Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites

View Author Information
Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan, Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, and Fuel Utilization Laboratory, Industrial Energy Conservation Technology Division, Energy and Environment research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan
* To whom correspondence should be addressed. E-mail: [email protected]. Fax: +886-4-22862587.
†National Chung Hsing University.
‡National Chiao Tung University.
§Industrial Technology Research Institute.
Cite this: Energy Fuels 2008, 22, 5, 3050–3056
Publication Date (Web):July 25, 2008
https://doi.org/10.1021/ef8000086
Copyright © 2008 American Chemical Society

    Article Views

    8387

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Carbon nanotubes (CNTs), granular activated carbon (GAC), and zeolites were modified by 3-aminopropyl-triethoxysilane (APTS) and were selected as adsorbents to study their physicochemical properties and adsorption behaviors of CO2 from gas streams. The surface nature of these adsorbents was changed after the modification, which make them adsorb more CO2 gases. Under the same conditions, the modified CNTs possess the greatest adsorption capacity of CO2, followed by the modified zeolites and then the modified GAC. The mechanism of CO2 adsorption on these adsorbents appears mainly attributable to physical force, which makes regeneration of spent adsorbents at a relatively low temperature become feasible. The APTS-modified CNTs show good performance of CO2 adsorption as compared to many types of modified carbon and silica adsorbents reported in the literature. This suggests that the APTS-modified CNTs are efficient CO2 adsorbents and that they possess potential applications for CO2 capture from gas streams.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 358 publications.

    1. Lourdes F. Vega, Daniel Bahamon. Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO2 Capture. Accounts of Chemical Research 2024, 57 (2) , 188-197. https://doi.org/10.1021/acs.accounts.3c00478
    2. Foster Amoateng Appiah, Dzifa Nugloze, Lois Sandra Sai-Obodai, Paweesuda Natewong, Raphael O. Idem. Activated Carbon Produced from the Hydrothermal Treatment of Glucose with KOH Activation for Catalytic Absorption of CO2 in a BEA-AMP Bi-Solvent Blend. ACS Omega 2023, 8 (10) , 9346-9355. https://doi.org/10.1021/acsomega.2c07758
    3. Venkadeshkumar Ramar, Ambedkar Balraj. Critical Review on Carbon-Based Nanomaterial for Carbon Capture: Technical Challenges, Opportunities, and Future Perspectives. Energy & Fuels 2022, 36 (22) , 13479-13505. https://doi.org/10.1021/acs.energyfuels.2c02585
    4. Saber Mohammadi, Fatemeh Mahmoudi Alemi. Simultaneous Control of Formation and Growth of Asphaltene Solids and Wax Crystals Using Single-Walled Carbon Nanotubes: an Experimental Study under Real Oilfield Conditions. Energy & Fuels 2021, 35 (18) , 14709-14724. https://doi.org/10.1021/acs.energyfuels.1c02244
    5. Feng Zhang, Wenling Jiao, Yang Si, Jianyong Yu, Peng Zhang, Bin Ding. Tailoring Nanoporous-Engineered Sponge Fiber Molecular Sieves with Ternary-Nested Architecture for Precise Molecular Separation. ACS Nano 2021, 15 (8) , 13623-13632. https://doi.org/10.1021/acsnano.1c04575
    6. Federica Raganati, Francesco Miccio, Paola Ammendola. Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy & Fuels 2021, 35 (16) , 12845-12868. https://doi.org/10.1021/acs.energyfuels.1c01618
    7. Cameron Halliday, T. Alan Hatton. Sorbents for the Capture of CO2 and Other Acid Gases: A Review. Industrial & Engineering Chemistry Research 2021, 60 (26) , 9313-9346. https://doi.org/10.1021/acs.iecr.1c00597
    8. Zhizhong Lin, Lang Liu, Chao Liu, Yang Liu. Optimal Performance of Nanoporous Carbons on Adsorptive Separation of CO2 from Flue Gas. Energy & Fuels 2021, 35 (9) , 8069-8080. https://doi.org/10.1021/acs.energyfuels.1c00086
