Nuclear Quantum Effects in Water: A Multiscale StudyClick to copy article linkArticle link copied!
Abstract
We outline a method to investigate the role of nuclear quantum effects in liquid water making use of a force field derived from ab initio simulations. Starting from a first-principles molecular dynamics simulation, we obtain an effective force field for bulk liquid water using the force-matching technique. After validating that our effective model reproduces the key structural and dynamic properties of the reference system, we use it to perform path integral simulations to investigate the role played by nuclear quantum effects on bulk water, probing radial distribution functions, vibrational spectra, and hydrogen bond fluctuations. Our approach offers a practical route to derive ab initio quality molecular models to study quantum effects at a low computational cost.
Cited By
This article is cited by 44 publications.
- Margaret L. Berrens, Arpan Kundu, Marcos F. Calegari Andrade, Tuan Anh Pham, Giulia Galli, Davide Donadio. Nuclear Quantum Effects on the Electronic Structure of Water and Ice. The Journal of Physical Chemistry Letters 2024, 15
(26)
, 6818-6825. https://doi.org/10.1021/acs.jpclett.4c01315
- Zekun Chen, Margaret L. Berrens, Kam-Tung Chan, Zheyong Fan, Davide Donadio. Thermodynamics of Water and Ice from a Fast and Scalable First-Principles Neuroevolution Potential. Journal of Chemical & Engineering Data 2024, 69
(1)
, 128-140. https://doi.org/10.1021/acs.jced.3c00561
- Nicolas Cinq, Aude Simon, Fernand Louisnard, Jérôme Cuny. Accurate SCC-DFTB Parametrization of Liquid Water with Improved Atomic Charges and Iterative Boltzmann Inversion. The Journal of Physical Chemistry B 2023, 127
(35)
, 7590-7601. https://doi.org/10.1021/acs.jpcb.3c03479
- Nathan Dupertuis, Orly B. Tarun, Cornelis Lütgebaucks, Sylvie Roke. Three-Dimensional Confinement of Water: H2O Exhibits Long-Range (>50 nm) Structure while D2O Does Not. Nano Letters 2022, 22
(18)
, 7394-7400. https://doi.org/10.1021/acs.nanolett.2c02206
- Won Hee Ryu, Gregory A. Voth. Coarse-Graining of Imaginary Time Feynman Path Integrals: Inclusion of Intramolecular Interactions and Bottom-up Force-Matching. The Journal of Physical Chemistry A 2022, 126
(35)
, 6004-6019. https://doi.org/10.1021/acs.jpca.2c04349
- Axel Groß, Sung Sakong. Ab Initio Simulations of Water/Metal Interfaces. Chemical Reviews 2022, 122
(12)
, 10746-10776. https://doi.org/10.1021/acs.chemrev.1c00679
- Jérôme Cuny, Jesus Cerda Calatayud, Narjes Ansari, Ali A. Hassanali, Mathias Rapacioli, Aude Simon. Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges. The Journal of Physical Chemistry B 2020, 124
(34)
, 7421-7432. https://doi.org/10.1021/acs.jpcb.0c04167
- Rebecca K. Lindsey, Laurence E. Fried, Nir Goldman. Application of the ChIMES Force Field to Nonreactive Molecular Systems: Water at Ambient Conditions. Journal of Chemical Theory and Computation 2019, 15
(1)
, 436-447. https://doi.org/10.1021/acs.jctc.8b00831
- Tao Jiang, Stanislav Simko, Rosa E. Bulo. Accurate Quantum Mechanics/Molecular Mechanics Simulation of Aqueous Solutions with Tailored Molecular Mechanics Models. Journal of Chemical Theory and Computation 2018, 14
(8)
, 3943-3954. https://doi.org/10.1021/acs.jctc.7b01218
- Jérôme Cuny, Franck Jolibois, Iann C. Gerber. Evaluation of Gas-to-Liquid 17O Chemical Shift of Water: A Test Case for Molecular and Periodic Approaches. Journal of Chemical Theory and Computation 2018, 14
(8)
, 4041-4051. https://doi.org/10.1021/acs.jctc.8b00243
- Francesco Avanzini and Giorgio J. Moro . Quantum Molecular Trajectory and Its Statistical Properties. The Journal of Physical Chemistry A 2017, 121
