ACS Publications. Most Trusted. Most Cited. Most Read
Mechanism of Molybdenum Nitrogenase
My Activity
    Article

    Mechanism of Molybdenum Nitrogenase
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717-3900, and Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K.
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 1996, 96, 7, 2983–3012
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr950055x
    Published November 7, 1996
    Copyright © 1996 American Chemical Society
    Copyright © 1996 American Chemical Society

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 1611 publications.

    1. Brian J. Knight, Kevin J. Anderton, Juan F. Torres, Vincent J. Catalano, Ricardo Garcia-Serres, Leslie J. Murray. Substrate-Dependent Hydridic and Radical Reactivity of Triiron Hydride Clusters. Inorganic Chemistry 2025, 64 (16) , 8052-8063. https://doi.org/10.1021/acs.inorgchem.5c00071
    2. Taiji Nakamura, Yusuke Tsuruta, Akihito Egi, Hiromasa Tanaka, Yoshiaki Nishibayashi, Kazunari Yoshizawa. Theoretical Study of Imide Formation in Nitrogen Fixation Catalyzed by Molybdenum Complex Bearing PCP-Type Pincer Ligand with Metallocenes. Inorganic Chemistry 2025, Article ASAP.
    3. Deewan S. Teja, Bhabani S. Mallik. Potential-Dependent Electrocatalytic Nitrogen Reduction Catalysis on Ni-Anchored γ-Al2O3(110) Surface. The Journal of Physical Chemistry C 2025, 129 (14) , 6728-6738. https://doi.org/10.1021/acs.jpcc.4c08378
    4. Manasseh Kusi Osei, Brett Lucht, Hong-Lei Xu, Agustin Valles, Victor M. Espinoza Castro, Nghi La, Raúl Hernández Sánchez. Cyclen-Based Octaamine Ligand Supporting the Formation of Dinuclear Metal Compounds. Inorganic Chemistry 2025, 64 (13) , 6408-6413. https://doi.org/10.1021/acs.inorgchem.5c00619
    5. Sasmita Mishra, Bikash Kumar Jena. Review and Perspectives on Multifunctional Applications of Hexagonal Boron Nitride Nanosheets and Quantum Dots in Energy Conversions. Energy & Fuels 2025, 39 (9) , 4119-4150. https://doi.org/10.1021/acs.energyfuels.4c05473
    6. Siddhartha K. Purkayastha, Ankur K. Guha. Side-On Bound Beryllium Dinitrogen Complex: A Precursor for Complete Conversion of Dinitrogen to Ammonia Mediated by N-Heterocyclic Carbene. The Journal of Physical Chemistry A 2025, 129 (3) , 705-716. https://doi.org/10.1021/acs.jpca.4c06738
    7. Kushal Sengupta, Justin P. Joyce, Laure Decamps, Liqun Kang, Ragnar Bjornsson, Olaf Rüdiger, Serena DeBeer. Investigating the Molybdenum Nitrogenase Mechanistic Cycle Using Spectroelectrochemistry. Journal of the American Chemical Society 2025, 147 (2) , 2099-2114. https://doi.org/10.1021/jacs.4c16047
    8. Alexander Bagger, Romain Tort, Maria-Magdalena Titirici, Aron Walsh, Ifan E. L. Stephens. Electrochemical Nitrogen Reduction: The Energetic Distance to Lithium. ACS Energy Letters 2024, 9 (10) , 4947-4952. https://doi.org/10.1021/acsenergylett.4c01638
    9. Trevor P. Latendresse, Nicholas P. Litak, Joy S. Zeng, Shao-Liang Zheng, Theodore A. Betley. High-Spin [FeI3] Cluster Capable of Pnictogen Atom Capture. Journal of the American Chemical Society 2024, 146 (37) , 25578-25588. https://doi.org/10.1021/jacs.4c07112
    10. Sisi Liu, Yanzheng He, Qiyang Cheng, Yunfei Huan, Xiaolei Yuan, Jie Liu, Xiaowei Shen, Mengfan Wang, Chenglin Yan, Tao Qian. Triggering Heteroatom Ensemble Effect over RuFe Alloy to Promote Nitrogen Chemisorption for Efficient Ammonia Electrosynthesis at Ambient Conditions. The Journal of Physical Chemistry Letters 2024, 15 (35) , 8990-8996. https://doi.org/10.1021/acs.jpclett.4c01978