    9. Enrica Luzzi, Paolo Aprea, Martina Salzano de Luna, Domenico Caputo, Giovanni Filippone. Mechanically Coherent Zeolite 13X/Chitosan Aerogel Beads for Effective CO2 Capture. ACS Applied Materials & Interfaces 2021, 13 (17) , 20728-20734. https://doi.org/10.1021/acsami.1c04064
    10. Yafan Yang, Arun Kumar Narayanan Nair, Shuyu Sun. Adsorption and Diffusion of Carbon Dioxide, Methane, and Their Mixture in Carbon Nanotubes in the Presence of Water. The Journal of Physical Chemistry C 2020, 124 (30) , 16478-16487. https://doi.org/10.1021/acs.jpcc.0c04325
    11. Yangguan Chen, Guorong Lin, Shuixia Chen. Preparation of a Solid Amine Microspherical Adsorbent with High CO2 Adsorption Capacity. Langmuir 2020, 36 (26) , 7715-7723. https://doi.org/10.1021/acs.langmuir.9b03694
    12. Shuang Liu, Qiubing Dong, Daqi Wang, Yang Wang, Huijie Wang, Yuhang Huang, Suna Wang, Lantao Liu, Jingui Duan. Interplay of Tri- and Bidentate Linkers to Evolve Micropore Environment in a Family of Quasi-3D and 3D Porous Coordination Polymers for Highly Selective CO2 Capture. Inorganic Chemistry 2019, 58 (23) , 16241-16249. https://doi.org/10.1021/acs.inorgchem.9b02774
    13. Paweesuda Natewong, Natthawan Prasongthum, Prasert Reubroycharoen, Raphael Idem. Evaluating the CO2 Capture Performance Using a BEA-AMP Biblend Amine Solvent with Novel High-Performing Absorber and Desorber Catalysts in a Bench-Scale CO2 Capture Pilot Plant. Energy & Fuels 2019, 33 (4) , 3390-3402. https://doi.org/10.1021/acs.energyfuels.8b04466
    14. S. Bendt, Y. Dong, F. J. Keil. Diffusion of Water and Carbon Dioxide and Mixtures Thereof in Mg-MOF-74. The Journal of Physical Chemistry C 2019, 123 (13) , 8212-8220. https://doi.org/10.1021/acs.jpcc.8b08457
    15. Debashis Panda, E. Anil Kumar, Sanjay Kumar Singh. Amine Modification of Binder-Containing Zeolite 4A Bodies for Post-Combustion CO2 Capture. Industrial & Engineering Chemistry Research 2019, 58 (13) , 5301-5313. https://doi.org/10.1021/acs.iecr.8b03958
    16. Michelangelo Polisi, Julien Grand, Rossella Arletti, Nicolas Barrier, Sarah Komaty, Moussa Zaarour, Svetlana Mintova, Giovanna Vezzalini. CO2 Adsorption/Desorption in FAU Zeolite Nanocrystals: In Situ Synchrotron X-ray Powder Diffraction and in Situ Fourier Transform Infrared Spectroscopic Study. The Journal of Physical Chemistry C 2019, 123 (4) , 2361-2369. https://doi.org/10.1021/acs.jpcc.8b11811
    17. Xin Ding, Zongyang Qiu, Kun Qu, Zhenyu Li. Molecular Dynamics Simulations of Noble Gas Fractionation during Diffusion through Silica Nanopores. ACS Earth and Space Chemistry 2019, 3 (1) , 62-69. https://doi.org/10.1021/acsearthspacechem.8b00136
    18. Chong Yang Chuah, Kunli Goh, Yanqin Yang, Heqing Gong, Wen Li, H. Enis Karahan, Michael D. Guiver, Rong Wang, Tae-Hyun Bae. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews 2018, 118 (18) , 8655-8769. https://doi.org/10.1021/acs.chemrev.8b00091
    19. L. Legrand, O. Schaetzle, R. C. F. de Kler, H. V. M. Hamelers. Solvent-Free CO2 Capture Using Membrane Capacitive Deionization. Environmental Science & Technology 2018, 52 (16) , 9478-9485. https://doi.org/10.1021/acs.est.8b00980
    20. Jan Wilco Dijkstra, Stéphane Walspurger, Gerard D. Elzinga, Johannis A.Z. Pieterse, Jurriaan Boon, and Wim G. Haije . Evaluation of Postcombustion CO2 Capture by a Solid Sorbent with Process Modeling Using Experimental CO2 and H2O Adsorption Characteristics. Industrial & Engineering Chemistry Research 2018, 57 (4) , 1245-1261. https://doi.org/10.1021/acs.iecr.7b03552
    21. Lei Zhang, Lirong Xiao, Yanke Zhang, Liam John France, Yinghao Yu, Jinxing Long, Dawei Guo, and Xuehui Li . Synthesis of Ionic Liquid-SBA-15 Composite Materials and Their Application for SO2 Capture from Flue Gas. Energy & Fuels 2018, 32 (1) , 678-687. https://doi.org/10.1021/acs.energyfuels.7b02946
