ACS Publications. Most Trusted. Most Cited. Most Read
The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures.
My Activity
    Article

    The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures.
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 1948, 43, 2, 219–256
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr60135a002
    Published October 1, 1948

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 2407 publications.

    1. Qi-Lu Yuan, Xiaolei Xu, Jack F. Douglas, Wen-Sheng Xu. Understanding Relaxation in the Kob-Andersen Liquid Based on Entropy, String, Shoving, Localization, and Parabolic Models. The Journal of Physical Chemistry B 2024, 128 (44) , 10999-11021. https://doi.org/10.1021/acs.jpcb.4c04806
    2. Tingyu Xu, Yunhan Zhang, Fan Peng, Renkuan Cao, Ziwei Liu, Hao Sun, Liangbin Li. Overaging in Glassy Polymers within a Wide Range of Temperature. Macromolecules 2024, Article ASAP.
    3. Sunandan Mahant, Jefferson R. Snider, Sarah S. Petters, Markus D. Petters. Effect of Aerosol Size on Glass Transition Temperature. The Journal of Physical Chemistry Letters 2024, 15 (29) , 7509-7515. https://doi.org/10.1021/acs.jpclett.4c01415
    4. Gil I. Olgenblum, Brent O. Hutcheson, Gary J. Pielak, Daniel Harries. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chemical Reviews 2024, 124 (9) , 5668-5694. https://doi.org/10.1021/acs.chemrev.3c00752
    5. Rodrigo M.A. Silva, Hadrián Montes-Campos, Ana I.M.C. Lobo Ferreira, Eduards Bakis, Luís M.N.B.F. Santos. Thermodynamic Study of Alkylsilane and Alkylsiloxane-Based Ionic Liquids. The Journal of Physical Chemistry B 2024, 128 (15) , 3742-3754. https://doi.org/10.1021/acs.jpcb.3c08333
    6. Vera Sirotinskaya, Maya Bar Dolev, Victor Yashunsky, Liat Bahari, Ido Braslavsky. Extended Temperature Range of the Ice-Binding Protein Activity. Langmuir 2024, 40 (14) , 7395-7404. https://doi.org/10.1021/acs.langmuir.3c03710
    7. Yang Zhou, Gustavo E. Lopez, Nicolas Giovambattista. The Harmonic and Gaussian Approximations in the Potential Energy Landscape Formalism for Quantum Liquids. Journal of Chemical Theory and Computation 2024, 20 (5) , 1847-1861. https://doi.org/10.1021/acs.jctc.3c01085
    8. Jeppe C. Dyre. Solid-that-Flows Picture of Glass-Forming Liquids. The Journal of Physical Chemistry Letters 2024, 15 (6) , 1603-1617. https://doi.org/10.1021/acs.jpclett.3c03308
    9. Rui Chang, Chengqian Yuan, Peng Zhou, Ruirui Xing, Xuehai Yan. Peptide Self-assembly: From Ordered to Disordered. Accounts of Chemical Research 2024, 57 (3) , 289-301. https://doi.org/10.1021/acs.accounts.3c00592
    10. Lin-Li Cao, Yun-Jiang Wang. Dynamics–Entropy Relationship in Metallic Glasses. The Journal of Physical Chemistry Letters 2024, 15 (3) , 811-816. https://doi.org/10.1021/acs.jpclett.3c03530
    11. Diana Nelli, El Yakout El Koraychy, Manuella Cerbelaud, Benoit Crespin, Arnaud Videcoq, Alberto Giacomello, Riccardo Ferrando. Two-Steps Versus One-Step Solidification Pathways of Binary Metallic Nanodroplets. ACS Nano 2023, 17 (1) , 587-596. https://doi.org/10.1021/acsnano.2c09741
    12. Luisa Roca-Paixão, Natália T. Correia, Florence Danède, Maria T. Viciosa, Alexander Lee Morritt, Yaroslav Z. Khimyak, Frédéric Affouard. Nature of the Structural and Dynamical Disorder in Organic Cocrystals with a True Nanometric Size Channel-Like Architecture. Crystal Growth & Design 2023, 23 (1) , 120-133. https://doi.org/10.1021/acs.cgd.2c00815