    11. Hao Jiang, Ulf Ryde. Reaction Mechanism for CO Reduction by Mo-Nitrogenase Studied by QM/MM. Inorganic Chemistry 2024, 63 (34) , 15951-15963. https://doi.org/10.1021/acs.inorgchem.4c02323
    12. Dawei Yang, Baomin Wang, Jingping Qu. Construction and Function of Thiolate-Bridged Diiron NxHy Nitrogenase Model Complexes. Accounts of Chemical Research 2024, 57 (13) , 1761-1776. https://doi.org/10.1021/acs.accounts.4c00068
    13. Monica Brachi, Wassim El Housseini, Kevin Beaver, Rohit Jadhav, Ashwini Dantanarayana, Dylan G. Boucher, Shelley D. Minteer. Advanced Electroanalysis for Electrosynthesis. ACS Organic & Inorganic Au 2024, 4 (2) , 141-187. https://doi.org/10.1021/acsorginorgau.3c00051
    14. Zhuangzhi Sun, Jiawei Lin, Suwei Lu, Yuhang Li, Tingting Qi, Xiaobo Peng, Shijing Liang, Lilong Jiang. Interfacial Engineering Boosting the Activity and Stability of MIL-53(Fe) toward Electrocatalytic Nitrogen Reduction. Langmuir 2024, 40 (10) , 5469-5478. https://doi.org/10.1021/acs.langmuir.3c04025
    15. Victor P. Vysotskiy, Claudia Filippi, Ulf Ryde. Scalar Relativistic All-Electron and Pseudopotential Ab Initio Study of a Minimal Nitrogenase [Fe(SH)4H]− Model Employing Coupled-Cluster and Auxiliary-Field Quantum Monte Carlo Many-Body Methods. The Journal of Physical Chemistry A 2024, 128 (7) , 1358-1374. https://doi.org/10.1021/acs.jpca.3c05808
    16. Hao Jiang, Kristoffer J. M. Lundgren, Ulf Ryde. Protonation of Homocitrate and the E1 State of Fe-Nitrogenase Studied by QM/MM Calculations. Inorganic Chemistry 2023, 62 (48) , 19433-19445. https://doi.org/10.1021/acs.inorgchem.3c02329
    17. Ziquan Chen, Yihan Ye, Tao Peng, Chenxin Wu, Haiyang Li, Xiulian Pan, Xinhe Bao. Iron-Single Sites Confined by Graphene Lattice for Ammonia Synthesis under Mild Conditions. ACS Catalysis 2023, 13 (21) , 14385-14394. https://doi.org/10.1021/acscatal.3c03108
    18. Alexandra C. Brown, Daniel L. M. Suess. An Iron–Sulfur Cluster with a Highly Pyramidalized Three-Coordinate Iron Center and a Negligible Affinity for Dinitrogen. Journal of the American Chemical Society 2023, 145 (36) , 20088-20096. https://doi.org/10.1021/jacs.3c07677
    19. Vladimir Gorbachev, Anna Giorgia Nobile, Alexandra Tsybizova, Peter Chen. Probing Electronic Effects in Tridentate Copper(I) Complexes by CIVP Spectroscopy. Inorganic Chemistry 2023, 62 (36) , 14704-14714. https://doi.org/10.1021/acs.inorgchem.3c02065
    20. Yun Ling, Qingyun Feng, Huiqi Xie, Xuan Zheng, Xiaoping Chen, Zehua Zou, Aifen Liu, Jing Tang, Yi Li, Qingxiang Wang. Phase-Transition Engineering with Tuning of Defects in TiO2 for Highly Efficient Electrochemical Nitrogen Reduction. ACS Sustainable Chemistry & Engineering 2023, 11 (33) , 12345-12354. https://doi.org/10.1021/acssuschemeng.3c02473
    21. C. Felipe Garibello, Alexandr N. Simonov, Shery L. Y. Chang, Bernt Johannessen, François Malherbe, Daniel S. Eldridge, Rosalie K. Hocking. Tuning Catalyst Selectivity for Ammonia vs Hydrogen: An Investigation into the Coprecipitation of Mo and Fe Sulfides. Inorganic Chemistry 2023, 62 (24) , 9379-9390. https://doi.org/10.1021/acs.inorgchem.3c00322
    22. Yilin Hu, Chi Chung Lee, Mario Grosch, Joseph B. Solomon, Wolfgang Weigand, Markus W. Ribbe. Enzymatic Fischer–Tropsch-Type Reactions. Chemical Reviews 2023, 123 (9) , 5755-5797. https://doi.org/10.1021/acs.chemrev.2c00612
    23. Kun-Yu Wang, Jiaqi Zhang, Yu-Chuan Hsu, Hengyu Lin, Zongsu Han, Jiandong Pang, Zhentao Yang, Rong-Ran Liang, Wei Shi, Hong-Cai Zhou. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews 2023, 123 (9) , 5347-5420. https://doi.org/10.1021/acs.chemrev.2c00879
