Oaki, Hiroaki Imai. Artificial mineral films similar to biogenic calcareous shells: oriented calcite nanorods on a self-standing polymer sheet. CrystEngComm 2018, 20 (12) , 1656-1661. https://doi.org/10.1039/C7CE02143G
    32. Giulia Magnabosco, Iryna Polishchuk, Jonathan Erez, Simona Fermani, Boaz Pokroy, Giuseppe Falini. Insights on the interaction of calcein with calcium carbonate and its implications in biomineralization studies. CrystEngComm 2018, 20 (30) , 4221-4224. https://doi.org/10.1039/C8CE00853A
    33. Jared Risan, Gaurav Jain, Martin Pendola, John Spencer Evans. Intracrystalline incorporation of nacre protein hydrogels modifies the mechanical properties of calcite crystals: a microcompression study. Journal of Materials Chemistry B 2018, 6 (25) , 4191-4196. https://doi.org/10.1039/C8TB01156G
    34. Sol Rodriguez, Luz E Brañez, Fernando G Torres, Marta Fernández-García, Daniel López. Revisiting the role of calcite in Spondylus crassisquama shell. Bioinspired, Biomimetic and Nanobiomaterials 2017, 6 (3) , 151-160. https://doi.org/10.1680/jbibn.16.00032
    35. David C. Green, Johannes Ihli, Paul D. Thornton, Mark A. Holden, Bartosz Marzec, Yi-Yeoun Kim, Alex N. Kulak, Mark A. Levenstein, Chiu Tang, Christophe Lynch, Stephen E. D. Webb, Christopher J. Tynan, Fiona C. Meldrum. 3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms13524
    36. Chuang Liu, Liping Xie, Rongqing Zhang. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals. Scientific Reports 2016, 5 (1) https://doi.org/10.1038/srep18338
    37. Magdalena Eder, Marcus Koch, Christina Muth, Angela Rutz, Ingrid M. Weiss. In vivo modified organic matrix for testing biomineralization-related protein functions in differentiated Dictyostelium on calcite. Journal of Structural Biology 2016, 196 (2) , 85-97. https://doi.org/10.1016/j.jsb.2016.03.015
    38. Matteo Di Giosia, Iryna Polishchuk, Eva Weber, Simona Fermani, Luca Pasquini, Nicola M. Pugno, Francesco Zerbetto, Marco Montalti, Matteo Calvaresi, Giuseppe Falini, Boaz Pokroy. Bioinspired Nanocomposites: Ordered 2D Materials Within a 3D Lattice. Advanced Functional Materials 2016, 26 (30) , 5569-5575. https://doi.org/10.1002/adfm.201601318
    39. Brian L. Phillips, Zelong Zhang, Laura Kubista, Silvia Frisia, Andrea Borsato. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite. Geochimica et Cosmochimica Acta 2016, 183 , 46-62. https://doi.org/10.1016/j.gca.2016.03.022
    40. Yi‐Yeoun Kim, Mona Semsarilar, Joseph D. Carloni, Kang Rae Cho, Alexander N. Kulak, Iryna Polishchuk, Coit T. Hendley, Paul J. M. Smeets, Lee A. Fielding, Boaz Pokroy, Chiu C. Tang, Lara A. Estroff, Shefford P. Baker, Steven P. Armes, Fiona C. Meldrum. Structure and Properties of Nanocomposites Formed by the Occlusion of Block Copolymer Worms and Vesicles Within Calcite Crystals. Advanced Functional Materials 2016, 26 (9) , 1382-1392. https://doi.org/10.1002/adfm.201504292
    41. Joseph A. Frezzo, Jin Kim Montclare. Natural Composite Systems for Bioinspired Materials. 2016, 143-166. https://doi.org/10.1007/978-3-319-39196-0_7
    42. Eva Weber, Ingrid M. Weiss, Helmut Cölfen, Matthias Kellermeier. Recombinant perlucin derivatives influence the nucleation of calcium carbonate. CrystEngComm 2016, 18 (43) , 8439-8444. https://doi.org/10.1039/C6CE01878E
    43. B. Kahr, A. G. Shtukenberg. Dyeing crystals since 2000. CrystEngComm 2016, 18 (47) , 8988-8998. https://doi.org/10.1039/C6CE02185A
    44. Giulia Magnabosco, Matteo Di Giosia, Iryna Polishchuk, Eva Weber, Simona Fermani, Andrea Bottoni, Francesco Zerbetto, Pier Giuseppe Pelicci, Boaz Pokroy, Stefania Rapino, Giuseppe Falini, Matteo Calvaresi. Calcite Single Crystals as Hosts for Atomic‐Scale Entrapment and Slow Release of Drugs. Advanced Healthcare Materials 2015, 4 (10) , 1510-1516. https://doi.org/10.1002/adhm.201500170
    45. Eva Weber, Boaz Pokroy. Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth. CrystEngComm 2015, 17 (31) , 5873-5883. https://doi.org/10.1039/C5CE00389J
    46. Anna Pohl, Ingrid M Weiss. Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor. Beilstein Journal of Nanotechnology 2014, 5 , 1823-1835. https://doi.org/10.3762/bjnano.5.193

    Chemistry of Materials

    Cite this: Chem. Mater. 2014, 26, 17, 4925–4932
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm500450s
    Published July 2, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1054

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.