Effects of Peripheral Substituents on the Electronic Structure and Properties of Unligated and Ligated Metal Phthalocyanines, Metal = Fe, Co, ZnClick to copy article linkArticle link copied!
Abstract
The effects of peripheral, multiple −F as well as −C2F5 substituents, on the electronic structure and properties of unligated and ligated metal phthalocyanines, PcM, PcM(acetone)2 (M = Fe, Co, Zn), PcZn(Cl), and PcZn(Cl-), have been investigated using a DFT method. The calculations provide a clear explanation for the changes in the ground state, molecular orbital (MO) energy levels, ionization potentials (IP), electron affinities (EA), charge distribution on the metal (QM), axial binding energies, and in electronic spectra. While the strongly electron-withdrawing −C2F5 groups on the Pc ring change the ground state of PcFe, they do not influence the ground state of PcCo. The IP is increased by ∼1.3 eV from H16PcM to F16PcM and by another ∼1.1 eV from F16PcM to F48PcM. A similar increase in the EA is also found on going from H16PcM to F48PcM. Substitution by the −C2F5 groups also considerably increases the binding strength between PcM and the electron-donating axial ligand(s). Numerous changes in chemical and physical properties observed for the F64PcM compounds can be accounted for by the calculated results.
†
Jackson State University.
§
Utah State University.
*
Corresponding author e-mail: [email protected].
‡
New Jersey Institute of Technology.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 49 publications.
- Soraya Y. Flores, Jean Gonzalez-Espiet, Juan Cintrón, Nerida De Jesus Villanueva, Fernando E. Camino, Kim Kisslinger, Dalice M. Piñero Cruz, Ruben Díaz Rivera, Luis F. Fonseca. Fluorinated Iron and Cobalt Phthalocyanine Nanowire Chemiresistors for Environmental Gas Monitoring at Parts-per-Billion Levels. ACS Applied Nano Materials 2022, 5
(4)
, 4688-4699. https://doi.org/10.1021/acsanm.1c04039
- Katharina Greulich, Martin Trautmann, Axel Belser, Sven Bölke, Reimer Karstens, Peter Nagel, Stefan Schuppler, Michael Merz, Angelika Chassé, Thomas Chassé, Heiko Peisert. Influence of the Fluorination of Iron Phthalocyanine on the Electronic Structure of the Central Metal Atom. The Journal of Physical Chemistry C 2021, 125
(12)
, 6851-6861. https://doi.org/10.1021/acs.jpcc.0c11591
- Aylin Aykanat, Zheng Meng, Georganna Benedetto, Katherine A. Mirica. Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials. Chemistry of Materials 2020, 32
(13)
, 5372-5409. https://doi.org/10.1021/acs.chemmater.9b05289
- Qi Wang, Antoni Franco-Cañellas, Jiacheng Yang, Julian Hausch, Samuel Struzek, Mengting Chen, Pardeep Kumar Thakur, Alexander Gerlach, Steffen Duhm, Frank Schreiber. Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Applied Materials & Interfaces 2020, 12
(12)
, 14542-14551. https://doi.org/10.1021/acsami.9b22812
- Abdul Azeez, Lauren Polio, James E. Hanson, Sergiu M. Gorun. Photoreactive Superhydrophobic Organic–Inorganic Hybrid Materials Composed of Poly(vinylidene fluoride) and Titanium Dioxide-Supported Perfluorinated Phthalocyanines. ACS Applied Polymer Materials 2019, 1
(6)
, 1514-1523. https://doi.org/10.1021/acsapm.9b00273
- Maciej Kopeć, Anna Rozpędzik, Łukasz Łapok, Thomas Geue, Andre Laschewsky, and Szczepan Zapotoczny . Stratified Micellar Multilayers—Toward Nanostructured Photoreactors. Chemistry of Materials 2016, 28
(7)
, 2219-2228. https://doi.org/10.1021/acs.chemmater.6b00161
- Patrick J. Dwyer, Rory J. Vander Valk, Vito Caltaldo, David Demianicz, and Stephen P. Kelty . All-Atom CHARMM Force Field and Bulk Properties of Perfluorozinc Phthalocyanines. The Journal of Physical Chemistry A 2014, 118
(49)
, 11583-11590. https://doi.org/10.1021/jp506601e
- Łukasz Łapok, Martin Lener, Olga Tsaryova, Stefanie Nagel, Christopher Keil, Robert Gerdes, Derck Schlettwein, and Sergiu M. Gorun . Structures and Redox Characteristics of Electron-Deficient Vanadyl Phthalocyanines. Inorganic Chemistry 2011, 50
(9)
, 4086-4091. https://doi.org/10.1021/ic2000365
- Zhenpeng Hu, Bin Li, Aidi Zhao, Jinlong Yang and J. G. Hou. Electronic and Magnetic Properties of Metal Phthalocyanines on Au(111) Surface: A First-Principles Study. The Journal of Physical Chemistry C 2008, 112
(35)
, 13650-13655. https://doi.org/10.1021/jp8043048
- Jan Andzelm,, Adam M. Rawlett,, Joshua A. Orlicki, and, James F. Snyder, , Kim K. Baldridge. Optical Properties of Phthalocyanine and Naphthalocyanine Compounds. Journal of Chemical Theory and Computation 2007, 3
(3)
, 870-877. https://doi.org/10.1021/ct700017b
- H. Abramczyk,, B. Brożek-Płuska,, K. Kurczewski,, M. Kurczewska,, I. Szymczyk,, P. Krzyczmonik,, T. Błaszczyk,, H. Scholl, and, W. Czajkowski. Femtosecond Transient Absorption, Raman, and Electrochemistry Studies of Tetrasulfonated Copper Phthalocyanine in Water Solutions. The Journal of Physical Chemistry A 2006, 110
(28)
, 8627-8636. https://doi.org/10.1021/jp060322a
- Wenfeng Hu, Bingyi Song, Liming Yang. Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis. ENERGY & ENVIRONMENTAL MATERIALS 2025, https://doi.org/10.1002/eem2.12888
- Esma Birsen Boydas, Michael Roemelt. The trials and triumphs of modelling X-ray absorption spectra of transition metal phthalocyanines. Physical Chemistry Chemical Physics 2024, 26
(30)
, 20376-20387. https://doi.org/10.1039/D4CP01900H
- Victoria Ivanova, Darya Klyamer, Gülenay Tunç, Fatma Dinçer Gürbüz, Devrim Atilla, Ayşe Gül Gürek, Aleksandr Sukhikh, Tamara Basova. Films of substituted zinc phthalocyanines as active layers of chemiresistive sensors for ammonia detection. New Journal of Chemistry 2023, 47
(42)
, 19633-19645. https://doi.org/10.1039/D3NJ03400C
- Asma Rahali, Andres de la Escosura, Tomás Torres, Raoudha Abderrahim. Photophysical properties of novel tetra-3-substituted phthalocyanines of Zn(II), Cu(II) and Pd(II). Journal of Porphyrins and Phthalocyanines 2022, 26
(12)
, 844-852. https://doi.org/10.1142/S1088424622500614
- Florian Puls, Felix Seewald, Vadim Grinenko, Hans‐Henning Klauß, Hans‐Joachim Knölker. Mechanistic Studies on the Hexadecafluorophthalocyanine–Iron‐Catalyzed Wacker‐Type Oxidation of Olefins to Ketones**. Chemistry – A European Journal 2021, 27
(67)
, 16776-16787. https://doi.org/10.1002/chem.202102848
- M.E. Emetere, M. Ahiara Ikechukwu. Synthesis and characterization of properties of zinc coated Thaumatococcus daniellii extracts for solid state application. IOP Conference Series: Materials Science and Engineering 2020, 958
(1)
, 012002. https://doi.org/10.1088/1757-899X/958/1/012002
- Alexander Purtsas, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C Cross‐Coupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant**. Chemistry – A European Journal 2020, 26
(11)
, 2499-2508. https://doi.org/10.1002/chem.201905595
- Florian Puls, Hans‐Joachim Knölker. Conversion of Olefins into Ketones by an Iron‐Catalyzed Wacker‐type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie 2018, 130
(5)
, 1236-1240. https://doi.org/10.1002/ange.201710370
- Florian Puls, Hans‐Joachim Knölker. Conversion of Olefins into Ketones by an Iron‐Catalyzed Wacker‐type Oxidation Using Oxygen as the Sole Oxidant. Angewandte Chemie International Edition 2018, 57
(5)
, 1222-1226. https://doi.org/10.1002/anie.201710370
- Christian Brütting, Raphael F. Fritsche, Sebastian K. Kutz, Carsten Börger, Arndt W. Schmidt, Olga Kataeva, Hans‐Joachim Knölker. Synthesis of 1,1′‐ and 2,2′‐Bicarbazole Alkaloids by Iron(III)‐Catalyzed Oxidative Coupling of 2‐ and 1‐Hydroxycarbazoles. Chemistry – A European Journal 2018, 24
(2)
, 458-470. https://doi.org/10.1002/chem.201704554
- Amal Kumar Mandal, Javeed Mahmood, Jong‐Beom Baek. Two‐Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat 2017, 3
(6)
, 373-391. https://doi.org/10.1002/cnma.201700048
- Raphael F. Fritsche, Gabriele Theumer, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie 2017, 129
(2)
, 564-568. https://doi.org/10.1002/ange.201610168
- Raphael F. Fritsche, Gabriele Theumer, Olga Kataeva, Hans‐Joachim Knölker. Iron‐Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angewandte Chemie International Edition 2017, 56
(2)
, 549-553. https://doi.org/10.1002/anie.201610168
- Palanisamy Muthukumar, Hak-Soo Kim, Kyo-Sun Ku, Jong Ho Park, Young-A. Son. Synthesis, characterization and aggregation and fluorescence properties of novel highly soluble zinc phthalocyanines bearing tetrakis-4-(3-(piperidin-1-yl)phenoxy) with tetra and dodecachloro substituents. Fibers and Polymers 2016, 17
(4)
, 553-559. https://doi.org/10.1007/s12221-016-5812-5
- Patrick J. Dwyer, Rory J. Vander Valk, Stephen P. Kelty. Chemically Robust Phthalocyanines: Photosensitizer and Electron Shuttle in Solid State Dye Sensitized Solar Cells. MRS Proceedings 2015, 1784 https://doi.org/10.1557/opl.2015.593
- Maciej Kopeć, Łukasz Łapok, Andre Laschewsky, Szczepan Zapotoczny, Maria Nowakowska. Polyelectrolyte multilayers with perfluorinated phthalocyanine selectively entrapped inside the perfluorinated nanocompartments. Soft Matter 2014, 10
(10)
, 1481-1488. https://doi.org/10.1039/C2SM26938D
- Jian Zhou, Qiang Sun. Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. Nanoscale 2014, 6
(1)
, 328-333. https://doi.org/10.1039/C3NR04041K
- T. Kroll, R. Kraus, R. Schönfelder, V. Yu. Aristov, O. V. Molodtsova, P. Hoffmann, M. Knupfer. Transition metal phthalocyanines: Insight into the electronic structure from soft x-ray spectroscopy. The Journal of Chemical Physics 2012, 137
(5)
https://doi.org/10.1063/1.4738754
- Xuesong Ding, Xiao Feng, Akinori Saeki, Shu Seki, Atsushi Nagai, Donglin Jiang. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions. Chemical Communications 2012, 48
(71)
, 8952. https://doi.org/10.1039/c2cc33929c
- Zafer Odabaş, Ahmet Altındal, Mustafa Bulut. Synthesis, characterization and electrical properties of novel metal-free, Co(II), Cu(II), Fe(II), Mn(II), Sn(II) phthalocyanines peripherally tetra-substituted with 2,3-dihydro-1H-inden-5-yloxy moiety. Synthetic Metals 2011, 161
(15-16)
, 1742-1752. https://doi.org/10.1016/j.synthmet.2011.06.018
- William C. Trogler. Chemical Sensing with Semiconducting Metal Phthalocyanines. 2011, 91-117. https://doi.org/10.1007/430_2011_59
- Andrei Loas, Robert Gerdes, Yongyi Zhang, Sergiu M. Gorun. Broadening the reactivity spectrum of a phthalocyanine catalyst while suppressing its nucleophilic, electrophilic and radical degradation pathways. Dalton Transactions 2011, 40
(19)
, 5162. https://doi.org/10.1039/c1dt10458f
- Viatcheslav G. Zakrzewski, Olga Dolgounitcheva, Alexander V. Zakjevskii, J. V. Ortiz. Ab initio
electron propagator methods: Applications to nucleic acids fragments and metallophthalocyanines. International Journal of Quantum Chemistry 2010, 110
(15)
, 2918-2930. https://doi.org/10.1002/qua.22836
- Banibrata Das, Etsuko Tokunaga, Motohiro Tanaka, Takuma Sasaki, Norio Shibata. Perfluoroisopropyl Zinc Phthalocyanines Conjugated with Deoxyribonucleosides: Synthesis, Photophysical Properties and In Vitro Photodynamic Activities. European Journal of Organic Chemistry 2010, 2010
(15)
, 2878-2884. https://doi.org/10.1002/ejoc.201000179
- Ingmar Bruder, Jan Schöneboom, Robert Dinnebier, Antti Ojala, Stefan Schäfer, Rüdiger Sens, Peter Erk, Jürgen Weis. What determines the performance of metal phthalocyanines (MPc, M=Zn, Cu, Ni, Fe) in organic heterojunction solar cells? A combined experimental and theoretical investigation. Organic Electronics 2010, 11
(3)
, 377-387. https://doi.org/10.1016/j.orgel.2009.11.016
- Viatcheslav G. Zakrzewski, Olga Dolgounitcheva, J. V. Ortiz. Strong correlation effects in the electron binding energies of phthalocyanine. International Journal of Quantum Chemistry 2009, 109
(15)
, 3619-3625. https://doi.org/10.1002/qua.22360
- Norio Shibata, Banibrata Das, Masamichi Hayashi, Shuichi Nakamura, Takeshi Toru. Synthesis, photophysical and electrochemical properties of perfluoroisopropyl substituted binuclear phthalocyanine conjugated with a butadiyne linker. Journal of Fluorine Chemistry 2009, 130
(12)
, 1164-1170. https://doi.org/10.1016/j.jfluchem.2009.06.023
- C. Keil, O. Tsaryova, L. Lapok, C. Himcinschi, D. Wöhrle, O.R. Hild, D.R.T. Zahn, S.M. Gorun, D. Schlettwein. Growth and characterization of thin films prepared from perfluoro-isopropyl-substituted perfluorophthalocyanines. Thin Solid Films 2009, 517
(15)
, 4379-4384. https://doi.org/10.1016/j.tsf.2009.01.070
- Kelly K. McGrath, Kyoungmi Jang, Kathleen A. Robins, Dong‐Chan Lee. Substituent Effect on the Electronic Properties and Morphologies of Self‐Assembling Bisphenazine Derivatives. Chemistry – A European Journal 2009, 15
(16)
, 4070-4077. https://doi.org/10.1002/chem.200802148
- Ryan Baker, David P. Wilkinson, Jiujun Zhang. Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment. Electrochimica Acta 2009, 54
(11)
, 3098-3102. https://doi.org/10.1016/j.electacta.2008.12.003
- B. Brożek-Płuska, A. Jarota, K. Kurczewski, H. Abramczyk. Photochemistry of tetrasulphonated zinc phthalocyanine in water and DMSO solutions by absorption, emission, Raman spectroscopy and femtosecond transient absorption spectroscopy. Journal of Molecular Structure 2009, 924-926 , 338-346. https://doi.org/10.1016/j.molstruc.2008.10.060
- K. Flatz, M. Grobosch, M. Knupfer. The electronic excitation spectrum of CuPcF16 films. Applied Physics A 2009, 94
(1)
, 179-183. https://doi.org/10.1007/s00339-008-4730-9
- Samia Kahlal, Arnaud Mentec, Annick Pondaven, Maurice L’Her, Jean-Yves Saillard. Substituent effect in unsymmetrical lutetium bisphthalocyanines: a DFT analysis. New J. Chem. 2009, 33
(3)
, 574-582. https://doi.org/10.1039/B810131K
- Sergiu M. Gorun, Jerome W. Rathke, Michael J. Chen. Long-range solid-state ordering and high geometric distortions induced in phthalocyanines by small fluoroalkyl groups. Dalton Trans. 2009, 123
(7)
, 1095-1097. https://doi.org/10.1039/B821000B
- Robert Gerdes, Lukasz Lapok, Olga Tsaryova, Dieter Wöhrle, Sergiu M. Gorun. Rational design of a reactive yet stable organic-based photocatalyst. Dalton Transactions 2009, 416
(7)
, 1098. https://doi.org/10.1039/b822111c
- Devrim Atilla, Gökhan Aslıbay, Ayşe G. Gürek, Hatice Can, Vefa Ahsen. Synthesis and characterization of liquid crystalline tetra- and octa-substituted novel phthalocyanines. Polyhedron 2007, 26
(5)
, 1061-1069. https://doi.org/10.1016/j.poly.2006.09.105
- Xue Cai, Yuexing Zhang, Xianxi Zhang, Jianzhuang Jiang. Structures and properties of 2,3,9,10,16,17,23,24-octasubstituted phthalocyaninato-lead complexes: The substitutional effect study on the basis of density functional theory calculations. Journal of Molecular Structure: THEOCHEM 2006, 801
(1-3)
, 71-80. https://doi.org/10.1016/j.theochem.2006.08.060
- Refael Minnes, Hana Weitman, Hyun‐Jin Lee, Sergiu M. Gorun, Benjamin Ehrenberg. Enhanced Acidity, Photophysical Properties and Liposome Binding of Perfluoroalkylated Phthalocyanines Lacking C‐H Bonds. Photochemistry and Photobiology 2006, 82
(2)
, 593-599. https://doi.org/10.1562/2005-11-08-RA-732
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.