    22. Huajun Yang, Min Luo, Xitong Chen, Xiang Zhao, Jian Lin, Dandan Hu, Dongsheng Li, Xianhui Bu, Pingyun Feng, and Tao Wu . Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption. Inorganic Chemistry 2017, 56 (24) , 14999-15005. https://doi.org/10.1021/acs.inorgchem.7b02307
    23. Yufei Zhang, Jiming Guan, Xianfeng Wang, Jianyong Yu, and Bin Ding . Balsam-Pear-Skin-Like Porous Polyacrylonitrile Nanofibrous Membranes Grafted with Polyethyleneimine for Postcombustion CO2 Capture. ACS Applied Materials & Interfaces 2017, 9 (46) , 41087-41098. https://doi.org/10.1021/acsami.7b14635
    24. Siqi Zhao, Liping Ma, Jie Yang, Dalong Zheng, Hongpan Liu, and Jing Yang . Mechanism of CO2 Capture Technology Based on the Phosphogypsum Reduction Thermal Decomposition Process. Energy & Fuels 2017, 31 (9) , 9824-9832. https://doi.org/10.1021/acs.energyfuels.7b01673
    25. Adnan M. Saeed, Parwani M. Rewatkar, Hojat Majedi Far, Tahereh Taghvaee, Suraj Donthula, Chandana Mandal, Chariklia Sotiriou-Leventis, and Nicholas Leventis . Selective CO2 Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Applied Materials & Interfaces 2017, 9 (15) , 13520-13536. https://doi.org/10.1021/acsami.7b01910
    26. Changchun Ji, Li Zhang, Lei Li, Feng Li, Fukui Xiao, Ning Zhao, Wei Wei, Yanjun Chen, and Feng Wu . Synthesis of Micro-Mesoporous Composites MCM-41/13X and Their Application on CO2 Adsorption: Experiment and Modeling. Industrial & Engineering Chemistry Research 2016, 55 (29) , 7853-7859. https://doi.org/10.1021/acs.iecr.5b04105
    27. Anne Elise Creamer and Bin Gao . Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. Environmental Science & Technology 2016, 50 (14) , 7276-7289. https://doi.org/10.1021/acs.est.6b00627
    28. Behnaz Rahmatmand, Peyman Keshavarz, and Shahab Ayatollahi . Study of Absorption Enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 Nanoparticles in Water and Amine Solutions. Journal of Chemical & Engineering Data 2016, 61 (4) , 1378-1387. https://doi.org/10.1021/acs.jced.5b00442
    29. Atsushi Itadani, Akira Oda, Hiroe Torigoe, Takahiro Ohkubo, Mineo Sato, Hisayoshi Kobayashi, and Yasushige Kuroda . Material Exhibiting Efficient CO2 Adsorption at Room Temperature for Concentrations Lower Than 1000 ppm: Elucidation of the State of Barium Ion Exchanged in an MFI-Type Zeolite. ACS Applied Materials & Interfaces 2016, 8 (13) , 8821-8833. https://doi.org/10.1021/acsami.6b00909
    30. Kijeong Kwac, Ji Hoon Lee, Jang Wook Choi, and Yousung Jung . Computational Analysis of Pressure-Dependent Optimal Pore Size for CO2 Capture with Graphitic Surfaces. The Journal of Physical Chemistry C 2016, 120 (7) , 3978-3985. https://doi.org/10.1021/acs.jpcc.5b12404
    31. Arman Peyravi, Peyman Keshavarz, and Darioush Mowla . Experimental Investigation on the Absorption Enhancement of CO2 by Various Nanofluids in Hollow Fiber Membrane Contactors. Energy & Fuels 2015, 29 (12) , 8135-8142. https://doi.org/10.1021/acs.energyfuels.5b01956
    32. Daniel G. A. Smith and Konrad Patkowski . Benchmarking the CO2 Adsorption Energy on Carbon Nanotubes. The Journal of Physical Chemistry C 2015, 119 (9) , 4934-4948. https://doi.org/10.1021/jp512926n
    33. Lang Liu, David Nicholson, and Suresh K. Bhatia . Impact of H2O on CO2 Separation from Natural Gas: Comparison of Carbon Nanotubes and Disordered Carbon. The Journal of Physical Chemistry C 2015, 119 (1) , 407-419. https://doi.org/10.1021/jp5099987
    34. Walter Christopher Wilfong and Steven S. C. Chuang . Probing the Adsorption/Desorption of CO2 on Amine Sorbents by Transient Infrared Studies of Adsorbed CO2 and C6H6. Industrial & Engineering Chemistry Research 2014, 53 (11) , 4224-4231. https://doi.org/10.1021/ie404403q
