ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mechanism of Molybdenum Nitrogenase

View Author Information
Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717-3900, and Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K.
Cite this: Chem. Rev. 1996, 96, 7, 2983–3012
Publication Date (Web):November 7, 1996
https://doi.org/10.1021/cr950055x
Copyright © 1996 American Chemical Society

    Article Views

    13579

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (861 KB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 1505 publications.

    1. Alexandra C. Brown, Daniel L. M. Suess. An Iron–Sulfur Cluster with a Highly Pyramidalized Three-Coordinate Iron Center and a Negligible Affinity for Dinitrogen. Journal of the American Chemical Society 2023, 145 (36) , 20088-20096. https://doi.org/10.1021/jacs.3c07677
    2. Vladimir Gorbachev, Anna Giorgia Nobile, Alexandra Tsybizova, Peter Chen. Probing Electronic Effects in Tridentate Copper(I) Complexes by CIVP Spectroscopy. Inorganic Chemistry 2023, 62 (36) , 14704-14714. https://doi.org/10.1021/acs.inorgchem.3c02065
    3. Yun Ling, Qingyun Feng, Huiqi Xie, Xuan Zheng, Xiaoping Chen, Zehua Zou, Aifen Liu, Jing Tang, Yi Li, Qingxiang Wang. Phase-Transition Engineering with Tuning of Defects in TiO2 for Highly Efficient Electrochemical Nitrogen Reduction. ACS Sustainable Chemistry & Engineering 2023, 11 (33) , 12345-12354. https://doi.org/10.1021/acssuschemeng.3c02473
    4. C. Felipe Garibello, Alexandr N. Simonov, Shery L. Y. Chang, Bernt Johannessen, François Malherbe, Daniel S. Eldridge, Rosalie K. Hocking. Tuning Catalyst Selectivity for Ammonia vs Hydrogen: An Investigation into the Coprecipitation of Mo and Fe Sulfides. Inorganic Chemistry 2023, 62 (24) , 9379-9390. https://doi.org/10.1021/acs.inorgchem.3c00322
    5. Yilin Hu, Chi Chung Lee, Mario Grosch, Joseph B. Solomon, Wolfgang Weigand, Markus W. Ribbe. Enzymatic Fischer–Tropsch-Type Reactions. Chemical Reviews 2023, 123 (9) , 5755-5797. https://doi.org/10.1021/acs.chemrev.2c00612
    6. Kun-Yu Wang, Jiaqi Zhang, Yu-Chuan Hsu, Hengyu Lin, Zongsu Han, Jiandong Pang, Zhentao Yang, Rong-Ran Liang, Wei Shi, Hong-Cai Zhou. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews 2023, 123 (9) , 5347-5420. https://doi.org/10.1021/acs.chemrev.2c00879
    7. Annalena Gärtner, Uhut S. Karaca, Maximilian Rang, Myron Heinz, Philipp D. Engel, Ivo Krummenacher, Merle Arrowsmith, Alexander Hermann, Alexander Matler, Anna Rempel, Robert Witte, Holger Braunschweig, Max C. Holthausen, Marc-André Légaré. Achieving Control over the Reduction/Coupling Dichotomy of N2 by Boron Metallomimetics. Journal of the American Chemical Society 2023, 145 (14) , 8231-8241. https://doi.org/10.1021/jacs.3c01762
    8. Yunjie Pang, Ragnar Bjornsson. Understanding the Electronic Structure Basis for N2 Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation. Inorganic Chemistry 2023, 62 (14) , 5357-5375. https://doi.org/10.1021/acs.inorgchem.2c03967
    9. Xue Yao, Zhiming Zhang, LiXin Chen, Zhi-Wen Chen, Yong-Fu Zhu, Chandra Veer Singh. Work Function-Tailored Nitrogenase-like Fe Double-Atom Catalysts on Transition Metal Dichalcogenides for Nitrogen Fixation. ACS Sustainable Chemistry & Engineering 2023, 11 (13) , 4990-4997. https://doi.org/10.1021/acssuschemeng.2c06460
    10. Zhi-Yong Yang, Artavazd Badalyan, Brian M. Hoffman, Dennis R. Dean, Lance C. Seefeldt. The Fe Protein Cycle Associated with Nitrogenase Catalysis Requires the Hydrolysis of Two ATP for Each Single Electron Transfer Event. Journal of the American Chemical Society 2023, 145 (10) , 5637-5644. https://doi.org/10.1021/jacs.2c09576
    11. Wenshuang Huang, Ling-Ya Peng, Jiayu Zhang, Chenrui Liu, Guoyong Song, Ji-Hu Su, Wei-Hai Fang, Ganglong Cui, Shaowei Hu. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH2 Intermediate. Journal of the American Chemical Society 2023, 145 (2) , 811-821. https://doi.org/10.1021/jacs.2c08000
    12. Siobhán G. MacArdle, Douglas C. Rees. Solvent Deuterium Isotope Effects of Substrate Reduction by Nitrogenase from Azotobacter vinelandii. Journal of the American Chemical Society 2022, 144 (46) , 21125-21135. https://doi.org/10.1021/jacs.2c07574
    13. Hao Jiang, Oskar K. G. Svensson, Ulf Ryde. QM/MM Study of Partial Dissociation of S2B for the E2 Intermediate of Nitrogenase. Inorganic Chemistry 2022, 61 (45) , 18067-18076. https://doi.org/10.1021/acs.inorgchem.2c02488
    14. Dmitriy A. Lukoyanov, Zhi-Yong Yang, Ana Pérez-González, Simone Raugei, Dennis R. Dean, Lance C. Seefeldt, Brian M. Hoffman. 13C ENDOR Characterization of the Central Carbon within the Nitrogenase Catalytic Cofactor Indicates That the CFe6 Core Is a Stabilizing “Heart of Steel”. Journal of the American Chemical Society 2022, 144 (40) , 18315-18328. https://doi.org/10.1021/jacs.2c06149
    15. Derek F. Harris, Artavazd Badalyan, Lance C. Seefeldt. Mechanistic Insights into Nitrogenase FeMo-Cofactor Catalysis through a Steady-State Kinetic Model. Biochemistry 2022, 61 (19) , 2131-2137. https://doi.org/10.1021/acs.biochem.2c00415
    16. Lan Deng, Zhao-Hui Zhou. Chiral Supramolecular Microporous Thio-Oxomolybdenum(V) Tartrates for the Selective Adsorptions of Gases. Inorganic Chemistry 2022, 61 (37) , 14787-14799. https://doi.org/10.1021/acs.inorgchem.2c02283
    17. N. Tanmaya Kumar, Shivaiah Vaddypally, Samar K. Das. A Rearrangement Reaction to Yield a NH4+ Ion Driven by Polyoxometalate Formation. ACS Omega 2022, 7 (35) , 31474-31481. https://doi.org/10.1021/acsomega.2c04015
    18. Sven T. Stripp, Benjamin R. Duffus, Vincent Fourmond, Christophe Léger, Silke Leimkühler, Shun Hirota, Yilin Hu, Andrew Jasniewski, Hideaki Ogata, Markus W. Ribbe. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chemical Reviews 2022, 122 (14) , 11900-11973. https://doi.org/10.1021/acs.chemrev.1c00914
    19. Ebrahim Tayyebi, Árni Björn Höskuldsson, André Wark, Narges Atrak, Benjamin M. Comer, Andrew James Medford, Egill Skúlason. Perspectives on the Competition between the Electrochemical Water and N2 Oxidation on a TiO2(110) Electrode. The Journal of Physical Chemistry Letters 2022, 13 (26) , 6123-6129. https://doi.org/10.1021/acs.jpclett.2c00769
    20. Jesse L. Ruzicka, Lauren M. Pellows, Hayden Kallas, Katherine E. Shulenberger, Oleg A. Zadvornyy, Bryant Chica, Katherine A. Brown, John W. Peters, Paul W. King, Lance C. Seefeldt, Gordana Dukovic. The Kinetics of Electron Transfer from CdS Nanorods to the MoFe Protein of Nitrogenase. The Journal of Physical Chemistry C 2022, 126 (19) , 8425-8435. https://doi.org/10.1021/acs.jpcc.2c02528
    21. Dmitriy A. Lukoyanov, Derek F. Harris, Zhi-Yong Yang, Ana Pérez-González, Dennis R. Dean, Lance C. Seefeldt, Brian M. Hoffman. The One-Electron Reduced Active-Site FeFe-Cofactor of Fe-Nitrogenase Contains a Hydride Bound to a Formally Oxidized Metal-Ion Core. Inorganic Chemistry 2022, 61 (14) , 5459-5464. https://doi.org/10.1021/acs.inorgchem.2c00180
    22. Yuan Tian, Yanrong Liu, Hao Wang, Lei Liu, Wenping Hu. Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. ACS Sustainable Chemistry & Engineering 2022, 10 (14) , 4345-4358. https://doi.org/10.1021/acssuschemeng.2c00018
    23. Weiyao Zhang, Curtis E. Moore, Shiyu Zhang. Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases. Journal of the American Chemical Society 2022, 144 (4) , 1709-1717. https://doi.org/10.1021/jacs.1c10948
    24. Xin Wang, Yuwei Zhang, Jing Wu, Zheng Zhang, Qingliang Liao, Zhuo Kang, Yue Zhang. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews 2022, 122 (1) , 1273-1348. https://doi.org/10.1021/acs.chemrev.1c00505
    25. Nico Spiller, Ragnar Bjornsson, Serena DeBeer, Frank Neese. Carbon Monoxide Binding to the Iron–Molybdenum Cofactor of Nitrogenase: a Detailed Quantum Mechanics/Molecular Mechanics Investigation. Inorganic Chemistry 2021, 60 (23) , 18031-18047. https://doi.org/10.1021/acs.inorgchem.1c02649
    26. Riccardo Bondi, Miljan Z. Ćorović, Michael Buchsteiner, Carina Vidovič, Ferdinand Belaj, Nadia C. Mösch-Zanetti. The Effect of Pyridine-2-thiolate Ligands on the Reactivity of Tungsten Complexes toward Oxidation and Acetylene Insertion. Organometallics 2021, 40 (21) , 3591-3598. https://doi.org/10.1021/acs.organomet.1c00472
    27. Michael Häfner, Thomas Bredow. Nitrogen Activation on Defective Potassium Chloride and Sodium Chloride. The Journal of Physical Chemistry C 2021, 125 (43) , 23764-23772. https://doi.org/10.1021/acs.jpcc.1c07467
    28. Ke Lu, Fan Xia, Bomin Li, Yuzi Liu, Iddrisu B. Abdul Razak, Siyuan Gao, Jacob Kaelin, Dennis E. Brown, Yingwen Cheng. Synergistic Multisites Fe2Mo6S8 Electrocatalysts for Ambient Nitrogen Conversion to Ammonia. ACS Nano 2021, 15 (10) , 16887-16895. https://doi.org/10.1021/acsnano.1c07771
    29. Yingying Dong, Tao Wang, Shui Hu, Ying Tang, Xiaotong Hu, Yaoyao Ye, Hui Li, Ding Cao. Electrochemical Reduction of N2 into NH3 under Ambient Conditions Using Ag-doped TiO2 Nanofibers. ACS Applied Nano Materials 2021, 4 (10) , 10370-10377. https://doi.org/10.1021/acsanm.1c01761
    30. Valerie A. Schoepfer, Jullieta E. Lum, Matthew B. J. Lindsay. Molybdenum(VI) Sequestration Mechanisms During Iron(II)-Induced Ferrihydrite Transformation. ACS Earth and Space Chemistry 2021, 5 (8) , 2094-2104. https://doi.org/10.1021/acsearthspacechem.1c00152
    31. Xian-Wei Lv, Xiao-Lu Liu, Yu-Jun Suo, Yu-Ping Liu, Zhong-Yong Yuan. Identifying the Dominant Role of Pyridinic-N–Mo Bonding in Synergistic Electrocatalysis for Ambient Nitrogen Reduction. ACS Nano 2021, 15 (7) , 12109-12118. https://doi.org/10.1021/acsnano.1c03465
    32. Haobo Li, Yunxia Liu, Ke Chen, Johannes T. Margraf, Youyong Li, Karsten Reuter. Subgroup Discovery Points to the Prominent Role of Charge Transfer in Breaking Nitrogen Scaling Relations at Single-Atom Catalysts on VS2. ACS Catalysis 2021, 11 (13) , 7906-7914. https://doi.org/10.1021/acscatal.1c01324
    33. Mei Zheng, Hongbin Xu, Yi Li, Kaining Ding, Yongfan Zhang, Chenghua Sun, Wenkai Chen, Wei Lin. Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Polymeric Carbon Nitride. The Journal of Physical Chemistry C 2021, 125 (25) , 13880-13888. https://doi.org/10.1021/acs.jpcc.1c03425
    34. Ana Pérez-González, Zhi-Yong Yang, Dmitriy A. Lukoyanov, Dennis R. Dean, Lance C. Seefeldt, Brian M. Hoffman. Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted 13C Labeling and ENDOR Spectroscopy. Journal of the American Chemical Society 2021, 143 (24) , 9183-9190. https://doi.org/10.1021/jacs.1c04152
    35. Victor Sosa Alfaro, Julius Campeciño, Matthew Tracy, Sean J. Elliott, Eric L. Hegg, Nicolai Lehnert. Elucidating Electron Storage and Distribution within the Pentaheme Scaffold of Cytochrome c Nitrite Reductase (NrfA). Biochemistry 2021, 60 (23) , 1853-1867. https://doi.org/10.1021/acs.biochem.0c00977
    36. Lu-Hua Zhang, Fengshou Yu, N. Raveendran Shiju. Carbon-Based Catalysts for Selective Electrochemical Nitrogen-to-Ammonia Conversion. ACS Sustainable Chemistry & Engineering 2021, 9 (23) , 7687-7703. https://doi.org/10.1021/acssuschemeng.1c00575
    37. Xin Li, Qianyu Zhou, Shifeng Wang, Yong Li, Yanfang Liu, Qi Gao, Qi Wu. Tuning the Coordination Environment to Effect the Electrocatalytic Behavior of a Single-Atom Catalyst toward the Nitrogen Reduction Reaction. The Journal of Physical Chemistry C 2021, 125 (22) , 11963-11974. https://doi.org/10.1021/acs.jpcc.1c02161
    38. Man-Rong Zhao, Bingyi Song, Li-Ming Yang. Two-Dimensional Single-Atom Catalyst TM3(HAB)2 Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening. ACS Applied Materials & Interfaces 2021, 13 (22) , 26109-26122. https://doi.org/10.1021/acsami.1c06414
    39. Carlos Martín-Fernández, Jeremy N. Harvey. On the Use of Normalized Metrics for Density Sensitivity Analysis in DFT. The Journal of Physical Chemistry A 2021, 125 (21) , 4639-4652. https://doi.org/10.1021/acs.jpca.1c01290
    40. Ming Wang, Lan-Ye Chu, Zi-Yu Li, Antonis M. Messinis, Yong-Qi Ding, Lianrui Hu, Jia-Bi Ma. Dinitrogen and Carbon Dioxide Activation to Form C–N Bonds at Room Temperature: A New Mechanism Revealed by Experimental and Theoretical Studies. The Journal of Physical Chemistry Letters 2021, 12 (14) , 3490-3496. https://doi.org/10.1021/acs.jpclett.1c00183
    41. Joseph B. Solomon, Mahtab F. Rasekh, Caleb J. Hiller, Chi Chung Lee, Kazuki Tanifuji, Markus W. Ribbe, Yilin Hu. Probing the All-Ferrous States of Methanogen Nitrogenase Iron Proteins. JACS Au 2021, 1 (2) , 119-123. https://doi.org/10.1021/jacsau.0c00072
    42. Dmitriy A. Lukoyanov, Zhi-Yong Yang, Dennis R. Dean, Lance C. Seefeldt, Simone Raugei, Brian M. Hoffman. Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H2 to Achieve N≡N Triple-Bond Activation. Journal of the American Chemical Society 2020, 142 (52) , 21679-21690. https://doi.org/10.1021/jacs.0c07914
    43. Peng Huang, Zhuo Cheng, Liang Zeng, Jian Yu, Lulu Tan, Pinak Mohapatra, Liang-Shih Fan, Yujie Zhu. Enhancing Nitrogen Electroreduction to Ammonia by Doping Chlorine on Reduced Graphene Oxide. ACS Catalysis 2020, 10 (24) , 14928-14935. https://doi.org/10.1021/acscatal.0c03941
    44. Emmett D. Goodman, Chengshuang Zhou, Matteo Cargnello. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Central Science 2020, 6 (11) , 1916-1937. https://doi.org/10.1021/acscentsci.0c01046
    45. Huijuan Han, Yang Yang, Jiafang Liu, Xiuzhen Zheng, Xulin Wang, Sugang Meng, Sujuan Zhang, Xianliang Fu, Shifu Chen. Effect of Zn Vacancies in Zn3In2S6 Nanosheets on Boosting Photocatalytic N2 Fixation. ACS Applied Energy Materials 2020, 3 (11) , 11275-11284. https://doi.org/10.1021/acsaem.0c02202
    46. Grant W. Margulieux, Sangmin Kim, Paul J. Chirik. Determination of the N–H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. Inorganic Chemistry 2020, 59 (20) , 15394-15401. https://doi.org/10.1021/acs.inorgchem.0c02382
    47. Katherine A. Brown, Jesse Ruzicka, Hayden Kallas, Bryant Chica, David W. Mulder, John W. Peters, Lance C. Seefeldt, Gordana Dukovic, Paul W. King. Excitation-Rate Determines Product Stoichiometry in Photochemical Ammonia Production by CdS Quantum Dot-Nitrogenase MoFe Protein Complexes. ACS Catalysis 2020, 10 (19) , 11147-11152. https://doi.org/10.1021/acscatal.0c02933
    48. Chaonan Cui, Yuhan Jia, Hanyu Zhang, Lijun Geng, Zhixun Luo. Plasma-Assisted Chain Reactions of Rh3+ Clusters with Dinitrogen: N≡N Bond Dissociation. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8222-8230. https://doi.org/10.1021/acs.jpclett.0c02218
    49. Min-Cheol Kim, Hyunji Nam, Jihyun Choi, Hee Soo Kim, Hong Woo Lee, Donghun Kim, Jimin Kong, Sang Soo Han, Seung Yong Lee, Hyun S. Park. Hydrogen Bonding-Mediated Enhancement of Bioinspired Electrochemical Nitrogen Reduction on Cu2–xS Catalysts. ACS Catalysis 2020, 10 (18) , 10577-10584. https://doi.org/10.1021/acscatal.0c01730
    50. Bardi Benediktsson, Ragnar Bjornsson. Quantum Mechanics/Molecular Mechanics Study of Resting-State Vanadium Nitrogenase: Molecular and Electronic Structure of the Iron–Vanadium Cofactor. Inorganic Chemistry 2020, 59 (16) , 11514-11527. https://doi.org/10.1021/acs.inorgchem.0c01320
    51. Hao Du, Changzhu Yang, Wenhong Pu, Lingyu Zeng, Jianyu Gong. Enhanced Electrochemical Reduction of N2 to Ammonia over Pyrite FeS2 with Excellent Selectivity. ACS Sustainable Chemistry & Engineering 2020, 8 (28) , 10572-10580. https://doi.org/10.1021/acssuschemeng.0c03675
    52. Oliver Einsle, Douglas C. Rees. Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews 2020, 120 (12) , 4969-5004. https://doi.org/10.1021/acs.chemrev.0c00067
    53. Kazuki Tanifuji, Yasuhiro Ohki. Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry. Chemical Reviews 2020, 120 (12) , 5194-5251. https://doi.org/10.1021/acs.chemrev.9b00544
    54. Lance C. Seefeldt, Zhi-Yong Yang, Dmitriy A. Lukoyanov, Derek F. Harris, Dennis R. Dean, Simone Raugei, Brian M. Hoffman. Reduction of Substrates by Nitrogenases. Chemical Reviews 2020, 120 (12) , 5082-5106. https://doi.org/10.1021/acs.chemrev.9b00556
    55. Xinning Zhang, Bess B. Ward, Daniel M. Sigman. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chemical Reviews 2020, 120 (12) , 5308-5351. https://doi.org/10.1021/acs.chemrev.9b00613
    56. Matthew J. Chalkley, Marcus W. Drover, Jonas C. Peters. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews 2020, 120 (12) , 5582-5636. https://doi.org/10.1021/acs.chemrev.9b00638
    57. Casey Van Stappen, Laure Decamps, George E. Cutsail III, Ragnar Bjornsson, Justin T. Henthorn, James A. Birrell, Serena DeBeer. The Spectroscopy of Nitrogenases. Chemical Reviews 2020, 120 (12) , 5005-5081. https://doi.org/10.1021/acs.chemrev.9b00650
    58. Hannah L. Rutledge, F. Akif Tezcan. Electron Transfer in Nitrogenase. Chemical Reviews 2020, 120 (12) , 5158-5193. https://doi.org/10.1021/acs.chemrev.9b00663
    59. Andrew J. Jasniewski, Chi Chung Lee, Markus W. Ribbe, Yilin Hu. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chemical Reviews 2020, 120 (12) , 5107-5157. https://doi.org/10.1021/acs.chemrev.9b00704
    60. Owen T. O’Sullivan, Michael J. Zdilla. Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials. Chemical Reviews 2020, 120 (12) , 5682-5744. https://doi.org/10.1021/acs.chemrev.9b00804
    61. Yoo Seok Lee, Mengwei Yuan, Rong Cai, Koun Lim, Shelley D. Minteer. Nitrogenase Bioelectrocatalysis: ATP-Independent Ammonia Production Using a Redox Polymer/MoFe Protein System. ACS Catalysis 2020, 10 (12) , 6854-6861. https://doi.org/10.1021/acscatal.0c01397
    62. Zi-Yu Li, Yao Li, Li-Hui Mou, Jiao-Jiao Chen, Qing-Yu Liu, Sheng-Gui He, Hui Chen. A Facile N≡N Bond Cleavage by the Trinuclear Metal Center in Vanadium Carbide Cluster Anions V3C4–. Journal of the American Chemical Society 2020, 142 (24) , 10747-10754. https://doi.org/10.1021/jacs.0c02021
