ACS Publications. Most Trusted. Most Cited. Most Read
Preparation and Properties of an Aqueous Ferrofluid
My Activity
    Article

    Preparation and Properties of an Aqueous Ferrofluid
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Southern Oregon University, Ashland, OR 97520
    Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
    Department of Chemistry, Beloit College, Beloit, WI 53511
    Other Access Options

    Journal of Chemical Education

    Cite this: J. Chem. Educ. 1999, 76, 7, 943
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ed076p943
    Published July 1, 1999

    Abstract

    Click to copy section linkSection link copied!

    Ferrofluids are colloidal suspensions of surfactant-coated magnetic particles in a liquid medium. This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. Magnetite (Fe3O4) particles are precipitated by combining FeCl3 and FeCl2 in a 2:1 stoichiometric ratio in aqueous ammonia solution. The resulting particles, ~10-20 nm in diameter based on powder X-ray diffraction, are then treated with aqueous tetramethylammonium hydroxide, which acts as a surfactant. When the resulting ferrofluid is placed near a magnet, it forms conical spikes. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 310 publications.

    1. M. S. Dar, Khush Bakhat Akram, Naila Arif Cheema, Faryal Younis, Meifang Zhu. Biocompatible Graphene–Magnetite Nanohybrids for Antimicrobial Applications against Multi-Drug-Resistant Pathogens. ACS Applied Nano Materials 2024, 7 (20) , 23971-23980. https://doi.org/10.1021/acsanm.4c04539
    2. Delaram Parvin, Zahra Sadat Hashemi, Farhad Shokati, Zahra Mohammadpour, Vahid Bazargan. Immunomagnetic Isolation of HER2-Positive Breast Cancer Cells Using a Microfluidic Device. ACS Omega 2023, 8 (24) , 21745-21754. https://doi.org/10.1021/acsomega.3c01287
    3. Annie Regan, John O’Donoghue, Carl Poree, Peter W. Dunne. Introducing Materials Science: Experimenting with Magnetic Nanomaterials in the Undergraduate Chemistry Laboratory. Journal of Chemical Education 2023, 100 (6) , 2387-2393. https://doi.org/10.1021/acs.jchemed.3c00121
    4. Thomas A. Holme. Inorganic Chemistry Instruction and Curriculum over the Past 100 Years. Journal of Chemical Education 2023, 100 (6) , 2091-2092. https://doi.org/10.1021/acs.jchemed.3c00341
    5. Jake Morris, Cameron Stewart, George N. Harakas. Construction and Application of an Affordable “Light Duty” Overhead Mechanical Stirrer for the Teaching Laboratory. Journal of Chemical Education 2022, 99 (8) , 3061-3063. https://doi.org/10.1021/acs.jchemed.2c00555
    6. Karine Molvinger, Rose-Marie Ayral, Jean-Sébastien Filhol. Integrating Lecture and Laboratory Work for a Materials Chemistry Course to Engage and Motivate Students through Highly Visual and Intriguing Syntheses. Journal of Chemical Education 2020, 97 (3) , 866-872. https://doi.org/10.1021/acs.jchemed.9b00615
    7. Chi K. Nguyen . A Multi-Faceted and Integrative Approach to Teaching Inorganic Chemistry. 2020, 101-111. https://doi.org/10.1021/bk-2020-1371.ch009
    8. Manuel F. Molina, José G. Carriazo. Awakening Interest in Science and Improving Attitudes toward Chemistry by Hosting an ACS Chemistry FeSTiVAl in Bogotá, Colombia. Journal of Chemical Education 2019, 96 (5) , 944-950. https://doi.org/10.1021/acs.jchemed.8b00670
    9. Ivo Safarik, Eva Baldikova, Jitka Prochazkova, Mirka Safarikova, Kristyna Pospiskova. Magnetically Modified Agricultural and Food Waste: Preparation and Application. Journal of Agricultural and Food Chemistry 2018, 66 (11) , 2538-2552. https://doi.org/10.1021/acs.jafc.7b06105