    35. Saurav Datta, Michael P. Henry, YuPo. J. Lin, Anthony T. Fracaro, Cynthia S. Millard, and Seth W. Snyder , Rebecca L. Stiles, Jitendra Shah, Jianwei Yuan, Lisa Wesoloski, Robert W. Dorner, and Wayne M. Carlson . Electrochemical CO2 Capture Using Resin-Wafer Electrodeionization. Industrial & Engineering Chemistry Research 2013, 52 (43) , 15177-15186. https://doi.org/10.1021/ie402538d
    36. D. J. Fauth, M. L. Gray, and H. W. Pennline , H. M. Krutka, S. Sjostrom, and A. M. Ault . Investigation of Porous Silica Supported Mixed-Amine Sorbents for Post-Combustion CO2 Capture. Energy & Fuels 2012, 26 (4) , 2483-2496. https://doi.org/10.1021/ef201578a
    37. Qing Ye, Jianqing Jiang, Chunxia Wang, Yamin Liu, Hua Pan, and Yao Shi . Adsorption of Low-Concentration Carbon Dioxide on Amine-Modified Carbon Nanotubes at Ambient Temperature. Energy & Fuels 2012, 26 (4) , 2497-2504. https://doi.org/10.1021/ef201699w
    38. Arunkumar Samanta, An Zhao, George K. H. Shimizu, Partha Sarkar, and Rajender Gupta . Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Industrial & Engineering Chemistry Research 2012, 51 (4) , 1438-1463. https://doi.org/10.1021/ie200686q
    39. Fengsheng Su, Chungsying Lu, and Hung-Shih Chen . Adsorption, Desorption, and Thermodynamic Studies of CO2 with High-Amine-Loaded Multiwalled Carbon Nanotubes. Langmuir 2011, 27 (13) , 8090-8098. https://doi.org/10.1021/la201745y
    40. Honghong Yi, Qiongfen Yu, Xiaolong Tang, Ping Ning, Liping Yang, Zhiqing Ye, and Jinghao Song . Phosphine Adsorption Removal from Yellow Phosphorus Tail Gas over CuO−ZnO−La2O3/Activated Carbon. Industrial & Engineering Chemistry Research 2011, 50 (7) , 3960-3965. https://doi.org/10.1021/ie101622x
    41. Heechol Choi, Young Choon Park, Yong-Hyun Kim, and Yoon Sup Lee . Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube. Journal of the American Chemical Society 2011, 133 (7) , 2084-2087. https://doi.org/10.1021/ja1101807
    42. Zhijuan Zhang, Sisi Huang, Shikai Xian, Hongxia Xi, and Zhong Li. Adsorption Equilibrium and Kinetics of CO2 on Chromium Terephthalate MIL-101. Energy & Fuels 2011, 25 (2) , 835-842. https://doi.org/10.1021/ef101548g
    43. Youssef Belmabkhout and Abdelhamid Sayari. Isothermal versus Non-isothermal Adsorption−Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO2 Capture from Flue Gas. Energy & Fuels 2010, 24 (9) , 5273-5280. https://doi.org/10.1021/ef100679e
    44. Ying Yang, Haichao Li, Shuixia Chen, Yongning Zhao and Qihan Li . Preparation and Characterization of a Solid Amine Adsorbent for Capturing CO2 by Grafting Allylamine onto PAN Fiber. Langmuir 2010, 26 (17) , 13897-13902. https://doi.org/10.1021/la101281v
    45. Fengsheng Su, Chungsying Lu, Shih-Chun Kuo and Wanting Zeng. Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites. Energy & Fuels 2010, 24 (2) , 1441-1448. https://doi.org/10.1021/ef901077k
    46. Changsik Song, Taeyun Kwon, Jae-Hee Han, Mia Shandell and Michael S. Strano. Controllable Synthesis of Single-Walled Carbon Nanotube Framework Membranes and Capsules. Nano Letters 2009, 9 (12) , 4279-4284. https://doi.org/10.1021/nl902518b
    47. Himanshu Patel, Amar Mohanty, Manjusri Misra. Post-combustion CO2 capture using biomass based activated porous carbon: Latest advances in synthesis protocol and economics. Renewable and Sustainable Energy Reviews 2024, 199 , 114484. https://doi.org/10.1016/j.rser.2024.114484