(28)
, 5352-5360. https://doi.org/10.1021/acs.jpca.7b04866
- Riccardo Dettori, Michele Ceriotti, Johannes Hunger, Claudio Melis, Luciano Colombo, and Davide Donadio . Simulating Energy Relaxation in Pump–Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids. Journal of Chemical Theory and Computation 2017, 13
(3)
, 1284-1292. https://doi.org/10.1021/acs.jctc.6b01108
- Fivos Perakis, Luigi De Marco, Andrey Shalit, Fujie Tang, Zachary R. Kann, Thomas D. Kühne, Renato Torre, Mischa Bonn, Yuki Nagata. Vibrational Spectroscopy and Dynamics of Water. Chemical Reviews 2016, 116
(13)
, 7590-7607. https://doi.org/10.1021/acs.chemrev.5b00640
- Karsten Kreis, Mark E. Tuckerman, Davide Donadio, Kurt Kremer, and Raffaello Potestio . From Classical to Quantum and Back: A Hamiltonian Scheme for Adaptive Multiresolution Classical/Path-Integral Simulations. Journal of Chemical Theory and Computation 2016, 12
(7)
, 3030-3039. https://doi.org/10.1021/acs.jctc.6b00242
- Iryna Zaporozhets, Félix Musil, Venkat Kapil, Cecilia Clementi. Accurate nuclear quantum statistics on machine-learned classical effective potentials. The Journal of Chemical Physics 2024, 161
(13)
https://doi.org/10.1063/5.0226764
- Luis Alberto Ruiz Pestana, Yangchao Liao, Zhaofan Li, Wenjie Xia. Atomistic molecular modeling methods. 2023, 37-73. https://doi.org/10.1016/B978-0-12-823021-3.00006-3
- fateme razi, , mohammadali nadi, . Evaluating the effectiveness of quantum leadership skills training on thinking style and knowledge sharing behavior of school principals. Quarterly Journal of Managing Education In Organizations 2022, 10
(4)
, 13-39. https://doi.org/10.52547/meo.10.4.13
- Yi Yao, Yosuke Kanai. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional. The Journal of Chemical Physics 2020, 153
(4)
https://doi.org/10.1063/5.0012815
- Axel Groß. Theory of Solid/Electrolyte Interfaces. 2020, 471-515. https://doi.org/10.1002/9783527680603.ch56
- Axel Groß. Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. 2020, 1439-1472. https://doi.org/10.1007/978-3-319-44680-6_7
- Svenja J. Wörner, Tristan Bereau, Kurt Kremer, Joseph F. Rudzinski. Direct route to reproducing pair distribution functions with coarse-grained models via transformed atomistic cross correlations. The Journal of Chemical Physics 2019, 151
(24)
https://doi.org/10.1063/1.5131105
- A. Simon, M. Rapacioli, E. Michoulier, L. Zheng, K. Korchagina, J. Cuny. Contribution of the density-functional-based tight-binding scheme to the description of water clusters: methods, applications and extension to bulk systems. Molecular Simulation 2019, 45
(4-5)
, 249-268. https://doi.org/10.1080/08927022.2018.1554903
- Daniel C. Elton, Michelle Fritz, Marivi Fernández-Serra. Using a monomer potential energy surface to perform approximate path integral molecular dynamics simulation of
ab initio
water at near-zero added cost. Physical Chemistry Chemical Physics 2019, 21
(1)
, 409-417. https://doi.org/10.1039/C8CP06077K
- Axel Groß. Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale. Topics in Current Chemistry 2018, 376
(3)
https://doi.org/10.1007/s41061-018-0194-3
- Xinzijian Liu, Jian Liu. Critical role of quantum dynamical effects in the Raman spectroscopy of liquid water. Molecular Physics 2018, 116
(7-8)
, 755-779. https://doi.org/10.1080/00268976.2018.1434907
- Axel Groß. Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. 2018, 1-34. https://doi.org/10.1007/978-3-319-50257-1_7-1
- Karsten Kreis, Kurt Kremer, Raffaello Potestio, Mark E. Tuckerman. From classical to quantum and back: Hamiltonian adaptive resolution path integral, ring polymer, and centroid molecular dynamics. The Journal of Chemical Physics 2017, 147
(24)
https://doi.org/10.1063/1.5000701
- Tuan Anh Pham, Tadashi Ogitsu, Edmond Y. Lau, Eric Schwegler. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations. The Journal of Chemical Physics 2016, 145
(15)
https://doi.org/10.1063/1.4964865
- M. Heidari, R. Cortes-Huerto, D. Donadio, R. Potestio. Accurate and general treatment of electrostatic interaction in Hamiltonian adaptive resolution simulations. The European Physical Journal Special Topics 2016, 225
(8-9)
, 1505-1526. https://doi.org/10.1140/epjst/e2016-60151-6
- Maryam Naderian, Axel Groß. From single molecules to water networks: Dynamics of water adsorption on Pt(111). The Journal of Chemical Physics 2016, 145
(9)
https://doi.org/10.1063/1.4961870
- Sung Sakong, Katrin Forster-Tonigold, Axel Groß. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. The Journal of Chemical Physics 2016, 144
(19)
https://doi.org/10.1063/1.4948638
- Christopher John, Thomas Spura, Scott Habershon, Thomas D. Kühne. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to
ab initio
molecular dynamics. Physical Review E 2016, 93
(4)
https://doi.org/10.1103/PhysRevE.93.043305
- Hiroshi C. Watanabe, Misa Banno, Minoru Sakurai. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent. Physical Chemistry Chemical Physics 2016, 18
(10)
, 7318-7333. https://doi.org/10.1039/C5CP07136D
- Tatsuhiko Ohto, Kota Usui, Taisuke Hasegawa, Mischa Bonn, Yuki Nagata. Toward
ab initio
molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. The Journal of Chemical Physics 2015, 143
(12)
https://doi.org/10.1063/1.4931106
- Mauro Del Ben, Jürg Hutter, Joost VandeVondele. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. The Journal of Chemical Physics 2015, 143
(5)
https://doi.org/10.1063/1.4927325
- Pierfranco Demontis, Jorge Gulín-González, Marco Masia, Marco Sant, Giuseppe B. Suffritti. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study. The Journal of Chemical Physics 2015, 142
(24)
https://doi.org/10.1063/1.4922930
- Thomas Spura, Christopher John, Scott Habershon, Thomas D. Kühne. Nuclear quantum effects in liquid water from path-integral simulations using an
ab initio
force-matching approach. Molecular Physics 2015, 113
(8)
, 808-822. https://doi.org/10.1080/00268976.2014.981231
- Andrea Zen, Ye Luo, Guglielmo Mazzola, Leonardo Guidoni, Sandro Sorella.
Ab initio
molecular dynamics simulation of liquid water by quantum Monte Carlo. The Journal of Chemical Physics 2015, 142
(14)
https://doi.org/10.1063/1.4917171
- Pedro Augusto Franco Pinheiro Moreira, Maurice de Koning. Nuclear quantum fluctuations in ice I
h. Physical Chemistry Chemical Physics 2015, 17
(38)
, 24716-24721. https://doi.org/10.1039/C5CP03346B
- Raffaello Potestio. Computer simulation of particles with position-dependent mass. The European Physical Journal B 2014, 87
(10)
https://doi.org/10.1140/epjb/e2014-50314-y
- Lu Wang, Michele Ceriotti, Thomas E. Markland. Quantum fluctuations and isotope effects in
ab initio
descriptions of water. The Journal of Chemical Physics 2014, 141
(10)
https://doi.org/10.1063/1.4894287
- Katrin Forster-Tonigold, Axel Groß. Dispersion corrected RPBE studies of liquid water. The Journal of Chemical Physics 2014, 141
(6)
https://doi.org/10.1063/1.4892400
- Yicun Ni, J. L. Skinner. Ultrafast pump-probe and 2DIR anisotropy and temperature-dependent dynamics of liquid water within the E3B model. The Journal of Chemical Physics 2014, 141
(2)
https://doi.org/10.1063/1.4886427
- Michael J. M. Mazack, Jiali Gao. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization. The Journal of Chemical Physics 2014, 140
(20)
https://doi.org/10.1063/1.4875922
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.