    10. Max J. Palmer, Keri A. Martinez, Mayuresh G. Gadgil, Dean J. Campbell. Demonstrations of Magnetism and Oxidation by Combustion of Iron Supplement Tablets. Journal of Chemical Education 2018, 95 (3) , 423-427. https://doi.org/10.1021/acs.jchemed.7b00475
    11. Anne-Laure Dalverny, Géraldine Leyral, Florence Rouessac, Laurent Bernaud, and Jean-Sébastien Filhol . Synthesizing and Playing with Magnetic Nanoparticles: A Comprehensive Approach to Amazing Magnetic Materials. Journal of Chemical Education 2018, 95 (1) , 121-125. https://doi.org/10.1021/acs.jchemed.7b00277
    12. Rebecca L. Hansen, Young Jin Lee. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution. Journal of the American Society for Mass Spectrometry 2017, 28 (9) , 1910-1918. https://doi.org/10.1007/s13361-017-1699-7
    13. Ping Y. Furlan, Adam J. Fisher, and Michael E. Melcer , Alexander Y. Furlan , John B. Warren . Preparing and Testing a Magnetic Antimicrobial Silver Nanocomposite for Water Disinfection To Gain Experience at the Nanochemistry–Microbiology Interface. Journal of Chemical Education 2017, 94 (4) , 488-493. https://doi.org/10.1021/acs.jchemed.6b00692
    14. Z. Vivian Feng, Kate R. Edelman, and Benjamin P. Swanson . Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis. Journal of Chemical Education 2015, 92 (4) , 723-727. https://doi.org/10.1021/ed5005307
    15. Ping Y. Furlan and Michael E. Melcer . Removal of Aromatic Pollutant Surrogate from Water by Recyclable Magnetite-Activated Carbon Nanocomposite: An Experiment for General Chemistry. Journal of Chemical Education 2014, 91 (11) , 1966-1970. https://doi.org/10.1021/ed500246s
    16. Eunsu Lee, Hyeonjin Lee, Seong Il Yoo, and Jinhwan Yoon . Photothermally Triggered Fast Responding Hydrogels Incorporating a Hydrophobic Moiety for Light-Controlled Microvalves. ACS Applied Materials & Interfaces 2014, 6 (19) , 16949-16955. https://doi.org/10.1021/am504502y
    17. Samuel E. Lohse and Catherine J. Murphy . Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. Journal of the American Chemical Society 2012, 134 (38) , 15607-15620. https://doi.org/10.1021/ja307589n
    18. J. Jay Leitch, John Collins, Andreas Kaspar Friedrich, Ulrich Stimming, John R. Dutcher, and Jacek Lipkowski . Infrared Studies of the Potential Controlled Adsorption of Sodium Dodecyl Sulfate at the Au(111) Electrode Surface. Langmuir 2012, 28 (5) , 2455-2464. https://doi.org/10.1021/la204451s
    19. Dean J. Campbell, Josiah D. Miller, Stephen J. Bannon, and Lauren M. Obermaier . An Exploration of the Nanoworld with LEGO Bricks. Journal of Chemical Education 2011, 88 (5) , 602-606. https://doi.org/10.1021/ed100673k
    20. Eli D. Sone and Samuel I. Stupp . Bioinspired Magnetite Mineralization of Peptide−Amphiphile Nanofibers. Chemistry of Materials 2011, 23 (8) , 2005-2007. https://doi.org/10.1021/cm102985v
    21. Jiajie Liang, Yanfei Xu, Dong Sui, Long Zhang, Yi Huang, Yanfeng Ma, Feifei Li, and Yongsheng Chen. Flexible, Magnetic, and Electrically Conductive Graphene/Fe3O4 Paper and Its Application for Magnetic-Controlled Switches. The Journal of Physical Chemistry C 2010, 114 (41) , 17465-17471. https://doi.org/10.1021/jp105629r
    22. Ru-Siou Hsu, Wen-Hsin Chang and Jiang-Jen Lin . Nanohybrids of Magnetic Iron-Oxide Particles in Hydrophobic Organoclays for Oil Recovery. ACS Applied Materials & Interfaces 2010, 2 (5) , 1349-1354. https://doi.org/10.1021/am100019t
    23. Pei Bian and Thomas J. McCarthy. Polymerization of Monomer-Based Ferrofluids. Langmuir 2010, 26 (9) , 6145-6148. https://doi.org/10.1021/la1006617
    24. Jean-Philippe Déry, Ermanno F. Borra and Anna M. Ritcey . Ethylene Glycol Based Ferrofluid for the Fabrication of Magnetically Deformable Liquid Mirrors. Chemistry of Materials 2008, 20 (20) , 6420-6426. https://doi.org/10.1021/cm801075u
    25. Sang Jun Son,, Jonathan Reichel,, Bo He,, Mattan Schuchman, and, Sang Bok Lee. Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery. Journal of the American Chemical Society 2005, 127 (20) , 7316-7317. https://doi.org/10.1021/ja0517365
    26. Jing Tang,, Matt Myers,, Ken A. Bosnick, and, Louis E. Brus. Magnetite Fe3O4 Nanocrystals:  Spectroscopic Observation of Aqueous Oxidation Kinetics. The Journal of Physical Chemistry B 2003, 107 (30) , 7501-7506. https://doi.org/10.1021/jp027048e
    27. B. Arunkumar, M. Jothibas. Exploring different dopant materials in conjunction with iron oxide and analyzing their characterization and magnetic properties. Chemical Physics 2025, 588 , 112477. https://doi.org/10.1016/j.chemphys.2024.112477
    28. D. Thenmozhi, M. Eswara Rao, P.D. Selvi, RLV. Renuka Devi, S. Kiranmaiye, Ch. Nagalakshmi. The significance of magnetized thermal radiation on the magnetohydrodynamic (MHD) behavior of Williamson hybrid ferrofluids over a stretching sheet. International Journal of Thermofluids 2025, 25 , 100997. https://doi.org/10.1016/j.ijft.2024.100997
    29. Tauseef-ur Rehman, Cheol Woo Park. Advances in nanofluids for tubular heat exchangers: Thermal performance, environmental effects, economics and outlook. Energy 2024, 308 , 132732. https://doi.org/10.1016/j.energy.2024.132732
    30. İlyas Taner Demirel, Bülent Akar, Cemalettin Baltacı, Ömer Karpuz, Esma Gülbahar. Biogenic Iron Oxide Nanoparticles Based on Algal Biofilm Formed in the Wastewater Treatment Plant and Their Dye Removal Performance. Journal of Anatolian Environmental and Animal Sciences 2024, 9 (2) , 174-183. https://doi.org/10.35229/jaes.1421336
    31. Marwa khaleel Rashid, Bashar Mahmood Ali, Mohammed Zorah, Tariq J. Al-Musawi. Experimental Investigation of the Effects of Grooves in Fe2O4/Water Nanofluid Pool Boiling. Fluids 2024, 9 (5) , 110. https://doi.org/10.3390/fluids9050110
    32. Wajdi Rajhi, S.A.M. Mehryan, Nasrin B.M. Elbashir, Hikmet Ş. Aybar, Walid Aich, Aboulbaba Eladeb, Lioua Kolsi. Employing RSM to model thermal performance and exergy destruction of LS-3 parabolic trough collector by coupling MCRT and CFD techniques. Case Studies in Thermal Engineering 2024, 46 , 104396. https://doi.org/10.1016/j.csite.2024.104396
    33. . Flexible Ferrofluid as Soft Robotic Agents. 2024, 173-212. https://doi.org/10.1002/9783527840915.ch6
    34. Rudolf Weeber, Jean-Noël Grad, David Beyer, Pablo M. Blanco, Patrick Kreissl, Alexander Reinauer, Ingo Tischler, Peter Košovan, Christian Holm. ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. 2024, 578-601. https://doi.org/10.1016/B978-0-12-821978-2.00103-3
    35. Brahim Fersadou, Walid Nessab, Henda Kahalerras. Nanofluids–Magnetic field interaction for heat transfer enhancement. 2024, 101-133. https://doi.org/10.1016/B978-0-443-21576-6.00007-8
    36. D. Thenmozhi, Eswara Rao M, Nagabhushanam B, Selvi P.D, Renuka Devi R.L.V, Nagalakshmi Ch. Analysis on Impact of Magnetite Nanoparticles on Blood Dynamics of Ferrofluid as Williamson Flow: Its Implications for Medical Anti-Tumor Therapy. 2024https://doi.org/10.2139/ssrn.4798295
    37. Xiang-Fan Li, Ya-Ping Wang, Yong-Chao Zhang, Tian-Pei He, Xiao-Dong Niu, Adnan Khan, De-Cai Li, Hiroshi Yamaguchi. On the Rosensweig instability of ferrofluid-infused surfaces under a uniform magnetic field. Physics of Fluids 2023, 35 (11) https://doi.org/10.1063/5.0173602
    38. Shafqat Hussain, Muhammad Amer Qureshi, Bengisen Pekmen Geridonmez. Impact of wavy porous layer on mixed convection flow of a hybrid nanofluid in an enclosure under the effect of partial magnetic field. Numerical Heat Transfer, Part A: Applications 2023, 84 , 1-20. https://doi.org/10.1080/10407782.2023.2233144
    39. Paul Okpozo, Yashashchandra Dwivedi, Dehong Huo, Ketan Pancholi. Enhancement of infrared absorption through a patterned thin film of magnetic field and spin-coating directed self-assembly of gold nanoparticle stabilised ferrofluid emulsion. RSC Advances 2023, 13 (34) , 23955-23966. https://doi.org/10.1039/D3RA01369C
    40. Shafqat Hussain, Muhammad Amer Qureshi, Sameh E. Ahmed. Impact of wavy porous layer on the hydrodynamic forces and heat transfer of hybrid nanofluid flow in a channel with cavity under the effect of partial magnetic field. Journal of Non-Equilibrium Thermodynamics 2023, 48 (3) , 255-269. https://doi.org/10.1515/jnet-2022-0070
    41. Hanan Hussein Kamel, Noha Abdel Fattah Elleboudy, Aml Nabil Hasan, Ibrahim Rabea Ali, Omnia Sobhi Mohammad. Nano magnetic-based ELISA and nano magnetic-based latex agglutination test for diagnosis of experimental trichinellosis. Journal of Parasitic Diseases 2023, 47 (2) , 400-409. https://doi.org/10.1007/s12639-023-01583-w
    42. Amin Shahsavar, Ighball Baniasad Askari, Maryam Ghodrat, Müslüm Arıcı, Sandro Nižetić, Tauseef-ur Rehman, Zhenjun Ma. Experimental investigation of the effect of mechanical vibration and rotating magnetic field on the hydrothermal performance of water-Fe3O4 ferrofluid inside a rifled tube. Journal of Magnetism and Magnetic Materials 2023, 572 , 170586. https://doi.org/10.1016/j.jmmm.2023.170586
    43. Denisse Jara, Lionel S. Veiga, Octavio Garate, Gabriel Ybarra, Pablo Tancredi. Mass-production of water-based ferrofluids capable of developing spike-like structures. Journal of Magnetism and Magnetic Materials 2023, 572 , 170622. https://doi.org/10.1016/j.jmmm.2023.170622
    44. Paul Okpozo, Ketan Pancholi. Study of spatial organisation of magnetic field directed gold-pickering-ferrofluid-nanoemulsion in spin coated film. Hybrid Advances 2023, 2 , 100018. https://doi.org/10.1016/j.hybadv.2023.100018
    45. Hengrong Du, Yuanzhen Shao, Gieri Simonett. Well-posedness for magnetoviscoelastic fluids in 3D. Nonlinear Analysis: Real World Applications 2023, 69 , 103759. https://doi.org/10.1016/j.nonrwa.2022.103759
    46. Keyur Khatsuriya, Jaysukh Markana. Mathematical Modelling of Mie Scattering for Magnetic Spheres Surrounded by Magnetic Medium. 2023, 351-357. https://doi.org/10.1007/978-981-19-9906-2_28
    47. John Philip. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science 2023, 311 , 102810. https://doi.org/10.1016/j.cis.2022.102810
    48. Dini Frihanderi Aprita, Ahmad Taufiq, Arif Hidayat, Rosy Eko Saputro. Development of temperature sensor using TMAH surfactant based MnFe2O4 ferrofluid. 2023, 050019. https://doi.org/10.1063/5.0121707
    49. Yihao Song, Yanfeng Shen. Highly morphing and reconfigurable fluid–solid interactive metamaterials for tunable ultrasonic guided wave control. Applied Physics Letters 2022, 121 (26) https://doi.org/10.1063/5.0117634
    50. Abdulkader S. Hanbazazah, Abulhassan Ali, Mustafa Alsaady, Yuying Yan, Ghulam Murshid, Kuan Shiong Khoo, Muhammad Mubashir, Aymn Abdulrahman, Anas Ahmed, Abdullah Bin Mahfouz, Ahmed Alsaadi, Pau Loke Show. Optimization and experimental analysis of sustainable solar collector efficiency under the influence of magnetic nanofluids. Applied Nanoscience 2022, 12 (12) , 3859-3870. https://doi.org/10.1007/s13204-022-02533-3
    51. Kapil Dev, Om P. Suthar. Nonlinear stability analysis of penetrative convection in ferrofluids via internal heating. Journal of Magnetism and Magnetic Materials 2022, 564 , 170064. https://doi.org/10.1016/j.jmmm.2022.170064
    52. Saša Nježić, Jasna Radulović, Fatima Živić, Ana Mirić, Živana Jovanović Pešić, Mina Vasković Jovanović, Nenad Grujović. Chaotic Model of Brownian Motion in Relation to Drug Delivery Systems Using Ferromagnetic Particles. Mathematics 2022, 10 (24) , 4791. https://doi.org/10.3390/math10244791
    53. Sudharshan Juntupally, Vijayalakshmi Arelli, Sameena Begum, Gangagni Rao Anupoju. Improved biomethanation of horse manure through acid-thermal pretreatment and supplementation of iron nanoparticles under mesophilic and thermophilic conditions. Biomass Conversion and Biorefinery 2022, 12 (8) , 2993-3006. https://doi.org/10.1007/s13399-020-01085-2
    54. . Activities for Teaching Nanochemistry. 2022, 66-95. https://doi.org/10.1039/9781839164774-00066
    55. . Nanochemistry as a Relevant Concept in Teaching Chemistry. 2022, 96-117. https://doi.org/10.1039/9781839164774-00096
    56. Fabio Fornari, Federica Bianchi, Nicolò Riboni, Francesca Casoli, Alessia Bacchi, Paolo Pio Mazzeo, Paolo Pelagatti, Maria Careri. Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography–mass spectrometry determination of polycyclic aromatic compounds in water samples. Journal of Chromatography A 2022, 1671 , 463010. https://doi.org/10.1016/j.chroma.2022.463010
    57. Yihao Song, Yanfeng Shen, , . A magnetic fluid-solid interactive metamaterial for tunable elastic wave control. 2022, 50. https://doi.org/10.1117/12.2612596
    58. Mihaela Răcuciu, Lucian Barbu-Tudoran, Simona Oancea, Olga Drăghici, Cezarina Morosanu, Marian Grigoras, Florin Brînză, Dorina E. Creangă. Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications. Nanomaterials 2022, 12 (7) , 1151. https://doi.org/10.3390/nano12071151
    59. Abdul Wahab Hashmi, Harlal Singh Mali, Anoj Meena. Experimental investigation of an innovative viscometer for measuring the viscosity of Ferrofluid. Materials Today: Proceedings 2022, 50 , 2037-2043. https://doi.org/10.1016/j.matpr.2021.09.404
    60. Sajad Rasaee, Amin Shahsavar, Kavian Niazi. Experimental assessment on convection heat transfer characteristics of aqueous magnetite ferrofluid in a rifled tube under a rotating magnetic field. International Communications in Heat and Mass Transfer 2021, 129 , 105673. https://doi.org/10.1016/j.icheatmasstransfer.2021.105673
    61. A A Ibiyemi, G T Yusuf, Akinrinola Olusola. Influence of temperature and magnetic field on rheological behavior of ultra-sonicated and oleic acid coated cobalt ferrite ferrofluid. Physica Scripta 2021, 96 (12) , 125842. https://doi.org/10.1088/1402-4896/ac2ecb
    62. Anoj Gladius, Simon Höving, Mehdy Mendelawi, Harikrishna Sreekumar Sheeba, David Agar. Non-Invasive Manipulation of Two-Phase Liquid–Liquid Slug Flow Parameters Using Magnetofluidics. Micromachines 2021, 12 (12) , 1449. https://doi.org/10.3390/mi12121449
    63. Mudit K. Bhatnagar, Mohit Vishnoi. Different methods of ferro-fluids production with their stability and its applications especially in internal combustion engines-a review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021, 4 , 1-30. https://doi.org/10.1080/15567036.2021.1998251
    64. Amin Shahsavar, Mehdi Jamei, Masoud Karbasi. Experimental evaluation and development of predictive models for rheological behavior of aqueous Fe3O4 ferrofluid in the presence of an external magnetic field by introducing a novel grid optimization based-Kernel ridge regression supported by sensitivity analysis. Powder Technology 2021, 393 , 1-11. https://doi.org/10.1016/j.powtec.2021.07.037
    65. Muhammad Amer Qureshi, Shafqat Hussain, Muhammad Adil Sadiq. Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces. Case Studies in Thermal Engineering 2021, 27 , 101321. https://doi.org/10.1016/j.csite.2021.101321
    66. Runjhun Tandon, Nitin Tandon, Shripad M. Patil. Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions. RSC Advances 2021, 11 (47) , 29333-29353. https://doi.org/10.1039/D1RA03874E
    67. Vahid Nasirimarekani, Fernando Benito‐Lopez, Lourdes Basabe‐Desmonts. Tunable Superparamagnetic Ring (tSPRing) for Droplet Manipulation. Advanced Functional Materials 2021, 31 (32) https://doi.org/10.1002/adfm.202100178
    68. Tim Granath, Karl Mandel, Peer Löbmann. Overcoming the Inhibition Effects of Citrate: Precipitation of Ferromagnetic Magnetite Nanoparticles with Tunable Morphology, Magnetic Properties, and Surface Charge via Ferrous Citrate Oxidation. Particle & Particle Systems Characterization 2021, 38 (8) https://doi.org/10.1002/ppsc.202100098
    69. M. S. Dar, Khush Bakhat Akram, Ayesha Sohail, Fatima Arif, Fatemeh Zabihi, Shengyuan Yang, Shamsa Munir, Meifang Zhu, M. Abid, Muhammad Nauman. Heat induction in two-dimensional graphene–Fe 3 O 4 nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances 2021, 11 (35) , 21702-21715. https://doi.org/10.1039/D1RA03428F
    70. Bhavik P. Sutariya, Trupti K. Vyas, Priti R. Faldu, Kamlesh G. Patel, Anjana K. Vala. A Microcosm Study on Effect of Iron Nanoparticles on Paddy (Oryza sativa) Growth. Journal of Inorganic and Organometallic Polymers and Materials 2021, 31 (6) , 2425-2435. https://doi.org/10.1007/s10904-020-01866-2
    71. Yeping Peng, Milad Boroumand Ghahnaviyeh, Mohammad Nazir Ahmad, Ali Abdollahi, Seyed Amin Bagherzadeh, Hamidreza Azimy, Amirhosein Mosavi, Aliakbar Karimipour. Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study. International Journal of Thermal Sciences 2021, 163 , 106863. https://doi.org/10.1016/j.ijthermalsci.2021.106863
    72. Feng Jiao, Qian Li, Yanying Jiao, Yongqing He. Heat transfer of ferrofluids with magnetoviscous effects. Journal of Molecular Liquids 2021, 328 , 115404. https://doi.org/10.1016/j.molliq.2021.115404
    73. Ehsan Raki, Masoud Afrand, Ali Abdollahi. Influence of magnetic field on boiling heat transfer coefficient of a magnetic nanofluid consisting of cobalt oxide and deionized water in nucleate regime: An experimental study. International Journal of Heat and Mass Transfer 2021, 165 , 120669. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120669
    74. Mihaela Răcuciu, Simona Oancea. Characterization of the Oxidation of Magnetite Nanoparticles during Their Synthesis by Different Structural Analysis Techniques. Analytical Letters 2021, 54 (1-2) , 173-183. https://doi.org/10.1080/00032719.2020.1736089
    75. Andrew D.M. Charles, Andrew N. Rider, Sonya A. Brown, Chun H. Wang. Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators. Progress in Materials Science 2021, 115 , 100705. https://doi.org/10.1016/j.pmatsci.2020.100705
    76. Feng Jiao, Qian Li, Yongqing He. Electromotive force induced by the moving non-magnetic phase in ferrofluids. Sensors and Actuators A: Physical 2021, 317 , 112472. https://doi.org/10.1016/j.sna.2020.112472
    77. Omid Sartipzadeh, Seyed Morteza Naghib, Farhad Shokati, Mehdi Rahmanian, Keivan Majidzadeh-A, Yasser Zare, Kyong Yop Rhee. Microfluidic-assisted synthesis and modelling of monodispersed magnetic nanocomposites for biomedical applications. Nanotechnology Reviews 2020, 9 (1) , 1397-1407. https://doi.org/10.1515/ntrev-2020-0097
    78. Aránzazu Manzano, Eva Creus, Albert Tomás, Miguel A. Valbuena, Alicia Villacampa, Malgorzata Ciska, Richard E. Edelmann, John Z. Kiss, F. Javier Medina, Raúl Herranz. The FixBox: Hardware to Provide on-Orbit Fixation Capabilities to the EMCS on the ISS. Microgravity Science and Technology 2020, 32 (6) , 1105-1120. https://doi.org/10.1007/s12217-020-09837-5
    79. Xiangpeng Yang, Decai Li, Qian Li, Xiangshen Meng. Spatial self-phase modulation of a Gaussian beam transmitted through a ferrofluid. Applied Optics 2020, 59 (32) , 10069. https://doi.org/10.1364/AO.406296
    80. Yang Chen, Yongqing He, Xiaoqin Zhu. Non-Contact Monitoring on the Flow Status inside a Pulsating Heat Pipe. Sensors 2020, 20 (20) , 5955. https://doi.org/10.3390/s20205955
    81. Leonardo Lari, Stephan Steinhauer, Vlado K. Lazarov. In situ TEM oxidation study of Fe thin-film transformation to single-crystal magnetite nanoparticles. Journal of Materials Science 2020, 55 (27) , 12897-12905. https://doi.org/10.1007/s10853-020-04917-8
    82. Allison DeGraff, Reza Rashidi. Ferrofluid transformer-based tilt sensor. Microsystem Technologies 2020, 26 (8) , 2499-2506. https://doi.org/10.1007/s00542-020-04790-0
    83. M. A. Pérez-Guzmán, R. Ortega-Amaya, J. Santoyo-Salazar, M. Ortega-López. Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization. Journal of Materials Science: Materials in Electronics 2020, 31 (10) , 7490-7498. https://doi.org/10.1007/s10854-020-02989-5
    84. Shafqat Hussain, Hakan F. Öztop, Muhammad Amer Qureshi, Nidal Abu-Hamdeh. Magnetohydrodynamic flow and heat transfer of ferrofluid in a channel with non-symmetric cavities. Journal of Thermal Analysis and Calorimetry 2020, 140 (2) , 811-823. https://doi.org/10.1007/s10973-019-08943-w
    85. Abazar Abadeh, Mohammad Sardarabadi, Mehdi Abedi, Mahdi Pourramezan, Mohammad Passandideh-Fard, Mohammad Javad Maghrebi. Experimental characterization of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube. Journal of Molecular Liquids 2020, 299 , 112206. https://doi.org/10.1016/j.molliq.2019.112206
    86. Mohamad Ali Bijarchi, Amirhossein Favakeh, Erfan Sedighi, Mohammad Behshad Shafii. Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sensors and Actuators A: Physical 2020, 301 , 111753. https://doi.org/10.1016/j.sna.2019.111753
    87. S H M Yasin, M K A Mohamed, Z Ismail, M Z Salleh. MHD free convection boundary layer flow near the lower stagnation point flow of a horizontal circular cylinder in ferrofluid. IOP Conference Series: Materials Science and Engineering 2020, 736 (2) , 022117. https://doi.org/10.1088/1757-899X/736/2/022117
    88. Pouyan Talebizadehsardari, Amin Shahsavar, Davood Toghraie, Pouya Barnoon. An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field. Physica A: Statistical Mechanics and its Applications 2019, 534 , 122129. https://doi.org/10.1016/j.physa.2019.122129
    89. Jalal Alsarraf, Reza Rahmani, Amin Shahsavar, Masoud Afrand, Somchai Wongwises, Minh Duc Tran. Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. Journal of Thermal Analysis and Calorimetry 2019, 137 (5) , 1809-1825. https://doi.org/10.1007/s10973-019-08078-y
    90. Amin Shahsavar, Ali Godini, Pouyan Talebizadeh Sardari, Davood Toghraie, Hamzeh Salehipour. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. Journal of Thermal Analysis and Calorimetry 2019, 137 (3) , 1031-1043. https://doi.org/10.1007/s10973-018-07997-6
    91. W.I. Liu, Jalal Alsarraf, Amin Shahsavar, Mahfouz Rostamzadeh, Masoud Afrand, Truong Khang Nguyen. Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT ferro-fluids: Experimental study. Journal of Magnetism and Magnetic Materials 2019, 484 , 258-265. https://doi.org/10.1016/j.jmmm.2019.04.042
    92. Arun Karthick, Banasri Roy, Pradipta Chattopadhyay. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils. Journal of Environmental Management 2019, 240 , 93-107. https://doi.org/10.1016/j.jenvman.2019.03.088
    93. Amin Shahsavar, Pouyan Talebizadeh Sardari, D. Toghraie. Free convection heat transfer and entropy generation analysis of water-Fe 3 O 4 /CNT hybrid nanofluid in a concentric annulus. International Journal of Numerical Methods for Heat & Fluid Flow 2019, 29 (3) , 915-934. https://doi.org/10.1108/HFF-08-2018-0424
    94. Hongchao Cui, Decai Li. Fabrication and properties research on a novel perfluoropolyether based ferrofluid. Journal of Magnetism and Magnetic Materials 2019, 473 , 341-347. https://doi.org/10.1016/j.jmmm.2018.10.039
    95. Azza A. Moustafa, Maha A. Hegazy, Dalia Mohamed, Omnia Ali. Functionalized Fe 3 O 4 Magnetic Nanoparticle Potentiometric Detection Strategy versus Classical Potentiometric Strategy for Determination of Chlorpheniramine Maleate and Pseudoephedrine HCl. Journal of Analytical Methods in Chemistry 2019, 2019 , 1-10. https://doi.org/10.1155/2019/6947042
    96. Xiangshen Meng, Xiaoyan Qiu, Jianwei Zhao, Yueqiang Lin, Xiaodong Liu, Decai Li, Jian Li, Zhenghong He. Synthesis of ferrofluids using a chemically induced transition method and their characterization. Colloid and Polymer Science 2019, 297 (2) , 297-305. https://doi.org/10.1007/s00396-018-04462-6
    97. Tristan D. Clemons, Roland H. Kerr, Alexander Joos. Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. 2019, 193-210. https://doi.org/10.1016/B978-0-12-803581-8.10462-X
    98. Luís Carlos de Morais. Surface Modifications of Magnetic Nanoparticles for Water Purification. 2019, 505-519. https://doi.org/10.1016/B978-0-12-813926-4.00025-2
    99. Barbara Ballarin, Maria Cristina Cassani, Daniele Nanni, Chiara Parise, Davide Barreca, Giorgio Carraro, Alberto Riminucci, Ilaria Bergenti, Vittorio Morandi, Andrea Migliori, Elisa Boanini. Structure, morphology and magnetic properties of Au/Fe3O4 nanocomposites fabricated by a soft aqueous route. Ceramics International 2019, 45 (1) , 449-456. https://doi.org/10.1016/j.ceramint.2018.09.188
    100. Rebecca L. Hansen, Hongqing Guo, Yanhai Yin, Young Jin Lee. FERONIA mutation induces high levels of chloroplast‐localized Arabidopsides which are involved in root growth. The Plant Journal 2019, 97 (2) , 341-351. https://doi.org/10.1111/tpj.14123
    Load more citations

    Journal of Chemical Education

    Cite this: J. Chem. Educ. 1999, 76, 7, 943
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ed076p943
    Published July 1, 1999

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.