    24. Annalena Gärtner, Uhut S. Karaca, Maximilian Rang, Myron Heinz, Philipp D. Engel, Ivo Krummenacher, Merle Arrowsmith, Alexander Hermann, Alexander Matler, Anna Rempel, Robert Witte, Holger Braunschweig, Max C. Holthausen, Marc-André Légaré. Achieving Control over the Reduction/Coupling Dichotomy of N2 by Boron Metallomimetics. Journal of the American Chemical Society 2023, 145 (14) , 8231-8241. https://doi.org/10.1021/jacs.3c01762
    25. Yunjie Pang, Ragnar Bjornsson. Understanding the Electronic Structure Basis for N2 Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation. Inorganic Chemistry 2023, 62 (14) , 5357-5375. https://doi.org/10.1021/acs.inorgchem.2c03967
    26. Xue Yao, Zhiming Zhang, LiXin Chen, Zhi-Wen Chen, Yong-Fu Zhu, Chandra Veer Singh. Work Function-Tailored Nitrogenase-like Fe Double-Atom Catalysts on Transition Metal Dichalcogenides for Nitrogen Fixation. ACS Sustainable Chemistry & Engineering 2023, 11 (13) , 4990-4997. https://doi.org/10.1021/acssuschemeng.2c06460
    27. Zhi-Yong Yang, Artavazd Badalyan, Brian M. Hoffman, Dennis R. Dean, Lance C. Seefeldt. The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event. Journal of the American Chemical Society 2023, 145 (10) , 5637-5644. https://doi.org/10.1021/jacs.2c09576
    28. Wenshuang Huang, Ling-Ya Peng, Jiayu Zhang, Chenrui Liu, Guoyong Song, Ji-Hu Su, Wei-Hai Fang, Ganglong Cui, Shaowei Hu. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH2 Intermediate. Journal of the American Chemical Society 2023, 145 (2) , 811-821. https://doi.org/10.1021/jacs.2c08000
    29. Siobhán G. MacArdle, Douglas C. Rees. Solvent Deuterium Isotope Effects of Substrate Reduction by Nitrogenase from Azotobacter vinelandii. Journal of the American Chemical Society 2022, 144 (46) , 21125-21135. https://doi.org/10.1021/jacs.2c07574
    30. Hao Jiang, Oskar K. G. Svensson, Ulf Ryde. QM/MM Study of Partial Dissociation of S2B for the E2 Intermediate of Nitrogenase. Inorganic Chemistry 2022, 61 (45) , 18067-18076. https://doi.org/10.1021/acs.inorgchem.2c02488
    31. Dmitriy A. Lukoyanov, Zhi-Yong Yang, Ana Pérez-González, Simone Raugei, Dennis R. Dean, Lance C. Seefeldt, Brian M. Hoffman. 13C ENDOR Characterization of the Central Carbon within the Nitrogenase Catalytic Cofactor Indicates That the CFe6 Core Is a Stabilizing “Heart of Steel”. Journal of the American Chemical Society 2022, 144 (40) , 18315-18328. https://doi.org/10.1021/jacs.2c06149
    32. Derek F. Harris, Artavazd Badalyan, Lance C. Seefeldt. Mechanistic Insights into Nitrogenase FeMo-Cofactor Catalysis through a Steady-State Kinetic Model. Biochemistry 2022, 61 (19) , 2131-2137. https://doi.org/10.1021/acs.biochem.2c00415
    33. Lan Deng, Zhao-Hui Zhou. Chiral Supramolecular Microporous Thio-Oxomolybdenum(V) Tartrates for the Selective Adsorptions of Gases. Inorganic Chemistry 2022, 61 (37) , 14787-14799. https://doi.org/10.1021/acs.inorgchem.2c02283
    34. N. Tanmaya Kumar, Shivaiah Vaddypally, Samar K. Das. A Rearrangement Reaction to Yield a NH4+ Ion Driven by Polyoxometalate Formation. ACS Omega 2022, 7 (35) , 31474-31481. https://doi.org/10.1021/acsomega.2c04015
    35. Sven T. Stripp, Benjamin R. Duffus, Vincent Fourmond, Christophe Léger, Silke Leimkühler, Shun Hirota, Yilin Hu, Andrew Jasniewski, Hideaki Ogata, Markus W. Ribbe. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chemical Reviews 2022, 122 (14) , 11900-11973. https://doi.org/10.1021/acs.chemrev.1c00914