    13. Gaopeng Shi, Xiaoning Geng, Yuanbiao Liu, Guozhang Wu. Nanophase Separation-Induced Anomalous Enthalpy Hysteresis in Poly(n-alkyl methacrylate)s. Macromolecules 2022, 55 (16) , 7080-7091. https://doi.org/10.1021/acs.macromol.2c00983
    14. Jae Hyun Sim, Yejin Kwon, Sangwon Eom, Myoungsoon Hwang, Soyoung Park, Hyorin Choi, Hoeil Chung, Daewon Sohn, Youngjong Kang. 1D Hypo-Crystals of Stereo-Irregular PMMA via Spray-Induced Rapid Solidification of Aqueous Solutions. Macromolecules 2022, 55 (5) , 1700-1708. https://doi.org/10.1021/acs.macromol.1c02304
    15. Nattapol Ma, Satoshi Horike. Metal–Organic Network-Forming Glasses. Chemical Reviews 2022, 122 (3) , 4163-4203. https://doi.org/10.1021/acs.chemrev.1c00826
    16. Songling Liu, Huaping Zhang, Boyang Sun, Yonghao Sun, Haiyang Bai, Weihua Wang. Glassy or Amorphous? A Demonstration Using G-Phase Copper Containing a Fivefold Twinning Structure. The Journal of Physical Chemistry Letters 2022, 13 (3) , 754-762. https://doi.org/10.1021/acs.jpclett.1c03842
    17. Andrew Clark, Yajnaseni Biswas, Morgan E. Taylor, Ayşe Asatekin, Matthew J. Panzer, Christoph Schick, Peggy Cebe. Glass-Forming Ability of Polyzwitterions. Macromolecules 2021, 54 (21) , 10126-10134. https://doi.org/10.1021/acs.macromol.1c01393
    18. Ranko Richert, Jan P. Gabriel, Erik Thoms. Structural Relaxation and Recovery: A Dielectric Approach. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8465-8469. https://doi.org/10.1021/acs.jpclett.1c02539
    19. Mark D. Ediger, Martin Gruebele, Vassiliy Lubchenko, Peter G. Wolynes. Glass Dynamics Deep in the Energy Landscape. The Journal of Physical Chemistry B 2021, 125 (32) , 9052-9068. https://doi.org/10.1021/acs.jpcb.1c01739
    20. Guozhang Wu, Yuanbiao Liu, Gaopeng Shi. New Experimental Evidence for Thermodynamic Links to the Kinetic Fragility of Glass-Forming Polymers. Macromolecules 2021, 54 (12) , 5595-5606. https://doi.org/10.1021/acs.macromol.1c00670
    21. Wen-Sheng Xu, Jack F. Douglas, Zhao-Yan Sun. Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules 2021, 54 (7) , 3001-3033. https://doi.org/10.1021/acs.macromol.0c02740
    22. Joseph B. Schlenoff, Khalil Akkaoui. Dissecting Dynamics Near the Glass Transition Using Polyelectrolyte Complexes. Macromolecules 2021, 54 (7) , 3413-3422. https://doi.org/10.1021/acs.macromol.1c00427
    23. Indrajit Tah, Anoop Mutneja, Smarajit Karmakar. Understanding Slow and Heterogeneous Dynamics in Model Supercooled Glass-Forming Liquids. ACS Omega 2021, 6 (11) , 7229-7239. https://doi.org/10.1021/acsomega.0c04831
    24. Benworth B. Hansen, Stephanie Spittle, Brian Chen, Derrick Poe, Yong Zhang, Jeffrey M. Klein, Alexandre Horton, Laxmi Adhikari, Tamar Zelovich, Brian W. Doherty, Burcu Gurkan, Edward J. Maginn, Arthur Ragauskas, Mark Dadmun, Thomas A. Zawodzinski, Gary A. Baker, Mark E. Tuckerman, Robert F. Savinell, Joshua R. Sangoro. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews 2021, 121 (3) , 1232-1285. https://doi.org/10.1021/acs.chemrev.0c00385
    25. John J. Kozak, Harry B. Gray. Conjecture on the Design of Helical Proteins. The Journal of Physical Chemistry B 2020, 124 (49) , 11067-11071. https://doi.org/10.1021/acs.jpcb.0c05669
    26. Thomas O. Farmer, Anders J. Markvardsen, Thomas H. Rod, Heloisa N. Bordallo, Jan Swenson. Dynamical Accuracy of Water Models on Supercooling. The Journal of Physical Chemistry Letters 2020, 11 (18) , 7469-7475. https://doi.org/10.1021/acs.jpclett.0c02158
    27. James D. Martin, Berkley G. Hillis, Feier Hou. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. The Journal of Physical Chemistry C 2020, 124 (34) , 18724-18740. https://doi.org/10.1021/acs.jpcc.0c03003
    28. Shahab Ud Din, Helen Hughes, Niall J. O’Reilly, Helen Cathcart, Thomas O’Ceallaigh, Elias Ndzie, Peter McLoughlin. Investigation into the Stability, Crystallization Kinetics, and Heating Rate Dependent Crystallization of Amorphous Posaconazole. Crystal Growth & Design 2020, 20 (8) , 5129-5142. https://doi.org/10.1021/acs.cgd.0c00312
    29. Kushal Bagchi, Chuting Deng, Camille Bishop, Yuhui Li, Nicholas E. Jackson, Lian Yu, M. F. Toney, J. J. de Pablo, M. D. Ediger. Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor?. ACS Applied Materials & Interfaces 2020, 12 (23) , 26717-26726. https://doi.org/10.1021/acsami.0c06428
    30. Ann Newman, George Zografi. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Molecular Pharmaceutics 2020, 17 (6) , 1761-1777. https://doi.org/10.1021/acs.molpharmaceut.0c00181
    31. Stavros X. Drakopoulos, Giuseppe Forte, Sara Ronca. Relaxation Dynamics in Disentangled Ultrahigh Molecular Weight Polyethylene via Torsional Rheology. Industrial & Engineering Chemistry Research 2020, 59 (10) , 4515-4523. https://doi.org/10.1021/acs.iecr.9b06401
    32. Jui-Hsiang Hung, David S. Simmons. Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?. The Journal of Physical Chemistry B 2020, 124 (1) , 266-276. https://doi.org/10.1021/acs.jpcb.9b09468
    33. Boris Shekunov. Kinetics of Crystallization and Glass Transition in Amorphous Materials. Crystal Growth & Design 2020, 20 (1) , 95-106. https://doi.org/10.1021/acs.cgd.9b00651
    34. Emeline Dudognon, Jeanne-Annick Bama, Frédéric Affouard. Molecular Mobility of Terfenadine: Investigation by Dielectric Relaxation Spectroscopy and Molecular Dynamics Simulation. Molecular Pharmaceutics 2019, 16 (11) , 4711-4724. https://doi.org/10.1021/acs.molpharmaceut.9b00877
    35. Charley Hutchison, Ajaya Bhattarai, Ailun Wang, Udayan Mohanty. Fluctuation Effects in the Adam–Gibbs Model of Cooperative Relaxation. The Journal of Physical Chemistry B 2019, 123 (38) , 8086-8090. https://doi.org/10.1021/acs.jpcb.9b06037
    36. Lin Zhuang, Rui Wang, Gerrick E. Lindberg, Hongyi Hu, Xin-Zheng Li, Feng Wang. From a Liquid to a Crystal without Going through a First-Order Phase Transition: Determining the Free Energy of Melting with Glassy Intermediates. The Journal of Physical Chemistry B 2019, 123 (36) , 7740-7747. https://doi.org/10.1021/acs.jpcb.9b06840
    37. Terence J. Noonan, Kelly Chibale, Peter M. Cheuka, Malkeet Kumar, Susan A. Bourne, Mino R. Caira. Five Solid Forms of a Potent Imidazopyridazine Antimalarial Drug Lead: A Preformulation Study. Crystal Growth & Design 2019, 19 (8) , 4683-4697. https://doi.org/10.1021/acs.cgd.9b00575
    38. M. S. Beasley, C. Bishop, B. J. Kasting, M. D. Ediger. Vapor-Deposited Ethylbenzene Glasses Approach “Ideal Glass” Density. The Journal of Physical Chemistry Letters 2019, 10 (14) , 4069-4075. https://doi.org/10.1021/acs.jpclett.9b01508
