ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Temperature-Induced Energy Transfer in Dye-Conjugated Upconverting Nanoparticles: A New Candidate for Nanothermometry

View Author Information
Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
Cite this: Chem. Mater. 2015, 27, 1, 235–244
Publication Date (Web):December 5, 2014
https://doi.org/10.1021/cm503799f
Copyright © 2014 American Chemical Society

    Article Views

    2506

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Lanthanide-doped upconverting nanoparticles (UCNPs) are highly promising candidates for bioimaging and for cellular nanothermometry as a novel diagnostic tool. Aiming for the diagnosis of diseases at very early stages in order to optimize therapy and recovery of the patient, it must be taken into account that thermal singularities are often one of the first indicators of a disease. It is therefore our goal to develop a nanothermometer based on UCNPs that is suitable to detect the temperature at a subcellular level in the physiological range. Thus, upconverting NaGdF4:Er3+,Yb3+ nanoparticles that convert near-infrared (NIR) into visible (VIS) light are synthesized by thermal decomposition. Appropriate surface modification with a thermoresponsive polymer pNIPAM (poly(N-isopropylacrylamide)) guarantees dispersibility in aqueous media required for biomedical applications. In a further step, the combination of the obtained UCNPs with an organic dye (FluoProbe532A) provides potential donor-acceptor-pairs allowing for energy transfer processes, whereas the light emitted by the Er3+ ions (donors) is absorbed by the organic dye (acceptor). It has been demonstrated that the dye-conjugated UCNPs undergo a temperature-dependent energy transfer process inducing a temperature-dependent increase in the thermal sensitivity when compared to unlabeled UCNPs. This result indicates the great potential of the presented nanoprobes for applications in nanothermometry.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    FTIR spectra of as-prepared, ligand-free, pNIPAM-modified, and dye-conjugated UCNPs; reversibility of the system: LIRUCNPs-pNIPAM-dye as a function of the temperature after five repetitive heating cycles; Boltzmann’s plots and thermal sensitivities of ligand-free and pNIPAM-modified UCNPs; fitting parameters for the LIR of dye-conjugated UCNPs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 84 publications.

    1. Xingwen Cheng, Jie Zhou, Jingyi Yue, Yang Wei, Chao Gao, Xiaoji Xie, Ling Huang. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chemical Reviews 2022, 122 (21) , 15998-16050. https://doi.org/10.1021/acs.chemrev.1c00772
    2. Chenwei Xu, Chenxia Li, Degang Deng, Jianxun Lu, Hua Yu, Le Wang, Xufeng Jing, Shiqing Xu, Chunxu Shao. A Dual-Mode Optical Thermometer with High Sensitivity Based on BaAl12O19:Sm2+/SrAl12O19:Sm3+ Solid Solution Phosphors. Inorganic Chemistry 2022, 61 (20) , 7989-7999. https://doi.org/10.1021/acs.inorgchem.2c00686
    3. Yingjie Chai, Xiaobo Zhou, Xinyu Chen, Chenqing Wen, Jiaming Ke, Wei Feng, Fuyou Li. Influence on the Apparent Luminescent Lifetime of Rare-Earth Upconversion Nanoparticles by Quenching the Sensitizer’s Excited State for Hypochlorous Acid Detection and Bioimaging. ACS Applied Materials & Interfaces 2022, 14 (12) , 14004-14011. https://doi.org/10.1021/acsami.1c21838