    48. Chunfei Wu, Qi Huang, Zhicheng Xu, Ayesha Tariq Sipra, Ningbo Gao, Luciana Porto de Souza Vandenberghe, Sabrina Vieira, Carlos Ricardo Soccol, Ruikai Zhao, Shuai Deng, Sandra K.S. Boetcher, Shijian Lu, Huancong Shi, Dongya Zhao, Yupeng Xing, Yongdong Chen, Jiamei Zhu, Dongdong Feng, Yu Zhang, Lihua Deng, Guoping Hu, Paul A. Webley, Daxin Liang, Zhichen Ba, Agata Mlonka-Mędrala, Aneta Magdziarz, Norbert Miskolczi, Szabina Tomasek, Su Shiung Lam, Shin Ying Foong, Hui Suan Ng, Long Jiang, Xinlong Yan, Yongzhuo Liu, Ying Ji, Hongman Sun, Yu Zhang, Haiping Yang, Xiong Zhang, Mingzhe Sun, Daniel C.W. Tsang, Jin Shang, Christoph Muller, Margarita Rekhtina, Maximilian Krödel, Alexander H. Bork, Felix Donat, Lina Liu, Xin Jin, Wen Liu, Syed Saqline, Xianyue Wu, Yongqing Xu, Asim Laeeq Khan, Zakawat Ali, Haiqing Lin, Leiqing Hu, Jun Huang, Rasmeet Singh, Kaifang Wang, Xuezhong He, Zhongde Dai, Shouliang Yi, Alar Konist, Mais Hanna Suleiman Baqain, Yijun Zhao, Shaozeng Sun, Guoxing Chen, Xin Tu, Anke Weidenkaff, Sibudjing Kawi, Kang Hui Lim, Chunfeng Song, Qing Yang, Zhenyu Zhao, Xin Gao, Xia Jiang, Haiyan Ji, Toluleke E. Akinola, Adekola Lawal, Olajide S. Otitoju, Meihong Wang, Guojun Zhang, Lin Ma, Baraka C. Sempuga, Xinying Liu, Eni Oko, Michael Daramola, Zewei Yu, Siming Chen, Guojun Kang, Qingfang Li, Li Gao, Ling Liu, Hui Zhou. A comprehensive review of carbon capture science and technologies. Carbon Capture Science & Technology 2024, 11 , 100178. https://doi.org/10.1016/j.ccst.2023.100178
    49. Fatemeh Bahmanzadegan, Ahad Ghaemi. Modification and functionalization of zeolites to improve the efficiency of CO2 adsorption: A review. Case Studies in Chemical and Environmental Engineering 2024, 9 , 100564. https://doi.org/10.1016/j.cscee.2023.100564
    50. Alexander García-Mariaca, Eva Llera-Sastresa, Francisco Moreno. CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective. Energy 2024, 292 , 130511. https://doi.org/10.1016/j.energy.2024.130511
    51. M.M. Jaffar, A. Rolfe, C. Brandoni, J. Martinez, C. Snape, S. Kaldis, A. Santos, B. Lysiak, A. Lappas, N. Hewitt, Y. Huang. A technical and environmental comparison of novel silica PEI adsorbent-based and conventional MEA-based CO2 capture technologies in the selected cement plant. Carbon Capture Science & Technology 2024, 10 , 100179. https://doi.org/10.1016/j.ccst.2023.100179
    52. Sohan Bir Singh, Mahuya De. Carbon Dioxide Removal by Chemically and Thermally Reduced Graphene-Based Adsorbents. Korean Journal of Chemical Engineering 2024, 41 (3) , 783-796. https://doi.org/10.1007/s11814-024-00111-7
    53. Karthika Devi, Chellapandian Kannan. A Novel Framework Interweaving in Mesoporous AlPO 4 and Its Function in CO 2 Decomposition. Energy Technology 2024, 101 https://doi.org/10.1002/ente.202300912
    54. Yukun Yin, Jialin Wu, Xiaoyu Wang, Kai Ma, Wenjie Zhai, Zhaojun Wu, Jianbin Zhang. Synthesis of zeolite molecular sieve 13X from coal-fired slag for efficient room temperature CO2 adsorption. Chemical Engineering Science 2024, 91 , 119838. https://doi.org/10.1016/j.ces.2024.119838
    55. I. Dhiman, Sadique Vellamarthodika, Siddharth Gautam. Influence of orientational disorder in the adsorbent on the structure and dynamics of the adsorbate: MD simulations of SO2 in ZSM-22. Chemical Engineering Science 2024, 283 , 119389. https://doi.org/10.1016/j.ces.2023.119389
    56. Sima Sepahvand, Alireza Ashori, Mehdi Jonoobi. Cellulose nanofiber aerogels modified with titanium dioxide nanoparticles as high-performance nanofiltration materials. International Journal of Biological Macromolecules 2024, 256 , 128204. https://doi.org/10.1016/j.ijbiomac.2023.128204
    57. Mohammad R. Alrbaihat. Carbon Capture by Carbonaceous Materials and Nanomaterials. 2024https://doi.org/10.1016/B978-0-323-93940-9.00223-1
    58. Nguyen Hoang Luan, Doan Thi Thuy Trang, Nguyen Minh Thuan, Nguyen Thi My Linh, Nguyen Thi Truc Phuong, Ngo Tran Hoang Duong, Nguyen Van Dung, Tran Thuy Tuyet Mai, Nguyen Quang Long. Geopolymer-zeolite and geopolymer- iron (III) ion exchanged zeolite pellets as highly regenerable CO 2 adsorbents. Separation Science and Technology 2023, 58 (17-18) , 2895-2907. https://doi.org/10.1080/01496395.2023.2279949
    59. Bartosz Dziejarski, Jarosław Serafin, Klas Andersson, Renata Krzyżyńska. CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability 2023, 24 , 100483. https://doi.org/10.1016/j.mtsust.2023.100483
    60. Lucie Desage, Eleanor McCabe, Adriana P. Vieira, Terry D. Humphries, Mark Paskevicius, Craig E. Buckley. Thermochemical batteries using metal carbonates: A review of heat storage and extraction. Journal of Energy Storage 2023, 71 , 107901. https://doi.org/10.1016/j.est.2023.107901
    61. Dawei Yi, Huiling Du, Yefei Li, Yimin Gao, Sifan Liu, Boyang Xu, Haoqi Huang, Le Kang. Study on Green Controllable Preparation of Coal Gangue-Based 13-X Molecular Sieves and Its CO2 Capture Application. Coatings 2023, 13 (11) , 1886. https://doi.org/10.3390/coatings13111886
    62. Yijun Zhang, Ludovic Josien, Cyril Vaulot, Angélique Simon‐Masseron, Jacques Lalevée. A Novel Process for the Preparation of Binder‐Free Zeolite Beads (Lta‐5a) via Photopolymerization Applied in Co 2 Adsorption Field. Advanced Materials Technologies 2023, 8 (19) https://doi.org/10.1002/admt.202300699
    63. Youns T. Youns, Abbas Khaksar Manshad, Jagar A. Ali. Sustainable aspects behind the application of nanotechnology in CO2 sequestration. Fuel 2023, 349 , 128680. https://doi.org/10.1016/j.fuel.2023.128680
    64. Chiara Zagni, Alessandro Coco, Sandro Dattilo, Vincenzo Patamia, Giuseppe Floresta, Roberto Fiorenza, Giusy Curcuruto, Tommaso Mecca, Antonio Rescifina. HEMA-based macro and microporous materials for CO2 capture. Materials Today Chemistry 2023, 33 , 101715. https://doi.org/10.1016/j.mtchem.2023.101715
    65. Biswajit Mohanty, Gopal Avashthi. Hydrocarbons (C8–C12) separation in porous metallocavitand M-PPX (M = Cu, Ag, Au): From computational insight. Results in Physics 2023, 53 , 107016. https://doi.org/10.1016/j.rinp.2023.107016
    66. Eslam G. Al-Sakkari, Ahmed Ragab, Terry M.Y. So, Marzieh Shokrollahi, Hanane Dagdougui, Philippe Navarri, Ali Elkamel, Mouloud Amazouz. Machine learning-assisted selection of adsorption-based carbon dioxide capture materials. Journal of Environmental Chemical Engineering 2023, 11 (5) , 110732. https://doi.org/10.1016/j.jece.2023.110732
    67. Dinh Viet Cuong, Jhen-Cih Wu, Eakalak Khan, Gijs Du Laing, Yong Sik Ok, Chia-Hung Hou. Integrated 3D pore architecture design of bio-based engineered catalysts and adsorbents: preparation, chemical doping, and environmental applications. Environmental Science: Advances 2023, 2 (9) , 1167-1188. https://doi.org/10.1039/D3VA00125C
    68. Yahaya Saadu Itas, Abdussalam Balarabe Suleiman, Chifu E. Ndikilar, Abdullahi Lawal, Razif Razali, Mayeen Uddin Khandaker. Effects of SiO2 and CO2 Absorptions on the Structural, Electronic and Optical Properties of (6, 6) Magnesium Oxide Nanotube (MgONT) for Optoelectronics Applications. Silicon 2023, 15 (12) , 5341-5352. https://doi.org/10.1007/s12633-023-02442-2
    69. Cui Quan, Yuqi Zhou, Ningbo Gao, Tianhua Yang, Jiawei Wang, Chunfei Wu. Direct CO2 capture from air using char from pyrolysis of digestate solid. Biomass and Bioenergy 2023, 175 , 106891. https://doi.org/10.1016/j.biombioe.2023.106891
    70. Ram Sevak Singh. CO2 Capture by Metal-Decorated Silicon Carbide Nanotubes. Silicon 2023, 15 (10) , 4501-4511. https://doi.org/10.1007/s12633-023-02368-9
    71. Sima Sepahvand, Alireza Ashori, Mehdi Jonoobi. Application of cellulose nanofiber as a promising air filter for adsorbing particulate matter and carbon dioxide. International Journal of Biological Macromolecules 2023, 244 , 125344. https://doi.org/10.1016/j.ijbiomac.2023.125344
    72. Ana Ligero, Mónica Calero, M. Ángeles Martín-Lara, Gabriel Blázquez, Rafael R. Solís, Antonio Pérez. Fixed-bed CO2 adsorption onto activated char from the pyrolysis of a non-recyclable plastic mixture from real urban residues. Journal of CO2 Utilization 2023, 73 , 102517. https://doi.org/10.1016/j.jcou.2023.102517
    73. Ryan P. Loughran, Tara Hurley, Andrzej Gładysiak, Arunraj Chidambaram, Konstantin Khivantsev, Eric D. Walter, Trent R. Graham, Patrick Reardon, Janos Szanyi, Dylan B. Fast, Quin R.S. Miller, Ah-Hyung Alissa Park, Kyriakos C. Stylianou. CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework. Cell Reports Physical Science 2023, 4 (7) , 101470. https://doi.org/10.1016/j.xcrp.2023.101470
    74. Basil Wadi, Ayub Golmakani, Tohid N.Borhani, Vasilije Manovic, Seyed Ali Nabavi. Molecular Simulation Techniques as Applied to Silica and Carbon-Based Adsorbents for Carbon Capture. Energies 2023, 16 (13) , 5013. https://doi.org/10.3390/en16135013
    75. Ahad Ghaemi, Mohsen Karimi Dehnavi, Zohreh Khoshraftar. Exploring artificial neural network approach and RSM modeling in the prediction of CO2 capture using carbon molecular sieves. Case Studies in Chemical and Environmental Engineering 2023, 7 , 100310. https://doi.org/10.1016/j.cscee.2023.100310
    76. Md Sumon Reza, Shammya Afroze, Kairat Kuterbekov, Asset Kabyshev, Kenzhebatyr Zh. Bekmyrza, Md Naimul Haque, Shafi Noor Islam, Md Aslam Hossain, Mahbub Hassan, Hridoy Roy, Md Shahinoor Islam, Md Nahid Pervez, Abul Kalam Azad. Advanced Applications of Carbonaceous Materials in Sustainable Water Treatment, Energy Storage, and CO2 Capture: A Comprehensive Review. Sustainability 2023, 15 (11) , 8815. https://doi.org/10.3390/su15118815
    77. I. Dhiman, M.C. Berg, David R. Cole, Siddharth Gautam. Correlation between structure and dynamics of CO2 confined in Mg-MOF-74 and the role of inter-crystalline space: A molecular dynamics simulation study. Applied Surface Science 2023, 612 , 155909. https://doi.org/10.1016/j.apsusc.2022.155909
    78. Jie Bao, Jigang Zhao, Xiaotao Tony Bi. CO 2 Adsorption and Desorption for CO 2 Enrichment at Low‐Concentrations Using Zeolite 13X . Chemie Ingenieur Technik 2023, 95 (1-2) , 143-150. https://doi.org/10.1002/cite.202200108
    79. Manoj S. Choudhari, Vinod Kumar Sharma, Mukesh Thakur, Sanjay Gupta, Shajiullah Naveed Syed. Carbon Dioxide Storage and Its Energy Transformation Applications. 2023, 449-469. https://doi.org/10.1007/978-981-19-4502-1_21
    80. Sarika, Abhishek Anand, Ramovatar Meena, Usha Mina, Amritanshu Shukla, Atul Sharma. Adoption of the Green Energy Technology for the Mitigation of Greenhouse Gas Emission: Embracing the Goals of the Paris Agreement. 2023, 47-72. https://doi.org/10.1007/978-981-99-6924-1_4
    81. Priyanka Basera, Shuchishloka Chakraborty, Meeta Lavania, Banwari Lal. Significance of nanoscale in macro-scale in various sectors such as agriculture, environment, and human health. 2023, 239-261. https://doi.org/10.1016/B978-0-323-91643-1.00016-8
    82. Leonardo H. de Oliveira, Marcus V. Pereira, Joziane G. Meneguin, Maria Angélica S.D. de Barros, Jailton F. do Nascimento, Pedro A. Arroyo. Influence of regeneration conditions on cyclic CO2 adsorption on NaA zeolite at high pressures. Journal of CO2 Utilization 2023, 67 , 102296. https://doi.org/10.1016/j.jcou.2022.102296
    83. Vincenzo Patamia, Rosario Tomarchio, Roberto Fiorenza, Chiara Zagni, Salvatore Scirè, Giuseppe Floresta, Antonio Rescifina. Carbamoyl-Decorated Cyclodextrins for Carbon Dioxide Adsorption. Catalysts 2023, 13 (1) , 41. https://doi.org/10.3390/catal13010041
    84. Jiali Feng, Lingyuan Fan, Mei Zhang, Min Guo. An efficient amine-modified silica aerogel sorbent for CO2 capture enhancement: Facile synthesis, adsorption mechanism and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 656 , 130510. https://doi.org/10.1016/j.colsurfa.2022.130510
    85. Aysun ÖZKAN, Gamze YILMAZ, Zerrin GÜNKAYA, Mufide BANAR. KARBON NANOTÜPLERİN KARBONDİOKSİT TUTUCU OLARAK KULLANIMI ÜZERİNE BİR DEĞERLENDİRME. Mühendislik Bilimleri ve Tasarım Dergisi 2022, 10 (4) , 1484-1494. https://doi.org/10.21923/jesd.852419
    86. Alivia Mukherjee, Biswajit Saha, Catherine Niu, Ajay K. Dalai. Preparation of activated carbon from spent coffee grounds and functionalization by deep eutectic solvent: Effect of textural properties and surface chemistry on CO2 capture performance. Journal of Environmental Chemical Engineering 2022, 10 (6) , 108815. https://doi.org/10.1016/j.jece.2022.108815
    87. Behnoush Barzegar, Farzaneh Feyzi. Investigation of the effect of pristine and functionalized carbon nanotubes in cellulose acetate butyrate for mixed-gas separation: A molecular simulation study. Journal of Molecular Liquids 2022, 368 , 120788. https://doi.org/10.1016/j.molliq.2022.120788
    88. Donglong Fu, Mark E. Davis. Carbon dioxide capture with zeotype materials. Chemical Society Reviews 2022, 51 (22) , 9340-9370. https://doi.org/10.1039/D2CS00508E
    89. A. Shamiri, M. S. Shafeeyan. Evaluation of adsorbent materials for carbon dioxide capture. Materialwissenschaft und Werkstofftechnik 2022, 53 (11) , 1392-1409. https://doi.org/10.1002/mawe.202100332
    90. Kai Wu, Qing Ye, Lanyang Wang, Fanwei Meng, Hongxing Dai. Polyethyleneimine-modified layered double hydroxide/SBA-15 composites: A novel kind of highly efficient CO2 adsorbents. Applied Clay Science 2022, 229 , 106660. https://doi.org/10.1016/j.clay.2022.106660
    91. Samuel Castro-Pardo, Sohini Bhattacharyya, Ram Manohar Yadav, Ana Paula de Carvalho Teixeira, M. Astrid Campos Mata, Thibeorchews Prasankumar, Mohamad A. Kabbani, Md Golam Kibria, Tao Xu, Soumyabrata Roy, Pulickel M. Ajayan. A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. Materials Today 2022, 60 , 227-270. https://doi.org/10.1016/j.mattod.2022.08.018
    92. A. G. Olabi, Tabbi Wilberforce, Enas Taha Sayed, Nabila Shehata, Abdul Hai Alami, Hussein M. Maghrabie, Mohammad Ali Abdelkareem. Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy. Energies 2022, 15 (22) , 8639. https://doi.org/10.3390/en15228639
    93. Gopal Kumar, D. T. K. Dora, Srinivasa Reddy Devarapu. Hydrophobicized cum amine-grafted robust cellulose-based aerogel for CO2 capture. Biomass Conversion and Biorefinery 2022, 344 https://doi.org/10.1007/s13399-022-03346-8
    94. Mahsa Javidi Nobarzad, Maryam Tahmasebpoor, Mohammad Heidari, Covadonga Pevida. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents. Frontiers of Chemical Science and Engineering 2022, 16 (10) , 1460-1475. https://doi.org/10.1007/s11705-022-2159-x
    95. V. Indira, K. Abhitha. A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: Implications for the water-energy nexus. Energy Nexus 2022, 7 , 100095. https://doi.org/10.1016/j.nexus.2022.100095
    96. Zhen Zhang, Yun Zheng, Lanting Qian, Dan Luo, Haozhen Dou, Guobin Wen, Aiping Yu, Zhongwei Chen. Emerging Trends in Sustainable CO 2 ‐Management Materials. Advanced Materials 2022, 34 (29) https://doi.org/10.1002/adma.202201547
    97. Mohd Danish, Vijay P, Mohammed K. Almesfer. Evaluating CO 2 capture performance by adsorption using synthesized and commercial activated carbon. Separation Science and Technology 2022, 57 (9) , 1392-1407. https://doi.org/10.1080/01496395.2021.1986070
    98. Xingyuan Gao, Shiting Yang, Lifen Hu, Shiyi Cai, Liqing Wu, Sibudjing Kawi. Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. Carbon Capture Science & Technology 2022, 3 , 100039. https://doi.org/10.1016/j.ccst.2022.100039
    99. Xue Li, Wenhao He, Zilong Liu, Xiao Zhang, Li Zhao, Xiaonan Hou, Yueliang Liu, Jianwei Zhu, Xiaofang Li, Suian Zhang, Weichao Sun, Enze Xie, Guiwu Lu. Highly selective CO2/C2H2 separation with porous g-C9N7 nanosheets by charge and strain engineering. Chemical Engineering Journal 2022, 435 , 134737. https://doi.org/10.1016/j.cej.2022.134737
    100. Turgut M. Gür. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science 2022, 89 , 100965. https://doi.org/10.1016/j.pecs.2021.100965
    Load more citations