    36. Ebrahim Tayyebi, Árni Björn Höskuldsson, André Wark, Narges Atrak, Benjamin M. Comer, Andrew James Medford, Egill Skúlason. Perspectives on the Competition between the Electrochemical Water and N2 Oxidation on a TiO2(110) Electrode. The Journal of Physical Chemistry Letters 2022, 13 (26) , 6123-6129. https://doi.org/10.1021/acs.jpclett.2c00769
    37. Jesse L. Ruzicka, Lauren M. Pellows, Hayden Kallas, Katherine E. Shulenberger, Oleg A. Zadvornyy, Bryant Chica, Katherine A. Brown, John W. Peters, Paul W. King, Lance C. Seefeldt, Gordana Dukovic. The Kinetics of Electron Transfer from CdS Nanorods to the MoFe Protein of Nitrogenase. The Journal of Physical Chemistry C 2022, 126 (19) , 8425-8435. https://doi.org/10.1021/acs.jpcc.2c02528
    38. Dmitriy A. Lukoyanov, Derek F. Harris, Zhi-Yong Yang, Ana Pérez-González, Dennis R. Dean, Lance C. Seefeldt, Brian M. Hoffman. The One-Electron Reduced Active-Site FeFe-Cofactor of Fe-Nitrogenase Contains a Hydride Bound to a Formally Oxidized Metal-Ion Core. Inorganic Chemistry 2022, 61 (14) , 5459-5464. https://doi.org/10.1021/acs.inorgchem.2c00180
    39. Yuan Tian, Yanrong Liu, Hao Wang, Lei Liu, Wenping Hu. Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. ACS Sustainable Chemistry & Engineering 2022, 10 (14) , 4345-4358. https://doi.org/10.1021/acssuschemeng.2c00018
    40. Weiyao Zhang, Curtis E. Moore, Shiyu Zhang. Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases. Journal of the American Chemical Society 2022, 144 (4) , 1709-1717. https://doi.org/10.1021/jacs.1c10948
    41. Xin Wang, Yuwei Zhang, Jing Wu, Zheng Zhang, Qingliang Liao, Zhuo Kang, Yue Zhang. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews 2022, 122 (1) , 1273-1348. https://doi.org/10.1021/acs.chemrev.1c00505
    42. Nico Spiller, Ragnar Bjornsson, Serena DeBeer, Frank Neese. Carbon Monoxide Binding to the Iron–Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation. Inorganic Chemistry 2021, 60 (23) , 18031-18047. https://doi.org/10.1021/acs.inorgchem.1c02649
    43. Riccardo Bondi, Miljan Z. Ćorović, Michael Buchsteiner, Carina Vidovič, Ferdinand Belaj, Nadia C. Mösch-Zanetti. The Effect of Pyridine-2-thiolate Ligands on the Reactivity of Tungsten Complexes toward Oxidation and Acetylene Insertion. Organometallics 2021, 40 (21) , 3591-3598. https://doi.org/10.1021/acs.organomet.1c00472
    44. Michael Häfner, Thomas Bredow. Nitrogen Activation on Defective Potassium Chloride and Sodium Chloride. The Journal of Physical Chemistry C 2021, 125 (43) , 23764-23772. https://doi.org/10.1021/acs.jpcc.1c07467
    45. Ke Lu, Fan Xia, Bomin Li, Yuzi Liu, Iddrisu B. Abdul Razak, Siyuan Gao, Jacob Kaelin, Dennis E. Brown, Yingwen Cheng. Synergistic Multisites Fe2Mo6S8 Electrocatalysts for Ambient Nitrogen Conversion to Ammonia. ACS Nano 2021, 15 (10) , 16887-16895. https://doi.org/10.1021/acsnano.1c07771
    46. Yingying Dong, Tao Wang, Shui Hu, Ying Tang, Xiaotong Hu, Yaoyao Ye, Hui Li, Ding Cao. Electrochemical Reduction of N2 into NH3 under Ambient Conditions Using Ag-doped TiO2 Nanofibers. ACS Applied Nano Materials 2021, 4 (10) , 10370-10377. https://doi.org/10.1021/acsanm.1c01761
    47. Valerie A. Schoepfer, Jullieta E. Lum, Matthew B. J. Lindsay. Molybdenum(VI) Sequestration Mechanisms During Iron(II)-Induced Ferrihydrite Transformation. ACS Earth and Space Chemistry 2021, 5 (8) , 2094-2104. https://doi.org/10.1021/acsearthspacechem.1c00152
    48. Xian-Wei Lv, Xiao-Lu Liu, Yu-Jun Suo, Yu-Ping Liu, Zhong-Yong Yuan. Identifying the Dominant Role of Pyridinic-N–Mo Bonding in Synergistic Electrocatalysis for Ambient Nitrogen Reduction. ACS Nano 2021, 15 (7) , 12109-12118. https://doi.org/10.1021/acsnano.1c03465
    49. Haobo Li, Yunxia Liu, Ke Chen, Johannes T. Margraf, Youyong Li, Karsten Reuter. Subgroup Discovery Points to the Prominent Role of Charge Transfer in Breaking Nitrogen Scaling Relations at Single-Atom Catalysts on VS2. ACS Catalysis 2021, 11 (13) , 7906-7914. https://doi.org/10.1021/acscatal.1c01324
    50. Mei Zheng, Hongbin Xu, Yi Li, Kaining Ding, Yongfan Zhang, Chenghua Sun, Wenkai Chen, Wei Lin. Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Polymeric Carbon Nitride. The Journal of Physical Chemistry C 2021, 125 (25) , 13880-13888. https://doi.org/10.1021/acs.jpcc.1c03425
    51. Ana Pérez-González, Zhi-Yong Yang, Dmitriy A. Lukoyanov, Dennis R. Dean, Lance C. Seefeldt, Brian M. Hoffman. Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted 13C Labeling and ENDOR Spectroscopy. Journal of the American Chemical Society 2021, 143 (24) , 9183-9190. https://doi.org/10.1021/jacs.1c04152
    52. Victor Sosa Alfaro, Julius Campeciño, Matthew Tracy, Sean J. Elliott, Eric L. Hegg, Nicolai Lehnert. Elucidating Electron Storage and Distribution within the Pentaheme Scaffold of Cytochrome c Nitrite Reductase (NrfA). Biochemistry 2021, 60 (23) , 1853-1867. https://doi.org/10.1021/acs.biochem.0c00977
    53. Lu-Hua Zhang, Fengshou Yu, N. Raveendran Shiju. Carbon-Based Catalysts for Selective Electrochemical Nitrogen-to-Ammonia Conversion. ACS Sustainable Chemistry & Engineering 2021, 9 (23) , 7687-7703. https://doi.org/10.1021/acssuschemeng.1c00575
    54. Xin Li, Qianyu Zhou, Shifeng Wang, Yong Li, Yanfang Liu, Qi Gao, Qi Wu. Tuning the Coordination Environment to Effect the Electrocatalytic Behavior of a Single-Atom Catalyst toward the Nitrogen Reduction Reaction. The Journal of Physical Chemistry C 2021, 125 (22) , 11963-11974. https://doi.org/10.1021/acs.jpcc.1c02161
    55. Man-Rong Zhao, Bingyi Song, Li-Ming Yang. Two-Dimensional Single-Atom Catalyst TM3(HAB)2 Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening. ACS Applied Materials & Interfaces 2021, 13 (22) , 26109-26122. https://doi.org/10.1021/acsami.1c06414
    56. Carlos Martín-Fernández, Jeremy N. Harvey. On the Use of Normalized Metrics for Density Sensitivity Analysis in DFT. The Journal of Physical Chemistry A 2021, 125 (21) , 4639-4652. https://doi.org/10.1021/acs.jpca.1c01290
    57. Ming Wang, Lan-Ye Chu, Zi-Yu Li, Antonis M. Messinis, Yong-Qi Ding, Lianrui Hu, Jia-Bi Ma. Dinitrogen and Carbon Dioxide Activation to Form C–N Bonds at Room Temperature: A New Mechanism Revealed by Experimental and Theoretical Studies. The Journal of Physical Chemistry Letters 2021, 12 (14) , 3490-3496. https://doi.org/10.1021/acs.jpclett.1c00183
    58. Joseph B. Solomon, Mahtab F. Rasekh, Caleb J. Hiller, Chi Chung Lee, Kazuki Tanifuji, Markus W. Ribbe, Yilin Hu. Probing the All-Ferrous States of Methanogen Nitrogenase Iron Proteins. JACS Au 2021, 1 (2) , 119-123. https://doi.org/10.1021/jacsau.0c00072
    59. Dmitriy A. Lukoyanov, Zhi-Yong Yang, Dennis R. Dean, Lance C. Seefeldt, Simone Raugei, Brian M. Hoffman. Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H2 to Achieve N≡N Triple-Bond Activation. Journal of the American Chemical Society 2020, 142 (52) , 21679-21690. https://doi.org/10.1021/jacs.0c07914
    60. Peng Huang, Zhuo Cheng, Liang Zeng, Jian Yu, Lulu Tan, Pinak Mohapatra, Liang-Shih Fan, Yujie Zhu. Enhancing Nitrogen Electroreduction to Ammonia by Doping Chlorine on Reduced Graphene Oxide. ACS Catalysis 2020, 10 (24) , 14928-14935. https://doi.org/10.1021/acscatal.0c03941
    61. Emmett D. Goodman, Chengshuang Zhou, Matteo Cargnello. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Central Science 2020, 6 (11) , 1916-1937. https://doi.org/10.1021/acscentsci.0c01046
    62. Huijuan Han, Yang Yang, Jiafang Liu, Xiuzhen Zheng, Xulin Wang, Sugang Meng, Sujuan Zhang, Xianliang Fu, Shifu Chen. Effect of Zn Vacancies in Zn3In2S6 Nanosheets on Boosting Photocatalytic N2 Fixation. ACS Applied Energy Materials 2020, 3 (11) , 11275-11284. https://doi.org/10.1021/acsaem.0c02202
    63. Grant W. Margulieux, Sangmin Kim, Paul J. Chirik. Determination of the N–H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. Inorganic Chemistry 2020, 59 (20) , 15394-15401. https://doi.org/10.1021/acs.inorgchem.0c02382
    64. Katherine A. Brown, Jesse Ruzicka, Hayden Kallas, Bryant Chica, David W. Mulder, John W. Peters, Lance C. Seefeldt, Gordana Dukovic, Paul W. King. Excitation-Rate Determines Product Stoichiometry in Photochemical Ammonia Production by CdS Quantum Dot-Nitrogenase MoFe Protein Complexes. ACS Catalysis 2020, 10 (19) , 11147-11152. https://doi.org/10.1021/acscatal.0c02933
    65. Chaonan Cui, Yuhan Jia, Hanyu Zhang, Lijun Geng, Zhixun Luo. Plasma-Assisted Chain Reactions of Rh3+ Clusters with Dinitrogen: N≡N Bond Dissociation. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8222-8230. https://doi.org/10.1021/acs.jpclett.0c02218
    66. Min-Cheol Kim, Hyunji Nam, Jihyun Choi, Hee Soo Kim, Hong Woo Lee, Donghun Kim, Jimin Kong, Sang Soo Han, Seung Yong Lee, Hyun S. Park. Hydrogen Bonding-Mediated Enhancement of Bioinspired Electrochemical Nitrogen Reduction on Cu2–xS Catalysts. ACS Catalysis 2020, 10 (18) , 10577-10584. https://doi.org/10.1021/acscatal.0c01730
    67. Bardi Benediktsson, Ragnar Bjornsson. Quantum Mechanics/Molecular Mechanics Study of Resting-State Vanadium Nitrogenase: Molecular and Electronic Structure of the Iron–Vanadium Cofactor. Inorganic Chemistry 2020, 59 (16) , 11514-11527. https://doi.org/10.1021/acs.inorgchem.0c01320
    68. Hao Du, Changzhu Yang, Wenhong Pu, Lingyu Zeng, Jianyu Gong. Enhanced Electrochemical Reduction of N2 to Ammonia over Pyrite FeS2 with Excellent Selectivity. ACS Sustainable Chemistry & Engineering 2020, 8 (28) , 10572-10580. https://doi.org/10.1021/acssuschemeng.0c03675
    69. Oliver Einsle, Douglas C. Rees. Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews 2020, 120 (12) , 4969-5004. https://doi.org/10.1021/acs.chemrev.0c00067
    70. Kazuki Tanifuji, Yasuhiro Ohki. Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry. Chemical Reviews 2020, 120 (12) , 5194-5251. https://doi.org/10.1021/acs.chemrev.9b00544
    71. Lance C. Seefeldt, Zhi-Yong Yang, Dmitriy A. Lukoyanov, Derek F. Harris, Dennis R. Dean, Simone Raugei, Brian M. Hoffman. Reduction of Substrates by Nitrogenases. Chemical Reviews 2020, 120 (12) , 5082-5106. https://doi.org/10.1021/acs.chemrev.9b00556
    72. Xinning Zhang, Bess B. Ward, Daniel M. Sigman. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chemical Reviews 2020, 120 (12) , 5308-5351. https://doi.org/10.1021/acs.chemrev.9b00613
    73. Matthew J. Chalkley, Marcus W. Drover, Jonas C. Peters. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews 2020, 120 (12) , 5582-5636. https://doi.org/10.1021/acs.chemrev.9b00638
    74. Casey Van Stappen, Laure Decamps, George E. Cutsail III, Ragnar Bjornsson, Justin T. Henthorn, James A. Birrell, Serena DeBeer. The Spectroscopy of Nitrogenases. Chemical Reviews 2020, 120 (12) , 5005-5081. https://doi.org/10.1021/acs.chemrev.9b00650
    75. Hannah L. Rutledge, F. Akif Tezcan. Electron Transfer in Nitrogenase. Chemical Reviews 2020, 120 (12) , 5158-5193. https://doi.org/10.1021/acs.chemrev.9b00663
    76. Andrew J. Jasniewski, Chi Chung Lee, Markus W. Ribbe, Yilin Hu. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chemical Reviews 2020, 120 (12) , 5107-5157. https://doi.org/10.1021/acs.chemrev.9b00704
    77. Owen T. O’Sullivan, Michael J. Zdilla. Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials. Chemical Reviews 2020, 120 (12) , 5682-5744. https://doi.org/10.1021/acs.chemrev.9b00804
    78. Yoo Seok Lee, Mengwei Yuan, Rong Cai, Koun Lim, Shelley D. Minteer. Nitrogenase Bioelectrocatalysis: ATP-Independent Ammonia Production Using a Redox Polymer/MoFe Protein System. ACS Catalysis 2020, 10 (12) , 6854-6861. https://doi.org/10.1021/acscatal.0c01397
    79. Zi-Yu Li, Yao Li, Li-Hui Mou, Jiao-Jiao Chen, Qing-Yu Liu, Sheng-Gui He, Hui Chen. A Facile N≡N Bond Cleavage by the Trinuclear Metal Center in Vanadium Carbide Cluster Anions V3C4–. Journal of the American Chemical Society 2020, 142 (24) , 10747-10754. https://doi.org/10.1021/jacs.0c02021
    80. Kade Head-Marsden, David A. Mazziotti. Active-Space Pair Two-Electron Reduced Density Matrix Theory for Strong Correlation. The Journal of Physical Chemistry A 2020, 124 (23) , 4848-4854. https://doi.org/10.1021/acs.jpca.0c01937
    81. Tianchang Liu, Michael R. Gau, Neil C. Tomson. Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate. Journal of the American Chemical Society 2020, 142 (18) , 8142-8146. https://doi.org/10.1021/jacs.0c01861
    82. Lan Deng, Xing Dong, Dong-Li An, Wei-Zheng Weng, Zhao-Hui Zhou. Gas Adsorption of Mixed-Valence Trinuclear Oxothiomolybdenum Glycolates. Inorganic Chemistry 2020, 59 (7) , 4874-4881. https://doi.org/10.1021/acs.inorgchem.0c00118
    83. Mengyuan Li, Yu Cui, Liping Sun, Xiaoli Zhang, Lei Peng, Yucheng Huang. Boosting Electrocatalytic N2 Reduction to NH3 over Two-Dimensional Gallium Selenide by Defect-Size Engineering. Inorganic Chemistry 2020, 59 (7) , 4858-4867. https://doi.org/10.1021/acs.inorgchem.0c00131
    84. Lili Cao, Ulf Ryde. What Is the Structure of the E4 Intermediate in Nitrogenase?. Journal of Chemical Theory and Computation 2020, 16 (3) , 1936-1952. https://doi.org/10.1021/acs.jctc.9b01254
    85. Bishnupad Mohanty, Bikash Kumar Jena, Suddhasatwa Basu. Single Atom on the 2D Matrix: An Emerging Electrocatalyst for Energy Applications. ACS Omega 2020, 5 (3) , 1287-1295. https://doi.org/10.1021/acsomega.9b03515
    86. Manoja K. Samantaray, Valerio D’Elia, Eva Pump, Laura Falivene, Moussab Harb, Samy Ould Chikh, Luigi Cavallo, Jean-Marie Basset. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews 2020, 120 (2) , 734-813. https://doi.org/10.1021/acs.chemrev.9b00238
    87. Haohong Xian, Haoran Guo, Zhishu Chen, Guangsen Yu, Abdulmohsen Ali Alshehri, Khalid Ahmed Alzahrani, Feng Hao, Rui Song, Tingshuai Li. Bioinspired Electrocatalyst for Electrochemical Reduction of N2 to NH3 in Ambient Conditions. ACS Applied Materials & Interfaces 2020, 12 (2) , 2445-2451. https://doi.org/10.1021/acsami.9b18027
    88. Luke R. Johnson, Sudiksha Sridhar, Liang Zhang, Kurt D. Fredrickson, Abhinav S. Raman, Joonbaek Jang, Connor Leach, Ashwin Padmanabhan, Christopher C. Price, Nathan C. Frey, Abhishek Raizada, Vishwanathan Rajaraman, Sai Aparna Saiprasad, Xiaoxin Tang, Aleksandra Vojvodic. MXene Materials for the Electrochemical Nitrogen Reduction—Functionalized or Not?. ACS Catalysis 2020, 10 (1) , 253-264. https://doi.org/10.1021/acscatal.9b01925
    89. Ross D. Milton, Shelley D. Minteer. Nitrogenase Bioelectrochemistry for Synthesis Applications. Accounts of Chemical Research 2019, 52 (12) , 3351-3360. https://doi.org/10.1021/acs.accounts.9b00494
    90. Jakob Kibsgaard, Jens K. Nørskov, Ib Chorkendorff. The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters 2019, 4 (12) , 2986-2988. https://doi.org/10.1021/acsenergylett.9b02286
    91. Jing Zhang, Xiaoyin Tian, Mingjie Liu, Hua Guo, Jiadong Zhou, Qiyi Fang, Zheng Liu, Qin Wu, Jun Lou. Cobalt-Modulated Molybdenum–Dinitrogen Interaction in MoS2 for Catalyzing Ammonia Synthesis. Journal of the American Chemical Society 2019, 141 (49) , 19269-19275. https://doi.org/10.1021/jacs.9b02501
    92. M. Qadri E. Mubarak, Sam P. de Visser. Second-Coordination Sphere Effect on the Reactivity of Vanadium–Peroxo Complexes: A Computational Study. Inorganic Chemistry 2019, 58 (23) , 15741-15750. https://doi.org/10.1021/acs.inorgchem.9b01778
    93. David P. Hickey, Rong Cai, Zhi-Yong Yang, Katharina Grunau, Oliver Einsle, Lance C. Seefeldt, Shelley D. Minteer. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase. Journal of the American Chemical Society 2019, 141 (43) , 17150-17157. https://doi.org/10.1021/jacs.9b06546
    94. Tianfei Liu, Robin Tyburski, Shihuai Wang, Ricardo Fernández-Terán, Sascha Ott, Leif Hammarström. Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and Pressure-Dependent Kinetics. Journal of the American Chemical Society 2019, 141 (43) , 17245-17259. https://doi.org/10.1021/jacs.9b08189
    95. Guodong Rao, Katherine B. Alwan, Ninian J. Blackburn, R. David Britt. Incorporation of Ni2+, Co2+, and Selenocysteine into the Auxiliary Fe-S Cluster of the Radical SAM Enzyme HydG. Inorganic Chemistry 2019, 58 (19) , 12601-12608. https://doi.org/10.1021/acs.inorgchem.9b01293
    96. Cooper Citek, Paul H. Oyala, Jonas C. Peters. Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes. Journal of the American Chemical Society 2019, 141 (38) , 15211-15221. https://doi.org/10.1021/jacs.9b06987
    97. Casey Van Stappen, Roman Davydov, Zhi-Yong Yang, Ruixi Fan, Yisong Guo, Eckhard Bill, Lance C. Seefeldt, Brian M. Hoffman, Serena DeBeer. Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorganic Chemistry 2019, 58 (18) , 12365-12376. https://doi.org/10.1021/acs.inorgchem.9b01951
    98. Kelly E. Aldrich, B. Scott Fales, Amrendra K. Singh, Richard J. Staples, Benjamin G. Levine, John McCracken, Milton R. Smith, III, Aaron L. Odom. Electronic and Structural Comparisons between Iron(II/III) and Ruthenium(II/III) Imide Analogs. Inorganic Chemistry 2019, 58 (17) , 11699-11715. https://doi.org/10.1021/acs.inorgchem.9b01672
    99. Lili Cao, Melanie C. Börner, Justin Bergmann, Octav Caldararu, Ulf Ryde. Geometry and Electronic Structure of the P-Cluster in Nitrogenase Studied by Combined Quantum Mechanical and Molecular Mechanical Calculations and Quantum Refinement. Inorganic Chemistry 2019, 58 (15) , 9672-9690. https://doi.org/10.1021/acs.inorgchem.9b00400
    100. Chengbo Li, Jiali Yu, Li Yang, Jinxiu Zhao, Wenhan Kong, Ting Wang, Abdullah M. Asiri, Quan Li, Xuping Sun. Spinel LiMn2O4 Nanofiber: An Efficient Electrocatalyst for N2 Reduction to NH3 under Ambient Conditions. Inorganic Chemistry 2019, 58 (15) , 9597-9601. https://doi.org/10.1021/acs.inorgchem.9b01707
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 1996, 96, 7, 2983–3012
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr950055x
    Published November 7, 1996
    Copyright © 1996 American Chemical Society

    Article Views

    15k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.