    4. Ana Espinosa, German R. Castro, Javier Reguera, Carlo Castellano, Javier Castillo, Julio Camarero, Claire Wilhelm, Miguel Angel García, Álvaro Muñoz-Noval. Photoactivated Nanoscale Temperature Gradient Detection Using X-ray Absorption Spectroscopy as a Direct Nanothermometry Method. Nano Letters 2021, 21 (1) , 769-777. https://doi.org/10.1021/acs.nanolett.0c04477
    5. Jiabin Liu, Hui Zhang, Gurpreet Singh Selopal, Shuhui Sun, Haiguang Zhao, Federico Rosei. Visible and Near-Infrared, Multiparametric, Ultrasensitive Nanothermometer Based on Dual-Emission Colloidal Quantum Dots. ACS Photonics 2019, 6 (10) , 2479-2486. https://doi.org/10.1021/acsphotonics.9b00763
    6. Riccardo Marin, Ilias Halimi, Dylan Errulat, Yacine Mazouzi, Giacomo Lucchini, Adolfo Speghini, Muralee Murugesu, Eva Hemmer. Harnessing the Synergy between Upconverting Nanoparticles and Lanthanide Complexes in a Multiwavelength-Responsive Hybrid System. ACS Photonics 2019, 6 (2) , 436-445. https://doi.org/10.1021/acsphotonics.8b01381
    7. Leipeng Li, Feng Qin, Yuan Zhou, Yangdong Zheng, Hua Zhao, Zhiguo Zhang. Boosting the Temperature Detection Accuracy of Luminescent Ratiometric Thermometry via a Multifunction Fit Strategy. The Journal of Physical Chemistry C 2018, 122 (42) , 24246-24252. https://doi.org/10.1021/acs.jpcc.8b06778
    8. Ali Rafiei Miandashti, Martin E. Kordesch, Hugh H. Richardson. Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of NaYF4:Yb3+:Er3+ Upconverting Nanoparticles. ACS Photonics 2017, 4 (7) , 1864-1869. https://doi.org/10.1021/acsphotonics.7b00512
    9. Karina Nigoghossian, Younès Messaddeq, Denis Boudreau, and Sidney J. L. Ribeiro . UV and Temperature-Sensing Based on NaGdF4:Yb3+:Er3+@SiO2–Eu(tta)3. ACS Omega 2017, 2 (5) , 2065-2071. https://doi.org/10.1021/acsomega.7b00056
    10. Verena Muhr, Christian Würth, Marco Kraft, Markus Buchner, Antje J. Baeumner, Ute Resch-Genger, and Thomas Hirsch . Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Analytical Chemistry 2017, 89 (9) , 4868-4874. https://doi.org/10.1021/acs.analchem.6b04662
    11. Zacharoula Iatridi, Kosmas Vamvakidis, Ioannis Tsougos, Katerina Vassiou, Catherine Dendrinou-Samara, and Georgios Bokias . Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications. ACS Applied Materials & Interfaces 2016, 8 (51) , 35059-35070. https://doi.org/10.1021/acsami.6b13161
    12. Michele Back, Enrico Trave, Jumpei Ueda, and Setsuhisa Tanabe . Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host. Chemistry of Materials 2016, 28 (22) , 8347-8356. https://doi.org/10.1021/acs.chemmater.6b03625
    13. Yue Huang, Eva Hemmer, Federico Rosei, and Fiorenzo Vetrone . Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs. The Journal of Physical Chemistry B 2016, 120 (22) , 4992-5001. https://doi.org/10.1021/acs.jpcb.6b02013
    14. Christian Homann, Emille M. Rodrigues, Patrick Orsini, Keven Savard, Christophe-Badié Togola, Marie-Maude de Denus-Baillargeon, Maroun Massabki, Eva Hemmer. Gum Arabic-stabilized upconverting nanoparticles for printing applications. Optical Materials: X 2024, 21 , 100290. https://doi.org/10.1016/j.omx.2024.100290
    15. Ronak Lazarus, Rupal Kothari, Sravani Kaja, Venkata Vamsi Krishna Venuganti, Amit Nag. Designing a nanothermometer using gel-to-liquid phase transition property of hybrid niosome. The Analyst 2023, 148 (14) , 3169-3173. https://doi.org/10.1039/D3AN00557G
    16. Xihui Shan, Michele Back, Dongxun Chen, Shihai Miao, Ruiqi Shi, Yanjie Liang. A reliable and stable ratiometric luminescence thermometer based on dual near-infrared emission in a Cr 3+ -doped LaSr 2 Ga 11 O 20 phosphor. Journal of Materials Chemistry C 2023, 11 (26) , 8952-8960. https://doi.org/10.1039/D3TC01232H
    17. Yue Sun, Manlin Fu, Mianli Bian, Qing Zhu. Recent progress on small molecular temperature‐sensitive fluorescent probes. Biotechnology and Bioengineering 2023, 120 (1) , 7-21. https://doi.org/10.1002/bit.28250
    18. Shifaa M. Siribbal, Shaista Ilyas, Alexander M. Renner, Sumiya Iqbal, Sergio Muñoz Vázquez, Abubakar Moawia, Martin Valldor, Muhammad S. Hussain, Klaus Schomäcker, Sanjay Mathur. Click functionalized biocompatible gadolinium oxide core-shell nanocarriers for imaging of breast cancer cells. RSC Advances 2022, 12 (49) , 31830-31845. https://doi.org/10.1039/D2RA00347C
    19. Akhilesh K. Singh. Smart Upconverting Nanoparticles and New Types of Upconverting Nanoparticles. 2022, 221-239. https://doi.org/10.1002/9783527834884.ch8
    20. Fernando E. Maturi, Carlos D. S. Brites, Robson R. Silva, Karina Nigoghossian, Deivy Wilson, Rute A. S. Ferreira, Sidney J. L. Ribeiro, Luís D. Carlos. Sustainable Smart Tags with Two‐Step Verification for Anticounterfeiting Triggered by the Photothermal Response of Upconverting Nanoparticles. Advanced Photonics Research 2022, 3 (6) https://doi.org/10.1002/adpr.202100227
    21. Ilya E Kolesnikov, Elena V Afanaseva, Mikhail A Kurochkin, Elena I Vaishlia, Evgenii Yu Kolesnikov, Erkki Lähderanta. Dual-center co-doped and mixed ratiometric LuVO 4 :Nd 3+ /Yb 3+ nanothermometers. Nanotechnology 2022, 33 (16) , 165504. https://doi.org/10.1088/1361-6528/ac49c3
    22. Yunfei Zhuang, Dawei Wang, Zhiping Yang. Upconversion luminescence and optical thermometry based on non-thermally-coupled levels of Ca9Y(PO4)7: Tm3+, Yb3+ phosphor. Optical Materials 2022, 126 , 112167. https://doi.org/10.1016/j.optmat.2022.112167
    23. Jie Fu, Liuyan Zhou, Yanling Chen, Jianhua Lin, Renguang Ye, Degang Deng, Liang Chen, Shiqing Xu. Dual-mode optical thermometry based on Bi3+/Sm3+ co-activated BaGd2O4 phosphor with tunable sensitivity. Journal of Alloys and Compounds 2022, 897 , 163034. https://doi.org/10.1016/j.jallcom.2021.163034
    24. Chunning Sun, Michael Gradzielski. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Advances in Colloid and Interface Science 2022, 300 , 102579. https://doi.org/10.1016/j.cis.2021.102579
    25. Callum M. S. Jones, Anna Gakamsky, Jose Marques-Hueso. The upconversion quantum yield (UCQY): a review to standardize the measurement methodology, improve comparability, and define efficiency standards. Science and Technology of Advanced Materials 2021, 22 (1) , 810-848. https://doi.org/10.1080/14686996.2021.1967698
    26. Kyohei Okubo, Ryuta Takeda, Shuhei Murayama, Masakazu Umezawa, Masao Kamimura, Kensuke Osada, Ichio Aoki, Kohei Soga. Size-controlled bimodal in vivo nanoprobes as near-infrared phosphors and positive contrast agents for magnetic resonance imaging. Science and Technology of Advanced Materials 2021, 22 (1) , 160-172. https://doi.org/10.1080/14686996.2021.1887712
    27. Callum M. S. Jones, Daniel Biner, Stavros Misopoulos, Karl W. Krämer, Jose Marques-Hueso. Optimized photoluminescence quantum yield in upconversion composites considering the scattering, inner-filter effects, thickness, self-absorption, and temperature. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-93400-8
    28. Natalia Jurga, Dominika Przybylska, Piotr Kamiński, Tomasz Grzyb. Improvement of ligand-free modification strategy to obtain water-stable up-converting nanoparticles with bright emission and high reaction yield. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-98240-0
    29. Jie Fu, Fuwen Liu, Liuyan Zhou, Renguang Ye, Degang Deng, Shiqing Xu. Dual-mode optical thermometry based on Bi3+/Eu3+ co-activated BaGd2O4 phosphor with high sensitivity and signal discriminability. Ceramics International 2021, 47 (21) , 30221-30233. https://doi.org/10.1016/j.ceramint.2021.07.202
    30. Anees A. Ansari, Abdul K. Parchur, M.K. Nazeeruddin, Mohammad M. Tavakoli. Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination Chemistry Reviews 2021, 444 , 214040. https://doi.org/10.1016/j.ccr.2021.214040
    31. Chenwei Xu, Chenxia Li, Degang Deng, Hua Yu, Le Wang, Changyu Shen, Xufeng Jing, Shiqing Xu. Double perovskite structure CaLaMgTaO6: Bi3+, Eu3+ co-doped phosphors for optical temperature measurement. Journal of Luminescence 2021, 236 , 118096. https://doi.org/10.1016/j.jlumin.2021.118096
    32. Balmiki Kumar, Karan Malhotra, Richard Fuku, Justin Van Houten, Grace Yue Qu, Paul A.E. Piunno, Ulrich J. Krull. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. TrAC Trends in Analytical Chemistry 2021, 139 , 116256. https://doi.org/10.1016/j.trac.2021.116256
    33. Venkata N. K. B. Adusumalli, Heramba V. S. R. M. Koppisetti, Nikita Madhukar, Ayan Mondal, Venkataramanan Mahalingam. Gallic acid capped Tb 3+ -doped CaF 2 nanocrystals: an efficient optical probe for the detection of carbonate and bicarbonate ions. Journal of Materials Chemistry C 2021, 9 (12) , 4267-4274. https://doi.org/10.1039/D0TC06050J
    34. . Polymer–Inorganic Colloidal Nanocomposites. 2021, 123-160. https://doi.org/10.1039/9781788016568-00123
    35. Farah Noun, Evelyne Anastasia Jury, Rafik Naccache. Elucidating the Quenching Mechanism in Carbon Dot-Metal Interactions–Designing Sensitive and Selective Optical Probes. Sensors 2021, 21 (4) , 1391. https://doi.org/10.3390/s21041391
    36. Yuwaraj K. Kshetri, Chhabilal Regmi, Bina Chaudhary, Hak-Soo Kim, Tae-Ho Kim, Federico Rosei, Soo Wohn Lee. BiVO4 ceramics for high-sensitivity and high-temperature optical thermometry. Journal of Luminescence 2021, 230 , 117739. https://doi.org/10.1016/j.jlumin.2020.117739
    37. Markus Suta, Andries Meijerink. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Advanced Theory and Simulations 2020, 3 (12) https://doi.org/10.1002/adts.202000176
    38. Nan Liu, Nicholas Gobeil, Parrish Evers, Isabel Gessner, Emille M. Rodrigues, Eva Hemmer. Water dispersible ligand-free rare earth fluoride nanoparticles: water transfer versus NaREF 4 -to-REF 3 phase transformation. Dalton Transactions 2020, 49 (45) , 16204-16216. https://doi.org/10.1039/D0DT01080D
    39. Chunning Sun, Jan Ron Justin Simke, Michael Gradzielski. An efficient synthetic strategy for ligand-free upconversion nanoparticles. Materials Advances 2020, 1 (6) , 1602-1607. https://doi.org/10.1039/D0MA00411A
    40. Rui Li, Fa-Feng Xu, Zhong-Liang Gong, Yu-Wu Zhong. Thermo-responsive light-emitting metal complexes and related materials. Inorganic Chemistry Frontiers 2020, 7 (18) , 3258-3281. https://doi.org/10.1039/D0QI00779J
    41. Haiguang Zhao, Alberto Vomiero, Federico Rosei. Tailoring the Heterostructure of Colloidal Quantum Dots for Ratiometric Optical Nanothermometry. Small 2020, 16 (28) https://doi.org/10.1002/smll.202000804
    42. Jorge H. S. K. Monteiro. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020, 25 (9) , 2089. https://doi.org/10.3390/molecules25092089
    43. Y. Cheroura, Z. Smara, A. Potdevin, D. Boyer, A. Chafa, O. Ziane, R. Mahiou. Judd-Ofelt and quantum cutting analysis of Eu3+ or Pr3+ doped β-NaGdF4 nanorods obtained by rapid coprecipitation method. Materials Research Bulletin 2020, 125 , 110809. https://doi.org/10.1016/j.materresbull.2020.110809
    44. Mimi Li, Youkui Xu, Guoqiang Peng, Jintao Liu, Shusheng Li, Lili Han, Zhipeng Ci. Dual-mode temperature sensitive fluorescence phenomenon based on reconstruction of multi-level system in BaCaLu2F10 micro-nanocrystals. Journal of Alloys and Compounds 2020, 820 , 153190. https://doi.org/10.1016/j.jallcom.2019.153190
    45. Guofeng Liu, Fan Jiang, Yeqing Chen, Chang Yu, Binbin Ding, Shuai Shao, Mochen Jia, Ping'an Ma, Zuoling Fu, Jun Lin. Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2020, 24 , 102135. https://doi.org/10.1016/j.nano.2019.102135
    46. Jingyue Xu, Laura Francés-Soriano, Jiajia Guo, Tooba Hallaj, Xue Qiu, Niko Hildebrandt. Energy transfer with nanoparticles for in vitro diagnostics. 2020, 25-65. https://doi.org/10.1016/B978-0-08-102828-5.00003-6
    47. Leipeng Li, Feng Qin, Yangdong Zheng, Zhiguo Zhang. Comparative study on the up- and down-conversion optical ratiometric thermometry in one phosphor. Materials Research Express 2019, 6 (10) , 106203. https://doi.org/10.1088/2053-1591/ab3ecd
    48. S K Maurya, R Kushawaha, S P Tiwari, A Kumar, K Kumar, Joaquim C G Esteves da Silva. Thermal decomposition mediated Er 3+ /Yb 3+ codoped NaGdF 4 upconversion phosphor for optical thermometry. Materials Research Express 2019, 6 (8) , 086211. https://doi.org/10.1088/2053-1591/ab20b4
    49. Guofeng Liu, Yeqing Chen, Mochen Jia, Zhen Sun, Binbin Ding, Shuai Shao, Fan Jiang, Zuoling Fu, Ping'an Ma, Jun Lin. One-pot synthesis of SiO 2 -coated Gd 2 (WO 4 ) 3 :Yb 3+ /Ho 3+ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. Dalton Transactions 2019, 48 (28) , 10537-10546. https://doi.org/10.1039/C9DT01841G
    50. Sandy F Himmelstoß, Thomas Hirsch. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence 2019, 7 (2) , 022002. https://doi.org/10.1088/2050-6120/ab0bfa
    51. Naveen Verma, Bernabe Marí, Krishan Chander Singh, Jitender Jindal, Suprabha Yadav, Anuj Mittal. Enhanced luminescence by tunable coupling of Eu3+ and Tb3+ in ZnAl2O4:Eu3+:Tb3+ phosphor synthesized by solution combustion method. Journal of the Australian Ceramic Society 2019, 55 (1) , 179-185. https://doi.org/10.1007/s41779-018-0223-2
    52. Zhiying Wang, Huan Jiao, Zuoling Fu. Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor. Journal of Luminescence 2019, 206 , 273-277. https://doi.org/10.1016/j.jlumin.2018.10.034
    53. Shuifu Liu, Jun Cui, Junjie Jia, Junxiang Fu, Weixiong You, Qingyun Zeng, Youming Yang, Xinyu Ye. High sensitive Ln3+/Tm3+/Yb3+ (Ln3+ = Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceramics International 2019, 45 (1) , 1-10. https://doi.org/10.1016/j.ceramint.2018.09.162
    54. Avi Mathur, Pramod Halappa, Chikkadasappa Shivakumara. Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications. Journal of Materials Science: Materials in Electronics 2018, 29 (23) , 19951-19964. https://doi.org/10.1007/s10854-018-0125-7
    55. Jumpei Ueda, Michele Back, Mikhail G. Brik, Yixi Zhuang, Marek Grinberg, Setsuhisa Tanabe. Ratiometric optical thermometry using deep red luminescence from 4T2 and 2E states of Cr3+ in ZnGa2O4 host. Optical Materials 2018, 85 , 510-516. https://doi.org/10.1016/j.optmat.2018.09.013
    56. Masao KAMIMURA. Polymer Conjugated Near-Infrared Fluorescent Probes for in vivo Imaging. KOBUNSHI RONBUNSHU 2018, 75 (5) , 468-474. https://doi.org/10.1295/koron.2018-0017
    57. Leipeng Li, Feng Qin, Yuan Zhou, Yangdong Zheng, Hua Zhao, Zhiguo Zhang. Approximate energy gaps, dissimilar relative thermal sensitivities. Sensors and Actuators B: Chemical 2018, 269 , 203-209. https://doi.org/10.1016/j.snb.2018.04.158
    58. Jorge H.S.K. Monteiro, Fernando A. Sigoli, Ana de Bettencourt-Dias. A water-soluble Tb III complex as a temperature-sensitive luminescent probe. Canadian Journal of Chemistry 2018, 96 (9) , 859-864. https://doi.org/10.1139/cjc-2017-0436
    59. Teresa Alejo, Vanesa Andreu, Gracia Mendoza, Victor Sebastian, Manuel Arruebo. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating. Journal of Colloid and Interface Science 2018, 523 , 234-244. https://doi.org/10.1016/j.jcis.2018.03.107
    60. Lining Sun, Ruoyan Wei, Jing Feng, Hongjie Zhang. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coordination Chemistry Reviews 2018, 364 , 10-32. https://doi.org/10.1016/j.ccr.2018.03.007
    61. Ol A. Savchuk, J.J. Carvajal, P. Haro-Gonzalez, M. Aguiló, F. Díaz. Luminescent nanothermometry using short-wavelength infrared light. Journal of Alloys and Compounds 2018, 746 , 710-719. https://doi.org/10.1016/j.jallcom.2018.03.002
    62. Teresa Alejo, Martín Prieto, Hugo García-Juan, Vanesa Andreu, Gracia Mendoza, Víctor Sebastián, Manuel Arruebo. A facile method for the controlled polymerization of biocompatible and thermoresponsive oligo(ethylene glycol) methyl ether methacrylate copolymers. Polymer Journal 2018, 50 (2) , 203-211. https://doi.org/10.1038/s41428-017-0004-8
    63. Kristina Shrestha, Arwa A Alaulamie, Ali Rafiei Miandashti, Hugh H Richardson. Time-resolved universal temperature measurements using NaYF 4 :Er 3+ ,Yb 3+ upconverting nanoparticles in an electrospray jet. Beilstein Journal of Nanotechnology 2018, 9 , 2916-2924. https://doi.org/10.3762/bjnano.9.270
    64. Guofeng Liu, Zhen Sun, Zuoling Fu, Li Ma, Xiaojun Wang. Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence. Talanta 2017, 169 , 181-188. https://doi.org/10.1016/j.talanta.2017.03.054
    65. Yan Gao, Feng Huang, Hang Lin, Ju Xu, Yuansheng Wang. Intervalence charge transfer state interfered Pr3+ luminescence: A novel strategy for high sensitive optical thermometry. Sensors and Actuators B: Chemical 2017, 243 , 137-143. https://doi.org/10.1016/j.snb.2016.11.143
    66. Shuwen Zhao, Donglin Xia, Ruimin Zhao, Hao Zhu, Yiru Zhu, Yuda Xiong, Youfa Wang. Tuning the morphology, luminescence and magnetic properties of hexagonal-phase NaGdF 4 : Yb, Er nanocrystals via altering the addition sequence of the precursors. Nanotechnology 2017, 28 (1) , 015601. https://doi.org/10.1088/0957-4484/28/1/015601
    67. Esmail Sharifzadeh, Mehdi Salami-Kalajahi, Mahdi Salami Hosseini, Mir Karim Razavi Aghjeh. Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid and Polymer Science 2017, 295 (1) , 25-36. https://doi.org/10.1007/s00396-016-3977-5
    68. Feiya Xu, Min Hu, Chengcheng Liu, Seok Ki Choi. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic–sonodynamic antibacterial resistance therapy. Biomaterials Science 2017, 5 (4) , 678-685. https://doi.org/10.1039/C7BM00030H
    69. K. Nigoghossian, S. Ouellet, J. Plain, Y. Messaddeq, D. Boudreau, S. J. L. Ribeiro. Upconversion nanoparticle-decorated gold nanoshells for near-infrared induced heating and thermometry. Journal of Materials Chemistry B 2017, 5 (34) , 7109-7117. https://doi.org/10.1039/C7TB01621B
    70. Eva Hemmer, Fiorenzo Vetrone. 11 Nanothermometry Using Upconverting Nanoparticles. 2016, 319-358. https://doi.org/10.1201/9781315371535-12
    71. Cailing Chen, Chunguang Li, Zhan Shi. Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication. Advanced Science 2016, 3 (10) https://doi.org/10.1002/advs.201600029
    72. Alberto Escudero, Carolina Carrillo-Carrión, Mikhail V. Zyuzin, Wolfgang J. Parak. Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications. Topics in Current Chemistry 2016, 374 (4) https://doi.org/10.1007/s41061-016-0049-8
    73. Dangli Gao, Dongping Tian, Xiangyu Zhang, Wei Gao. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep22433
    74. Sergii Kalytchuk, Olga Zhovtiuk, Stephen V. Kershaw, Radek Zbořil, Andrey L. Rogach. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry. Small 2016, 12 (4) , 466-476. https://doi.org/10.1002/smll.201501984
    75. Annemarie Nadort, Jiangbo Zhao, Ewa M. Goldys. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 2016, 8 (27) , 13099-13130. https://doi.org/10.1039/C5NR08477F
    76. Chengli Wang, Xiaomin Li, Fan Zhang. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. The Analyst 2016, 141 (12) , 3601-3620. https://doi.org/10.1039/C6AN00150E
    77. Adelmo S. Souza, Luiz A. O. Nunes, Ivan G. N. Silva, Fernando A. M. Oliveira, Leonis L. da Luz, Hermi F. Brito, Maria C. F. C. Felinto, Rute A. S. Ferreira, Severino A. Júnior, Luís D. Carlos, Oscar L. Malta. Highly-sensitive Eu 3+ ratiometric thermometers based on excited state absorption with predictable calibration. Nanoscale 2016, 8 (9) , 5327-5333. https://doi.org/10.1039/C6NR00158K
    78. Hongyu Lu, Haoyue Hao, Guang Shi, Yachen Gao, Ruixue Wang, Yinglin Song, Yuxiao Wang, Xueru Zhang. Optical temperature sensing in β-NaLuF 4 :Yb 3+ /Er 3+ /Tm 3+ based on thermal, quasi-thermal and non-thermal coupling levels. RSC Advances 2016, 6 (60) , 55307-55311. https://doi.org/10.1039/C6RA08311K
    79. Mafalda Rodrigues, Rafael Piñol, Guillermo Antorrena, Carlos D. S. Brites, Nuno J. O. Silva, José Luis Murillo, Rafael Cases, Isabel Díez, Fernando Palacio, Núria Torras, José Antonio Plaza, Lluïsa Pérez‐García, Luís D. Carlos, Angel Millán. Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanide‐Doped Self‐Assembled Polymer Monolayers. Advanced Functional Materials 2016, 26 (2) , 200-209. https://doi.org/10.1002/adfm.201503889
    80. Mithlesh Kumar, Santosh K. Gupta. An insight into optical spectroscopy of intense green emitting ZnAl2O4:Tb3+ nanoparticles: photo, thermally stimulated luminescence and EPR study. Journal of Luminescence 2015, 168 , 151-157. https://doi.org/10.1016/j.jlumin.2015.07.021
    81. Bing Chen, Tianying Sun, Xvsheng Qiao, Xianping Fan, Feng Wang. Directional Light Emission in a Single NaYF 4 Microcrystal via Photon Upconversion. Advanced Optical Materials 2015, 3 (11) , 1577-1581. https://doi.org/10.1002/adom.201500246
    82. Yanfeng Miao, Peng Wang, Huiyuan Guan, Yulong Chen. Synthesis and up-conversion luminescence of NaGdF4:Yb3+, Tm3+. Journal of Materials Science: Materials in Electronics 2015, 26 (8) , 5748-5752. https://doi.org/10.1007/s10854-015-3132-y
    83. Simon Dühnen, Thorben Rinkel, Markus Haase. Size Control of Nearly Monodisperse β-NaGdF 4 Particles Prepared from Small α-NaGdF 4 Nanocrystals. Chemistry of Materials 2015, 27 (11) , 4033-4039. https://doi.org/10.1021/acs.chemmater.5b01013
    84. Santosh K. Gupta, P. S. Ghosh, M. Sahu, K. Bhattacharyya, R. Tewari, V. Natarajan. Intense red emitting monoclinic LaPO 4 :Eu 3+ nanoparticles: host–dopant energy transfer dynamics and photoluminescence properties. RSC Advances 2015, 5 (72) , 58832-58842. https://doi.org/10.1039/C5RA09076H

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect