ACS Publications. Most Trusted. Most Cited. Most Read
Effects of Peripheral Substituents on the Electronic Structure and Properties of Unligated and Ligated Metal Phthalocyanines, Metal = Fe, Co, Zn
My Activity

Figure 1Loading Img
    Article

    Effects of Peripheral Substituents on the Electronic Structure and Properties of Unligated and Ligated Metal Phthalocyanines, Metal = Fe, Co, Zn
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, P.O. Box 17910, Jackson State University, Jackson, Mississippi 39217, Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, and Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300
    Other Access Options

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2005, 1, 6, 1201–1210
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct050105y
    Published August 27, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The effects of peripheral, multiple −F as well as −C2F5 substituents, on the electronic structure and properties of unligated and ligated metal phthalocyanines, PcM, PcM(acetone)2 (M = Fe, Co, Zn), PcZn(Cl), and PcZn(Cl-), have been investigated using a DFT method. The calculations provide a clear explanation for the changes in the ground state, molecular orbital (MO) energy levels, ionization potentials (IP), electron affinities (EA), charge distribution on the metal (QM), axial binding energies, and in electronic spectra. While the strongly electron-withdrawing −C2F5 groups on the Pc ring change the ground state of PcFe, they do not influence the ground state of PcCo. The IP is increased by ∼1.3 eV from H16PcM to F16PcM and by another ∼1.1 eV from F16PcM to F48PcM. A similar increase in the EA is also found on going from H16PcM to F48PcM. Substitution by the −C2F5 groups also considerably increases the binding strength between PcM and the electron-donating axial ligand(s). Numerous changes in chemical and physical properties observed for the F64PcM compounds can be accounted for by the calculated results.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Jackson State University.

    §

     Utah State University.

    *

     Corresponding author e-mail:  [email protected].

     New Jersey Institute of Technology.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 49 publications.

    1. Soraya Y. Flores, Jean Gonzalez-Espiet, Juan Cintrón, Nerida De Jesus Villanueva, Fernando E. Camino, Kim Kisslinger, Dalice M. Piñero Cruz, Ruben Díaz Rivera, Luis F. Fonseca. Fluorinated Iron and Cobalt Phthalocyanine Nanowire Chemiresistors for Environmental Gas Monitoring at Parts-per-Billion Levels. ACS Applied Nano Materials 2022, 5 (4) , 4688-4699. https://doi.org/10.1021/acsanm.1c04039
    2. Katharina Greulich, Martin Trautmann, Axel Belser, Sven Bölke, Reimer Karstens, Peter Nagel, Stefan Schuppler, Michael Merz, Angelika Chassé, Thomas Chassé, Heiko Peisert. Influence of the Fluorination of Iron Phthalocyanine on the Electronic Structure of the Central Metal Atom. The Journal of Physical Chemistry C 2021, 125 (12) , 6851-6861. https://doi.org/10.1021/acs.jpcc.0c11591
    3. Aylin Aykanat, Zheng Meng, Georganna Benedetto, Katherine A. Mirica. Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials. Chemistry of Materials 2020, 32 (13) , 5372-5409. https://doi.org/10.1021/acs.chemmater.9b05289
    4. Qi Wang, Antoni Franco-Cañellas, Jiacheng Yang, Julian Hausch, Samuel Struzek, Mengting Chen, Pardeep Kumar Thakur, Alexander Gerlach, Steffen Duhm, Frank Schreiber. Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Applied Materials & Interfaces 2020, 12 (12) , 14542-14551. https://doi.org/10.1021/acsami.9b22812
    5. Abdul Azeez, Lauren Polio, James E. Hanson, Sergiu M. Gorun. Photoreactive Superhydrophobic Organic–Inorganic Hybrid Materials Composed of Poly(vinylidene fluoride) and Titanium Dioxide-Supported Perfluorinated Phthalocyanines. ACS Applied Polymer Materials 2019, 1 (6) , 1514-1523. https://doi.org/10.1021/acsapm.9b00273
    6. Maciej Kopeć, Anna Rozpędzik, Łukasz Łapok, Thomas Geue, Andre Laschewsky, and Szczepan Zapotoczny . Stratified Micellar Multilayers—Toward Nanostructured Photoreactors. Chemistry of Materials 2016, 28 (7) , 2219-2228. https://doi.org/10.1021/acs.chemmater.6b00161
    7. Patrick J. Dwyer, Rory J. Vander Valk, Vito Caltaldo, David Demianicz, and Stephen P. Kelty . All-Atom CHARMM Force Field and Bulk Properties of Perfluorozinc Phthalocyanines. The Journal of Physical Chemistry A 2014, 118 (49) , 11583-11590. https://doi.org/10.1021/jp506601e
    8. Łukasz Łapok, Martin Lener, Olga Tsaryova, Stefanie Nagel, Christopher Keil, Robert Gerdes, Derck Schlettwein, and Sergiu M. Gorun . Structures and Redox Characteristics of Electron-Deficient Vanadyl Phthalocyanines. Inorganic Chemistry 2011, 50 (9) , 4086-4091. https://doi.org/10.1021/ic2000365
    9. Zhenpeng Hu, Bin Li, Aidi Zhao, Jinlong Yang and J. G. Hou. Electronic and Magnetic Properties of Metal Phthalocyanines on Au(111) Surface: A First-Principles Study. The Journal of Physical Chemistry C 2008, 112 (35) , 13650-13655. https://doi.org/10.1021/jp8043048
    10. Jan Andzelm,, Adam M. Rawlett,, Joshua A. Orlicki, and, James F. Snyder, , Kim K. Baldridge. Optical Properties of Phthalocyanine and Naphthalocyanine Compounds. Journal of Chemical Theory and Computation 2007, 3 (3) , 870-877. https://doi.org/10.1021/ct700017b
    11. H. Abramczyk,, B. Brożek-Płuska,, K. Kurczewski,, M. Kurczewska,, I. Szymczyk,, P. Krzyczmonik,, T. Błaszczyk,, H. Scholl, and, W. Czajkowski. Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions. The Journal of Physical Chemistry A 2006, 110 (28) , 8627-8636. https://doi.org/10.1021/jp060322a
    12. Wenfeng Hu, Bingyi Song, Liming Yang. Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis. ENERGY & ENVIRONMENTAL MATERIALS 2025, https://doi.org/10.1002/eem2.12888
    13. Esma Birsen Boydas, Michael Roemelt. The trials and triumphs of modelling X-ray absorption spectra of transition metal phthalocyanines. Physical Chemistry Chemical Physics 2024, 26 (30) , 20376-20387. https://doi.org/10.1039/D4CP01900H
    14. Victoria Ivanova, Darya Klyamer, Gülenay Tunç, Fatma Dinçer Gürbüz, Devrim Atilla, Ayşe Gül Gürek, Aleksandr Sukhikh, Tamara Basova. Films of substituted zinc phthalocyanines as active layers of chemiresistive sensors for ammonia detection. New Journal of Chemistry 2023, 47 (42) , 19633-19645. https://doi.org/10.1039/D3NJ03400C
    15. Asma Rahali, Andres de la Escosura, Tomás Torres, Raoudha Abderrahim. Photophysical properties of novel tetra-3-substituted phthalocyanines of Zn(II), Cu(II) and Pd(II). Journal of Porphyrins and Phthalocyanines 2022, 26 (12) , 844-852. https://doi.org/10.1142/S1088424622500614
    16. Florian Puls, Felix Seewald, Vadim Grinenko, Hans‐Henning Klauß, Hans‐Joachim Knölker. Mechanistic Studies on the Hexadecafluorophthalocyanine–Iron‐Catalyzed Wacker‐Type Oxidation of Olefins to Ketones**. Chemistry – A European Journal 2021, 27 (67) , 16776-16787. https://doi.org/10.1002/chem.202102848
    17. M.E. Emetere, M. Ahiara Ikechukwu. Synthesis and characterization of properties of zinc coated Thaumatococcus daniellii extracts for solid state application. IOP Conference Series: Materials Science and Engineering 2020, 958 (1) , 012002. https://doi.org/10.1088/1757-899X/958/1/012002
    18. Alexander Purtsas, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C Cross‐Coupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant**. Chemistry – A European Journal 2020, 26 (11) , 2499-2508. https://doi.org/10.1002/chem.201905595
    19. Florian Puls, Hans‐Joachim Knölker. Conversion of Olefins into Ketones by an Iron‐Catalyzed Wacker‐type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie 2018, 130 (5) , 1236-1240. https://doi.org/10.1002/ange.201710370
    20. Florian Puls, Hans‐Joachim Knölker. Conversion of Olefins into Ketones by an Iron‐Catalyzed Wacker‐type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie International Edition 2018, 57 (5) , 1222-1226. https://doi.org/10.1002/anie.201710370
    21. Christian Brütting, Raphael F. Fritsche, Sebastian K. Kutz, Carsten Börger, Arndt W. Schmidt, Olga Kataeva, Hans‐Joachim Knölker. Synthesis of 1,1′‐ and 2,2′‐Bicarbazole Alkaloids by Iron(III)‐Catalyzed Oxidative Coupling of 2‐ and 1‐Hydroxycarbazoles. Chemistry – A European Journal 2018, 24 (2) , 458-470. https://doi.org/10.1002/chem.201704554
    22. Amal Kumar Mandal, Javeed Mahmood, Jong‐Beom Baek. Two‐Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat 2017, 3 (6) , 373-391. https://doi.org/10.1002/cnma.201700048
    23. Raphael F. Fritsche, Gabriele Theumer, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie 2017, 129 (2) , 564-568. https://doi.org/10.1002/ange.201610168
    24. Raphael F. Fritsche, Gabriele Theumer, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie International Edition 2017, 56 (2) , 549-553. https://doi.org/10.1002/anie.201610168
    25. Palanisamy Muthukumar, Hak-Soo Kim, Kyo-Sun Ku, Jong Ho Park, Young-A. Son. Synthesis, characterization and aggregation and fluorescence properties of novel highly soluble zinc phthalocyanines bearing tetrakis-4-(3-(piperidin-1-yl)phenoxy) with tetra and dodecachloro substituents. Fibers and Polymers 2016, 17 (4) , 553-559. https://doi.org/10.1007/s12221-016-5812-5
    26. Patrick J. Dwyer, Rory J. Vander Valk, Stephen P. Kelty. Chemically Robust Phthalocyanines: Photosensitizer and Electron Shuttle in Solid State Dye Sensitized Solar Cells. MRS Proceedings 2015, 1784 https://doi.org/10.1557/opl.2015.593
    27. Maciej Kopeć, Łukasz Łapok, Andre Laschewsky, Szczepan Zapotoczny, Maria Nowakowska. Polyelectrolyte multilayers with perfluorinated phthalocyanine selectively entrapped inside the perfluorinated nanocompartments. Soft Matter 2014, 10 (10) , 1481-1488. https://doi.org/10.1039/C2SM26938D
    28. Jian Zhou, Qiang Sun. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. Nanoscale 2014, 6 (1) , 328-333. https://doi.org/10.1039/C3NR04041K
    29. T. Kroll, R. Kraus, R. Schönfelder, V. Yu. Aristov, O. V. Molodtsova, P. Hoffmann, M. Knupfer. Transition metal phthalocyanines: Insight into the electronic structure from soft x-ray spectroscopy. The Journal of Chemical Physics 2012, 137 (5) https://doi.org/10.1063/1.4738754
    30. Xuesong Ding, Xiao Feng, Akinori Saeki, Shu Seki, Atsushi Nagai, Donglin Jiang. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions. Chemical Communications 2012, 48 (71) , 8952. https://doi.org/10.1039/c2cc33929c
    31. Zafer Odabaş, Ahmet Altındal, Mustafa Bulut. Synthesis, characterization and electrical properties of novel metal-free, Co(II), Cu(II), Fe(II), Mn(II), Sn(II) phthalocyanines peripherally tetra-substituted with 2,3-dihydro-1H-inden-5-yloxy moiety. Synthetic Metals 2011, 161 (15-16) , 1742-1752. https://doi.org/10.1016/j.synthmet.2011.06.018
    32. William C. Trogler. Chemical Sensing with Semiconducting Metal Phthalocyanines. 2011, 91-117. https://doi.org/10.1007/430_2011_59
    33. Andrei Loas, Robert Gerdes, Yongyi Zhang, Sergiu M. Gorun. Broadening the reactivity spectrum of a phthalocyanine catalyst while suppressing its nucleophilic, electrophilic and radical degradation pathways. Dalton Transactions 2011, 40 (19) , 5162. https://doi.org/10.1039/c1dt10458f
    34. Viatcheslav G. Zakrzewski, Olga Dolgounitcheva, Alexander V. Zakjevskii, J. V. Ortiz. Ab initio electron propagator methods: Applications to nucleic acids fragments and metallophthalocyanines. International Journal of Quantum Chemistry 2010, 110 (15) , 2918-2930. https://doi.org/10.1002/qua.22836
    35. Banibrata Das, Etsuko Tokunaga, Motohiro Tanaka, Takuma Sasaki, Norio Shibata. Perfluoroisopropyl Zinc Phthalocyanines Conjugated with Deoxyribonucleosides: Synthesis, Photophysical Properties and In Vitro Photodynamic Activities. European Journal of Organic Chemistry 2010, 2010 (15) , 2878-2884. https://doi.org/10.1002/ejoc.201000179
    36. Ingmar Bruder, Jan Schöneboom, Robert Dinnebier, Antti Ojala, Stefan Schäfer, Rüdiger Sens, Peter Erk, Jürgen Weis. What determines the performance of metal phthalocyanines (MPc, M=Zn, Cu, Ni, Fe) in organic heterojunction solar cells? A combined experimental and theoretical investigation. Organic Electronics 2010, 11 (3) , 377-387. https://doi.org/10.1016/j.orgel.2009.11.016
    37. Viatcheslav G. Zakrzewski, Olga Dolgounitcheva, J. V. Ortiz. Strong correlation effects in the electron binding energies of phthalocyanine. International Journal of Quantum Chemistry 2009, 109 (15) , 3619-3625. https://doi.org/10.1002/qua.22360
    38. Norio Shibata, Banibrata Das, Masamichi Hayashi, Shuichi Nakamura, Takeshi Toru. Synthesis, photophysical and electrochemical properties of perfluoroisopropyl substituted binuclear phthalocyanine conjugated with a butadiyne linker. Journal of Fluorine Chemistry 2009, 130 (12) , 1164-1170. https://doi.org/10.1016/j.jfluchem.2009.06.023
    39. C. Keil, O. Tsaryova, L. Lapok, C. Himcinschi, D. Wöhrle, O.R. Hild, D.R.T. Zahn, S.M. Gorun, D. Schlettwein. Growth and characterization of thin films prepared from perfluoro-isopropyl-substituted perfluorophthalocyanines. Thin Solid Films 2009, 517 (15) , 4379-4384. https://doi.org/10.1016/j.tsf.2009.01.070
    40. Kelly K. McGrath, Kyoungmi Jang, Kathleen A. Robins, Dong‐Chan Lee. Substituent Effect on the Electronic Properties and Morphologies of Self‐Assembling Bisphenazine Derivatives. Chemistry – A European Journal 2009, 15 (16) , 4070-4077. https://doi.org/10.1002/chem.200802148
    41. Ryan Baker, David P. Wilkinson, Jiujun Zhang. Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment. Electrochimica Acta 2009, 54 (11) , 3098-3102. https://doi.org/10.1016/j.electacta.2008.12.003
    42. B. Brożek-Płuska, A. Jarota, K. Kurczewski, H. Abramczyk. Photochemistry of tetrasulphonated zinc phthalocyanine in water and DMSO solutions by absorption, emission, Raman spectroscopy and femtosecond transient absorption spectroscopy. Journal of Molecular Structure 2009, 924-926 , 338-346. https://doi.org/10.1016/j.molstruc.2008.10.060
    43. K. Flatz, M. Grobosch, M. Knupfer. The electronic excitation spectrum of CuPcF16 films. Applied Physics A 2009, 94 (1) , 179-183. https://doi.org/10.1007/s00339-008-4730-9
    44. Samia Kahlal, Arnaud Mentec, Annick Pondaven, Maurice L’Her, Jean-Yves Saillard. Substituent effect in unsymmetrical lutetium bisphthalocyanines: a DFT analysis. New J. Chem. 2009, 33 (3) , 574-582. https://doi.org/10.1039/B810131K
    45. Sergiu M. Gorun, Jerome W. Rathke, Michael J. Chen. Long-range solid-state ordering and high geometric distortions induced in phthalocyanines by small fluoroalkyl groups. Dalton Trans. 2009, 123 (7) , 1095-1097. https://doi.org/10.1039/B821000B
    46. Robert Gerdes, Lukasz Lapok, Olga Tsaryova, Dieter Wöhrle, Sergiu M. Gorun. Rational design of a reactive yet stable organic-based photocatalyst. Dalton Transactions 2009, 416 (7) , 1098. https://doi.org/10.1039/b822111c
    47. Devrim Atilla, Gökhan Aslıbay, Ayşe G. Gürek, Hatice Can, Vefa Ahsen. Synthesis and characterization of liquid crystalline tetra- and octa-substituted novel phthalocyanines. Polyhedron 2007, 26 (5) , 1061-1069. https://doi.org/10.1016/j.poly.2006.09.105
    48. Xue Cai, Yuexing Zhang, Xianxi Zhang, Jianzhuang Jiang. Structures and properties of 2,3,9,10,16,17,23,24-octasubstituted phthalocyaninato-lead complexes: The substitutional effect study on the basis of density functional theory calculations. Journal of Molecular Structure: THEOCHEM 2006, 801 (1-3) , 71-80. https://doi.org/10.1016/j.theochem.2006.08.060
    49. Refael Minnes, Hana Weitman, Hyun‐Jin Lee, Sergiu M. Gorun, Benjamin Ehrenberg. Enhanced Acidity, Photophysical Properties and Liposome Binding of Perfluoroalkylated Phthalocyanines Lacking C‐H Bonds. Photochemistry and Photobiology 2006, 82 (2) , 593-599. https://doi.org/10.1562/2005-11-08-RA-732

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2005, 1, 6, 1201–1210
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct050105y
    Published August 27, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    924

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.