    39. Chandan K. Mishra, Piotr Habdas, A. G. Yodh. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory. The Journal of Physical Chemistry B 2019, 123 (24) , 5181-5188. https://doi.org/10.1021/acs.jpcb.9b03419
    40. Jaclyn N. Curry, Scott K. Shaw. Thermotropic Phase Transitions in Butyltrimethylammonium Bis(trifluoromethylsulfonyl)imide Ionic Liquids are Dependent on Heat Flux. The Journal of Physical Chemistry B 2019, 123 (22) , 4757-4765. https://doi.org/10.1021/acs.jpcb.9b01650
    41. Jialong Shen, Erol Yildirim, Shanshan Li, Yavuz Caydamli, Melissa A. Pasquinelli, Alan E. Tonelli. Role of Local Polymer Conformations on the Diverging Glass Transition Temperatures and Dynamic Fragilities of Isotactic-, Syndiotactic-, and Atactic-Poly(methyl methacrylate)s. Macromolecules 2019, 52 (10) , 3897-3908. https://doi.org/10.1021/acs.macromol.9b00434
    42. G. P. Johari. Source of JG-Relaxation in the Entropy of Glass. The Journal of Physical Chemistry B 2019, 123 (13) , 3010-3023. https://doi.org/10.1021/acs.jpcb.9b00612
    43. Feier Hou, James D. Martin. Isotope Effects Reveal the Template Influence on the Crystal Growth of a Metal–Halide Network. The Journal of Physical Chemistry C 2019, 123 (12) , 7475-7485. https://doi.org/10.1021/acs.jpcc.9b01334
    44. Ana I. M. C. Lobo Ferreira, Ana S. M. C. Rodrigues, Miguel Villas, Emília Tojo, Luís Paulo N. Rebelo, Luís M. N. B. F. Santos. Crystallization and Glass-Forming Ability of Ionic Liquids: Novel Insights into Their Thermal Behavior. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 2989-2997. https://doi.org/10.1021/acssuschemeng.8b04343
    45. Aldona Minecka, Ewa Kaminska, Magdalena Tarnacka, Iwona Grudzka-Flak, Mariola Bartoszek, Kamila Wolnica, Mateusz Dulski, Kamil Kaminski, Marian Paluch. Impact of Intermolecular Interactions, Dimeric Structures on the Glass Forming Ability of Naproxen, and a Series of Its Derivatives. Molecular Pharmaceutics 2018, 15 (10) , 4764-4776. https://doi.org/10.1021/acs.molpharmaceut.8b00725
    46. N. A. Nabila Saari, Azwa Amanina Mislan, Rauzah Hashim, N. Idayu Zahid. Self-Assembly, Thermotropic, and Lyotropic Phase Behavior of Guerbet Branched-Chain Maltosides. Langmuir 2018, 34 (30) , 8962-8974. https://doi.org/10.1021/acs.langmuir.8b01899
    47. Vassiliy Lubchenko, Peter G. Wolynes. Aging, Jamming, and the Limits of Stability of Amorphous Solids. The Journal of Physical Chemistry B 2018, 122 (13) , 3280-3295. https://doi.org/10.1021/acs.jpcb.7b09553
    48. Grzegorz Szklarz, Karolina Adrjanowicz, Marian Paluch. Cooling-Rate versus Compression-Rate Dependence of the Crystallization in the Glass-Forming Liquid, Propylene Carbonate. Crystal Growth & Design 2018, 18 (4) , 2538-2544. https://doi.org/10.1021/acs.cgd.8b00123
    49. Eric Ofosu Kissi, Holger Grohganz, Korbinian Löbmann, Michael T. Ruggiero, J. Axel Zeitler, Thomas Rades. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. The Journal of Physical Chemistry B 2018, 122 (10) , 2803-2808. https://doi.org/10.1021/acs.jpcb.7b10105
    50. Grzegorz Szklarz, Karolina Adrjanowicz, Magdalena Tarnacka, Jurgen Pionteck, and Marian Paluch . Confinement-Induced Changes in the Glassy Dynamics and Crystallization Behavior of Supercooled Fenofibrate. The Journal of Physical Chemistry C 2018, 122 (2) , 1384-1395. https://doi.org/10.1021/acs.jpcc.7b10946
    51. Gregory B. McKenna and Sindee L. Simon . 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules 2017, 50 (17) , 6333-6361. https://doi.org/10.1021/acs.macromol.7b01014
    52. Sarat Mohapatra, Subarna Samanta, Khushboo Kothari, Pinal Mistry, and Raj Suryanarayanan . Effect of Polymer Molecular Weight on the Crystallization Behavior of Indomethacin Amorphous Solid Dispersions. Crystal Growth & Design 2017, 17 (6) , 3142-3150. https://doi.org/10.1021/acs.cgd.7b00096
    53. Wen-Sheng Xu, Jack F. Douglas, and Karl F. Freed . Influence of Cohesive Energy on Relaxation in a Model Glass-Forming Polymer Melt. Macromolecules 2016, 49 (21) , 8355-8370. https://doi.org/10.1021/acs.macromol.6b01504
    54. Karolina Adrjanowicz, Kajetan Koperwas, Magdalena Tarnacka, Katarzyna Grzybowska, Kristine Niss, Jürgen Pionteck, and Marian Paluch . Changing the Tendency of Glass-Forming Liquid To Crystallize by Moving Along Different Isolines in the T–p Phase Diagram. Crystal Growth & Design 2016, 16 (11) , 6263-6268. https://doi.org/10.1021/acs.cgd.6b00798
    55. Isaac C. Sanchez and Sean P. O’Keefe . Theoretical Rationale for a Thermodynamic Glass State. The Journal of Physical Chemistry B 2016, 120 (35) , 9443-9449. https://doi.org/10.1021/acs.jpcb.6b06653
    56. Subarna Samanta and Ranko Richert . Electrorheological Source of Nonlinear Dielectric Effects in Molecular Glass-Forming Liquids. The Journal of Physical Chemistry B 2016, 120 (31) , 7737-7744. https://doi.org/10.1021/acs.jpcb.6b04903
    57. Benjamin Schammé, Mélanie Mignot, Nicolas Couvrat, Vincent Tognetti, Laurent Joubert, Valérie Dupray, Laurent Delbreilh, Eric Dargent, and Gérard Coquerel . Molecular Relaxations in Supercooled Liquid and Glassy States of Amorphous Quinidine: Dielectric Spectroscopy and Density Functional Theory Approaches. The Journal of Physical Chemistry B 2016, 120 (30) , 7579-7592. https://doi.org/10.1021/acs.jpcb.6b04242
    58. J. J. Shephard and C. G. Salzmann . Molecular Reorientation Dynamics Govern the Glass Transitions of the Amorphous Ices. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2281-2285. https://doi.org/10.1021/acs.jpclett.6b00881
    59. Ronald P. White and Jane E. G. Lipson . Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 2016, 49 (11) , 3987-4007. https://doi.org/10.1021/acs.macromol.6b00215
    60. Jan H. Sluyters and Margaretha Sluyters-Rehbach . Arrest as a General Property of the Supercooled Liquid State. The Journal of Physical Chemistry B 2016, 120 (15) , 3735-3745. https://doi.org/10.1021/acs.jpcb.6b01766
    61. Weikai Qi and Richard K. Bowles . Vapor Condensed and Supercooled Glassy Nanoclusters. ACS Nano 2016, 10 (3) , 3416-3423. https://doi.org/10.1021/acsnano.5b07391
    62. Nicole Wyttenbach, Wiebke Kirchmeyer, Jochem Alsenz, and Martin Kuentz . Theoretical Considerations of the Prigogine–Defay Ratio with Regard to the Glass-Forming Ability of Drugs from Undercooled Melts. Molecular Pharmaceutics 2016, 13 (1) , 241-250. https://doi.org/10.1021/acs.molpharmaceut.5b00688
    63. Semen S. Sologubov, Alexey V. Markin, Natalia N. Smirnova, Natalia A. Novozhilova, Elena A. Tatarinova, and Aziz M. Muzafarov . Thermodynamic Properties of Carbosilane Dendrimers of the Sixth Generation with Ethylene Oxide Terminal Groups. The Journal of Physical Chemistry B 2015, 119 (45) , 14527-14535. https://doi.org/10.1021/acs.jpcb.5b06786
    64. G. P. Johari , J. Teixeira . Thermodynamic Analysis of the Two-Liquid Model for Anomalies of Water, HDL–LDL Fluctuations, and Liquid–Liquid Transition. The Journal of Physical Chemistry B 2015, 119 (44) , 14210-14220. https://doi.org/10.1021/acs.jpcb.5b06458
    65. J. Gerges and F. Affouard . Predictive Calculation of the Crystallization Tendency of Model Pharmaceuticals in the Supercooled State from Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2015, 119 (33) , 10768-10783. https://doi.org/10.1021/acs.jpcb.5b05557
    66. Rongliang Wu, Xinlong Qiu, Tianyi Zhang, Kangyu Fu, and Xiaozhen Yang . Atomistic Molecular Insight into the Time Dependence of Polymer Glass Transition. The Journal of Physical Chemistry B 2015, 119 (30) , 9959-9969. https://doi.org/10.1021/acs.jpcb.5b03066
    67. Yohann Corvis, Andreas Wurm, Christoph Schick, and Philippe Espeau . Vitreous State Characterization of Pharmaceutical Compounds Degrading upon Melting by Using Fast Scanning Calorimetry. The Journal of Physical Chemistry B 2015, 119 (22) , 6848-6851. https://doi.org/10.1021/acs.jpcb.5b03041
    68. Feier Hou, James D. Martin, Eric D. Dill, Jacob C. W. Folmer, and Amanda A. Josey . Transition Zone Theory of Crystal Growth and Viscosity. Chemistry of Materials 2015, 27 (9) , 3526-3532. https://doi.org/10.1021/acs.chemmater.5b00956
    69. Martin Jensen and Johnny Jakobsen . Configurational Entropy in Thermoset Polymers. The Journal of Physical Chemistry B 2015, 119 (17) , 5645-5649. https://doi.org/10.1021/jp510836y
    70. Ahmad Alzghoul, Amjad Alhalaweh, Denny Mahlin, and Christel A. S. Bergström . Experimental and Computational Prediction of Glass Transition Temperature of Drugs. Journal of Chemical Information and Modeling 2014, 54 (12) , 3396-3403. https://doi.org/10.1021/ci5004834
    71. Vassiliy Lubchenko , Pyotr Rabochiy . On the Mechanism of Activated Transport in Glassy Liquids. The Journal of Physical Chemistry B 2014, 118 (47) , 13744-13759. https://doi.org/10.1021/jp508635n
    72. Hao Sun, Gengxin Liu, Konstantinos Ntetsikas, Apostolos Avgeropoulos, and Shi-Qing Wang . Rheology of Entangled Polymers Not Far above Glass Transition Temperature: Transient Elasticity and Intersegmental Viscous Stress. Macromolecules 2014, 47 (16) , 5839-5850. https://doi.org/10.1021/ma500899s
    73. Apiwat Wisitsorasak and Peter G. Wolynes . Dynamical Heterogeneity of the Glassy State. The Journal of Physical Chemistry B 2014, 118 (28) , 7835-7847. https://doi.org/10.1021/jp4125777
    74. A. Kahouli, A. Sylvestre, F. Jomni, and B. Yangui . Evaluation of Activation Parameters of Molecular Mobility of Parylene C Using Differential Scanning Calorimetry, Dielectric Spectroscopy, and Thermally Stimulated Depolarization Currents. The Journal of Physical Chemistry A 2014, 118 (8) , 1320-1330. https://doi.org/10.1021/jp5009913
    75. A. C. Rodrigues, M. T. Viciosa, F. Danède, F. Affouard, and N. T. Correia . Molecular Mobility of Amorphous S-Flurbiprofen: A Dielectric Relaxation Spectroscopy Approach. Molecular Pharmaceutics 2014, 11 (1) , 112-130. https://doi.org/10.1021/mp4002188
    76. Pyotr Rabochiy, Peter G. Wolynes, and Vassiliy Lubchenko . Microscopically Based Calculations of the Free Energy Barrier and Dynamic Length Scale in Supercooled Liquids: The Comparative Role of Configurational Entropy and Elasticity. The Journal of Physical Chemistry B 2013, 117 (48) , 15204-15219. https://doi.org/10.1021/jp409502k
    77. Z. Wojnarowska, K. Grzybowska, L. Hawelek, M. Dulski, R. Wrzalik, I. Gruszka, and M. Paluch , K. Pienkowska and W. Sawicki , P. Bujak , K. J. Paluch and L. Tajber , J. Markowski . Molecular Dynamics, Physical Stability and Solubility Advantage from Amorphous Indapamide Drug. Molecular Pharmaceutics 2013, 10 (10) , 3612-3627. https://doi.org/10.1021/mp400116q
    78. Mark D. Eddleston, Bhavnita Patel, Graeme M. Day, and William Jones . Cocrystallization by Freeze-Drying: Preparation of Novel Multicomponent Crystal Forms. Crystal Growth & Design 2013, 13 (10) , 4599-4606. https://doi.org/10.1021/cg401179s
    79. Hideyuki Nakayama, Kio Omori, Katsunobu Ino-u-e, and Kikujiro Ishii . Molar Volumes of Ethylcyclohexane and Butyronitrile Glasses Resulting from Vapor Deposition: Dependence on Deposition Temperature and Comparison to Alkylbenzenes. The Journal of Physical Chemistry B 2013, 117 (35) , 10311-10319. https://doi.org/10.1021/jp404256r
    80. Benson K. Money, K. Hariharan, and Jan Swenson . Glass Transition and Relaxation Processes of Nanocomposite Polymer Electrolytes. The Journal of Physical Chemistry B 2012, 116 (26) , 7762-7770. https://doi.org/10.1021/jp3036499
    81. Wolfgang Doster . Comment on “Puzzle of the Protein Dynamical Transition”. The Journal of Physical Chemistry B 2012, 116 (20) , 6066-6067. https://doi.org/10.1021/jp212566c
    82. Benjamin D. Hamilton, Jeong-Myeong Ha, Marc A. Hillmyer, and Michael D. Ward . Manipulating Crystal Growth and Polymorphism by Confinement in Nanoscale Crystallization Chambers. Accounts of Chemical Research 2012, 45 (3) , 414-423. https://doi.org/10.1021/ar200147v
    83. Dietmar Schwahn, Vitaliy Pipich, and Dieter Richter . Composition and Long-Range Density Fluctuations in PEO/PMMA Polymer Blends: A Result of Asymmetric Component Mobility. Macromolecules 2012, 45 (4) , 2035-2049. https://doi.org/10.1021/ma2019123
    84. Virginie M. Boucher, Daniele Cangialosi, Angel Alegría, and Juan Colmenero . Enthalpy Recovery of Glassy Polymers: Dramatic Deviations from the Extrapolated Liquidlike Behavior. Macromolecules 2011, 44 (20) , 8333-8342. https://doi.org/10.1021/ma2018233
    85. Vo Van Hoang , Takashi Odagaki . Glass Formation and Thermodynamics of Supercooled Monatomic Liquids. The Journal of Physical Chemistry B 2011, 115 (21) , 6946-6956. https://doi.org/10.1021/jp111086e
    86. Irwin Oppenheim. Entropy, Information, and the Arrow of Time. The Journal of Physical Chemistry B 2010, 114 (49) , 16184-16188. https://doi.org/10.1021/jp106846b
    87. Christian Schreiner, Sandra Zugmann, Robert Hartl, and Heiner J. Gores. Temperature Dependence of Viscosity and Specific Conductivity of Fluoroborate-Based Ionic Liquids in Light of the Fractional Walden Rule and Angell’s Fragility Concept. Journal of Chemical & Engineering Data 2010, 55 (10) , 4372-4377. https://doi.org/10.1021/je1005505
    88. C. M. Roland. Relaxation Phenomena in Vitrifying Polymers and Molecular Liquids. Macromolecules 2010, 43 (19) , 7875-7890. https://doi.org/10.1021/ma101649u
    89. Dennis C. Glass, Marimuthu Krishnan, David R. Nutt and Jeremy C. Smith . Temperature Dependence of Protein Dynamics Simulated with Three Different Water Models. Journal of Chemical Theory and Computation 2010, 6 (4) , 1390-1400. https://doi.org/10.1021/ct9006508
    90. Eugene Mamontov . Diffusion Dynamics of Water Molecules in a LiCl Solution: A Low-Temperature Crossover. The Journal of Physical Chemistry B 2009, 113 (43) , 14073-14078. https://doi.org/10.1021/jp904734y
    91. Julien Haines, Claire Levelut, Aude Isambert, Philippe Hébert, Shinji Kohara, David A. Keen, Tahar Hammouda and Denis Andrault. Topologically Ordered Amorphous Silica Obtained from the Collapsed Siliceous Zeolite, Silicalite-1-F: A Step toward “Perfect” Glasses. Journal of the American Chemical Society 2009, 131 (34) , 12333-12338. https://doi.org/10.1021/ja904054v
    92. E. B. Starikov and B. Nordén . Physical Rationale Behind the Nonlinear Enthalpy−Entropy Compensation in DNA Duplex Stability. The Journal of Physical Chemistry B 2009, 113 (14) , 4698-4707. https://doi.org/10.1021/jp8089424
    93. Mauro C. C. Ribeiro, Tullio Scopigno and Giancarlo Ruocco . Prigogine−Defay Ratio for an Ionic Glass-Former: Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2009, 113 (10) , 3099-3104. https://doi.org/10.1021/jp810934e
    94. Dwayne T. Friesen, Ravi Shanker, Marshall Crew, Daniel T. Smithey, W. J. Curatolo and J. A. S. Nightingale . Hydroxypropyl Methylcellulose Acetate Succinate-Based Spray-Dried Dispersions: An Overview. Molecular Pharmaceutics 2008, 5 (6) , 1003-1019. https://doi.org/10.1021/mp8000793
    95. Simone Capaccioli, Giancarlo Ruocco and Francesco Zamponi . Dynamically Correlated Regions and Configurational Entropy in Supercooled Liquids. The Journal of Physical Chemistry B 2008, 112 (34) , 10652-10658. https://doi.org/10.1021/jp802097u
    96. Wei Huang and Ranko Richert. The Physics of Heating by Time-Dependent Fields: Microwaves and Water Revisited. The Journal of Physical Chemistry B 2008, 112 (32) , 9909-9913. https://doi.org/10.1021/jp8038187
    97. Kenneth L. Kearns,, Stephen F. Swallen, and, M. D. Ediger, , Tian Wu,, Ye Sun, and, Lian Yu. Hiking down the Energy Landscape:  Progress Toward the Kauzmann Temperature via Vapor Deposition. The Journal of Physical Chemistry B 2008, 112 (16) , 4934-4942. https://doi.org/10.1021/jp7113384
    98. Randall W. Hall, , Peter G. Wolynes. Intermolecular Forces and the Glass Transition. The Journal of Physical Chemistry B 2008, 112 (2) , 301-312. https://doi.org/10.1021/jp075017j
    99. Mauro C. C. Ribeiro. Correlation between Quasielastic Raman Scattering and Configurational Entropy in an Ionic Liquid. The Journal of Physical Chemistry B 2007, 111 (18) , 5008-5015. https://doi.org/10.1021/jp063810r
    100. Li-Min Wang and, Ranko Richert. Glass Transition Dynamics and Boiling Temperatures of Molecular Liquids and Their Isomers. The Journal of Physical Chemistry B 2007, 111 (12) , 3201-3207. https://doi.org/10.1021/jp0688254
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 1948, 43, 2, 219–256
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr60135a002
    Published October 1, 1948

    Article Views

    6848

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.