    63. Kade Head-Marsden, David A. Mazziotti. Active-Space Pair Two-Electron Reduced Density Matrix Theory for Strong Correlation. The Journal of Physical Chemistry A 2020, 124 (23) , 4848-4854. https://doi.org/10.1021/acs.jpca.0c01937
    64. Tianchang Liu, Michael R. Gau, Neil C. Tomson. Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate. Journal of the American Chemical Society 2020, 142 (18) , 8142-8146. https://doi.org/10.1021/jacs.0c01861
    65. Lan Deng, Xing Dong, Dong-Li An, Wei-Zheng Weng, Zhao-Hui Zhou. Gas Adsorption of Mixed-Valence Trinuclear Oxothiomolybdenum Glycolates. Inorganic Chemistry 2020, 59 (7) , 4874-4881. https://doi.org/10.1021/acs.inorgchem.0c00118
    66. Mengyuan Li, Yu Cui, Liping Sun, Xiaoli Zhang, Lei Peng, Yucheng Huang. Boosting Electrocatalytic N2 Reduction to NH3 over Two-Dimensional Gallium Selenide by Defect-Size Engineering. Inorganic Chemistry 2020, 59 (7) , 4858-4867. https://doi.org/10.1021/acs.inorgchem.0c00131
    67. Lili Cao, Ulf Ryde. What Is the Structure of the E4 Intermediate in Nitrogenase?. Journal of Chemical Theory and Computation 2020, 16 (3) , 1936-1952. https://doi.org/10.1021/acs.jctc.9b01254
    68. Bishnupad Mohanty, Bikash Kumar Jena, Suddhasatwa Basu. Single Atom on the 2D Matrix: An Emerging Electrocatalyst for Energy Applications. ACS Omega 2020, 5 (3) , 1287-1295. https://doi.org/10.1021/acsomega.9b03515
    69. Manoja K. Samantaray, Valerio D’Elia, Eva Pump, Laura Falivene, Moussab Harb, Samy Ould Chikh, Luigi Cavallo, Jean-Marie Basset. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews 2020, 120 (2) , 734-813. https://doi.org/10.1021/acs.chemrev.9b00238
    70. Haohong Xian, Haoran Guo, Zhishu Chen, Guangsen Yu, Abdulmohsen Ali Alshehri, Khalid Ahmed Alzahrani, Feng Hao, Rui Song, Tingshuai Li. Bioinspired Electrocatalyst for Electrochemical Reduction of N2 to NH3 in Ambient Conditions. ACS Applied Materials & Interfaces 2020, 12 (2) , 2445-2451. https://doi.org/10.1021/acsami.9b18027
    71. Luke R. Johnson, Sudiksha Sridhar, Liang Zhang, Kurt D. Fredrickson, Abhinav S. Raman, Joonbaek Jang, Connor Leach, Ashwin Padmanabhan, Christopher C. Price, Nathan C. Frey, Abhishek Raizada, Vishwanathan Rajaraman, Sai Aparna Saiprasad, Xiaoxin Tang, Aleksandra Vojvodic. MXene Materials for the Electrochemical Nitrogen Reduction—Functionalized or Not?. ACS Catalysis 2020, 10 (1) , 253-264. https://doi.org/10.1021/acscatal.9b01925
    72. Ross D. Milton, Shelley D. Minteer. Nitrogenase Bioelectrochemistry for Synthesis Applications. Accounts of Chemical Research 2019, 52 (12) , 3351-3360. https://doi.org/10.1021/acs.accounts.9b00494
    73. Jakob Kibsgaard, Jens K. Nørskov, Ib Chorkendorff. The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters 2019, 4 (12) , 2986-2988. https://doi.org/10.1021/acsenergylett.9b02286
    74. Jing Zhang, Xiaoyin Tian, Mingjie Liu, Hua Guo, Jiadong Zhou, Qiyi Fang, Zheng Liu, Qin Wu, Jun Lou. Cobalt-Modulated Molybdenum–Dinitrogen Interaction in MoS2 for Catalyzing Ammonia Synthesis. Journal of the American Chemical Society 2019, 141 (49) , 19269-19275. https://doi.org/10.1021/jacs.9b02501
    75. M. Qadri E. Mubarak, Sam P. de Visser. Second-Coordination Sphere Effect on the Reactivity of Vanadium–Peroxo Complexes: A Computational Study. Inorganic Chemistry 2019, 58 (23) , 15741-15750. https://doi.org/10.1021/acs.inorgchem.9b01778
    76. David P. Hickey, Rong Cai, Zhi-Yong Yang, Katharina Grunau, Oliver Einsle, Lance C. Seefeldt, Shelley D. Minteer. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase. Journal of the American Chemical Society 2019, 141 (43) , 17150-17157. https://doi.org/10.1021/jacs.9b06546
    77. Tianfei Liu, Robin Tyburski, Shihuai Wang, Ricardo Fernández-Terán, Sascha Ott, Leif Hammarström. Elucidating Proton-Coupled Electron Transfer Mechanisms of Metal Hydrides with Free Energy- and Pressure-Dependent Kinetics. Journal of the American Chemical Society 2019, 141 (43) , 17245-17259. https://doi.org/10.1021/jacs.9b08189
    78. Guodong Rao, Katherine B. Alwan, Ninian J. Blackburn, R. David Britt. Incorporation of Ni2+, Co2+, and Selenocysteine into the Auxiliary Fe-S Cluster of the Radical SAM Enzyme HydG. Inorganic Chemistry 2019, 58 (19) , 12601-12608. https://doi.org/10.1021/acs.inorgchem.9b01293
    79. Cooper Citek, Paul H. Oyala, Jonas C. Peters. Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes. Journal of the American Chemical Society 2019, 141 (38) , 15211-15221. https://doi.org/10.1021/jacs.9b06987
    80. Casey Van Stappen, Roman Davydov, Zhi-Yong Yang, Ruixi Fan, Yisong Guo, Eckhard Bill, Lance C. Seefeldt, Brian M. Hoffman, Serena DeBeer. Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorganic Chemistry 2019, 58 (18) , 12365-12376. https://doi.org/10.1021/acs.inorgchem.9b01951
    81. Kelly E. Aldrich, B. Scott Fales, Amrendra K. Singh, Richard J. Staples, Benjamin G. Levine, John McCracken, Milton R. Smith, III, Aaron L. Odom. Electronic and Structural Comparisons between Iron(II/III) and Ruthenium(II/III) Imide Analogs. Inorganic Chemistry 2019, 58 (17) , 11699-11715. https://doi.org/10.1021/acs.inorgchem.9b01672
    82. Lili Cao, Melanie C. Börner, Justin Bergmann, Octav Caldararu, Ulf Ryde. Geometry and Electronic Structure of the P-Cluster in Nitrogenase Studied by Combined Quantum Mechanical and Molecular Mechanical Calculations and Quantum Refinement. Inorganic Chemistry 2019, 58 (15) , 9672-9690. https://doi.org/10.1021/acs.inorgchem.9b00400
    83. Chengbo Li, Jiali Yu, Li Yang, Jinxiu Zhao, Wenhan Kong, Ting Wang, Abdullah M. Asiri, Quan Li, Xuping Sun. Spinel LiMn2O4 Nanofiber: An Efficient Electrocatalyst for N2 Reduction to NH3 under Ambient Conditions. Inorganic Chemistry 2019, 58 (15) , 9597-9601. https://doi.org/10.1021/acs.inorgchem.9b01707
    84. Shijian Luo, Xiaoman Li, Baohai Zhang, Zhenglong Luo, Min Luo. MOF-Derived Co3O4@NC with Core–Shell Structures for N2 Electrochemical Reduction under Ambient Conditions. ACS Applied Materials & Interfaces 2019, 11 (30) , 26891-26897. https://doi.org/10.1021/acsami.9b07100
    85. Veronika Hoeke, Laura Tociu, David A. Case, Lance C. Seefeldt, Simone Raugei, Brian M. Hoffman. High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E4(4H). Journal of the American Chemical Society 2019, 141 (30) , 11984-11996. https://doi.org/10.1021/jacs.9b04474
    86. Derek F. Harris, Dmitriy A. Lukoyanov, Hayden Kallas, Christian Trncik, Zhi-Yong Yang, Phil Compton, Neil Kelleher, Oliver Einsle, Dennis R. Dean, Brian M. Hoffman, Lance C. Seefeldt. Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N2 Reduction. Biochemistry 2019, 58 (30) , 3293-3301. https://doi.org/10.1021/acs.biochem.9b00468
    87. Sivathmeehan Yogendra, Thomas Weyhermüller, Anselm W. Hahn, Serena DeBeer. From Ylides to Doubly Yldiide-Bridged Iron(II) High Spin Dimers via Self-Protolysis. Inorganic Chemistry 2019, 58 (14) , 9358-9367. https://doi.org/10.1021/acs.inorgchem.9b01086
    88. Hannah L. Rutledge, Jonathan Rittle, Laura M. Williamson, Wanqing A. Xu, Derek M. Gagnon, F. Akif Tezcan. Redox-Dependent Metastability of the Nitrogenase P-Cluster. Journal of the American Chemical Society 2019, 141 (25) , 10091-10098. https://doi.org/10.1021/jacs.9b04555
    89. Mark A. Nesbit, Paul H. Oyala, Jonas C. Peters. Characterization of the Earliest Intermediate of Fe-N2 Protonation: CW and Pulse EPR Detection of an Fe-NNH Species and Its Evolution to Fe-NNH2+. Journal of the American Chemical Society 2019, 141 (20) , 8116-8127. https://doi.org/10.1021/jacs.8b12082
    90. Chi Chung Lee, Martin T. Stiebritz, Yilin Hu. Reactivity of [Fe4S4] Clusters toward C1 Substrates: Mechanism, Implications, and Potential Applications. Accounts of Chemical Research 2019, 52 (5) , 1168-1176. https://doi.org/10.1021/acs.accounts.9b00063
    91. Codrina V. Popescu, Shengda Ding, Pokhraj Ghosh, Michael B. Hall, Morgan Cohara. Mössbauer Spectroscopy and Theoretical Studies of Iron Bimetallic Complexes Showing Electrocatalytic Hydrogen Evolution. Inorganic Chemistry 2019, 58 (10) , 7069-7077. https://doi.org/10.1021/acs.inorgchem.9b00746
    92. Manuel Gómez, Juan Ignacio González-Pérez, Cristina Hernández-Prieto, Avelino Martín, Miguel Mena, Cristina Santamaría, Manuel Temprado. Molecular Design of Cyclopentadienyl Tantalum Sulfide Complexes. Inorganic Chemistry 2019, 58 (9) , 5593-5602. https://doi.org/10.1021/acs.inorgchem.8b03563
    93. Alexandra C. Brown, Daniel L. M. Suess. Controlling Substrate Binding to Fe4S4 Clusters through Remote Steric Effects. Inorganic Chemistry 2019, 58 (8) , 5273-5280. https://doi.org/10.1021/acs.inorgchem.9b00360
    94. Wanghui Zhao, Lifu Zhang, Qiquan Luo, Zhenpeng Hu, Wenhua Zhang, Sean Smith, Jinlong Yang. Single Mo1(Cr1) Atom on Nitrogen-Doped Graphene Enables Highly Selective Electroreduction of Nitrogen into Ammonia. ACS Catalysis 2019, 9 (4) , 3419-3425. https://doi.org/10.1021/acscatal.8b05061
    95. Yong Wang, Jun Mao, Xianguang Meng, Liang Yu, Dehui Deng, Xinhe Bao. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews 2019, 119 (3) , 1806-1854. https://doi.org/10.1021/acs.chemrev.8b00501
    96. Takanori Shima, Gen Luo, Shaowei Hu, Yi Luo, Zhaomin Hou. Experimental and Computational Studies of Dinitrogen Activation and Hydrogenation at a Tetranuclear Titanium Imide/Hydride Framework. Journal of the American Chemical Society 2019, 141 (6) , 2713-2720. https://doi.org/10.1021/jacs.8b13341
    97. Albert Th. Thorhallsson, Ragnar Bjornsson. Computational Mechanistic Study of [MoFe3S4] Cubanes for Catalytic Reduction of Nitrogenase Substrates. Inorganic Chemistry 2019, 58 (3) , 1886-1894. https://doi.org/10.1021/acs.inorgchem.8b02669
    98. Artavazd Badalyan, Zhi-Yong Yang, Lance C. Seefeldt. A Voltammetric Study of Nitrogenase Catalysis Using Electron Transfer Mediators. ACS Catalysis 2019, 9 (2) , 1366-1372. https://doi.org/10.1021/acscatal.8b04290
    99. Solène Bouchard, Maurizio Bruschi, Luca De Gioia, Christine Le Roy, François Y. Pétillon, Philippe Schollhammer, Jean Talarmin. FeMo Heterobimetallic Dithiolate Complexes: Investigation of Their Electron Transfer Chemistry and Reactivity toward Acids, a Density Functional Theory Rationalization. Inorganic Chemistry 2019, 58 (1) , 679-694. https://doi.org/10.1021/acs.inorgchem.8b02861
    100. Dawei Yang, Sunlin Xu, Yixin Zhang, Ying Li, Yang Li, Baomin Wang, Jingping Qu. Reactivity toward Unsaturated Small Molecules of Thiolate-Bridged Diiron Hydride Complexes. Inorganic Chemistry 2018, 57 (24) , 15198-15204. https://doi.org/10.1021/acs.inorgchem.8b02459
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect