ACS Publications. Most Trusted. Most Cited. Most Read
Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials
My Activity
    Article

    Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials
    Click to copy article linkArticle link copied!

    View Author Information
    Sandia National Laboratories, Livermore, California 94551-0969
    Sandia National Laboratories, 1515 Eubank, S.E., Albuquerque, New Mexico 87123
    * To whom correspondence should be addressed. Telephone: (925) 294-2895. Fax: (925) 294-3282. E-mail: [email protected]
    Other Access Options

    Energy & Fuels

    Cite this: Energy Fuels 2008, 22, 6, 4115–4124
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ef8005004
    Published October 22, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We report a comprehensive thermodynamic analysis of thermal oxidation−reduction cycles for producing hydrogen that use metal ferrites with the spinel structure (MFe2O4; M = Fe, Co, Ni, and Zn) as the redox material. Solution phases (both solid and liquid) were included in the calculations as well as the expected line compounds. Omitting solution phases, whose existence is experimentally well-documented, has a very significant impact upon the results of the calculations. Thermodynamic modeling of the three important material-related aspects of the process was performed, including synthesis of the ferrite materials from bulk oxides, thermal reduction at high temperatures, and reoxidation by reaction with steam. An experimental investigation of the NixFe3−xO4 system was performed to provide compositional data for comparison to model predictions. The results indicate that the Fe/Ni ratio, thermal reduction reaction kinetics, and the specifics of the cooling process affect the composition of the synthesized material. In particular, the presence of oxygen in the atmosphere during the cooling period following calcination substantially alters the sample composition. Predicted compositions following thermal reduction indicate that the stabilities are Fe3O4 > CoFe2O4 ∼ NiFe2O4 > ZnFe2O4 and that the zinc-substituted ferrite is less desirable for solar hydrogen generation because of the high vapor pressure of zinc. Finally, modeling of the water oxidation step shows that efficient reoxidation to the original ferrite is thermodynamically feasible in all cases. We conclude that the temperature history and level of background O2 present will affect both the phase purity of the initially formed material and the stability of the composition over the course of thermal cycling.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 144 publications.

    1. Xuanyu Yue, Duojia Zheng, Ming Gao, Ke Wang, Zizhong Zhang, Wenxin Dai, Xianzhi Fu. CO2 Adsorption-Mediated Oxygen Defects for Photothermal Catalysis Self-Decomposition over Low-Crystalline Nb2O5 Nanoribbons. ACS Catalysis 2023, 13 (24) , 15841-15850. https://doi.org/10.1021/acscatal.3c04590
    2. Sandeep Saini, Kanhaiya L. Yadav, Jyoti Shah, Ravinder K. Kotnala. Effect of Li+, Mg2+, and Al3+ Substitution on the Performance of Nickel Ferrite-Based Hydroelectric Cells. Energy & Fuels 2022, 36 (13) , 7121-7129. https://doi.org/10.1021/acs.energyfuels.2c01244
    3. Samantha L. Millican, Jacob M. Clary, Charles B. Musgrave, Stephan Lany. Redox Defect Thermochemistry of FeAl2O4 Hercynite in Water Splitting from First-Principles Methods. Chemistry of Materials 2022, 34 (2) , 519-528. https://doi.org/10.1021/acs.chemmater.1c01049
    4. Asim Riaz, Takuya Tsuzuki, Felipe Kremer, Suchinda Sattayaporn, Muhammad Umair Ali, Wojciech Lipiński, Adrian Lowe. Structural Rearrangement in LSM Perovskites for Enhanced Syngas Production via Solar Thermochemical Redox Cycles. ACS Catalysis 2020, 10 (15) , 8263-8276. https://doi.org/10.1021/acscatal.0c02439
    5. Samuel Bastien, Nadi Braidy. Reduction and Oxidation Behavior of NixFe3–xO4−δ Spinels Probed by Reactive in Situ XRD. The Journal of Physical Chemistry C 2018, 122 (20) , 11038-11050. https://doi.org/10.1021/acs.jpcc.7b10966
    6. Qing Zhao, Zhenhua Yan, Chengcheng Chen, and Jun Chen . Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews 2017, 117 (15) , 10121-10211. https://doi.org/10.1021/acs.chemrev.7b00051
    7. Christopher L. Muhich, Victoria J. Aston, Ryan M. Trottier, Alan W. Weimer, and Charles B. Musgrave . First-Principles Analysis of Cation Diffusion in Mixed Metal Ferrite Spinels. Chemistry of Materials 2016, 28 (1) , 214-226. https://doi.org/10.1021/acs.chemmater.5b03911
    8. Daniel Marxer, Philipp Furler, Jonathan Scheffe, Hans Geerlings, Christoph Falter, Valentin Batteiger, Andreas Sizmann, and Aldo Steinfeld . Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2. Energy & Fuels 2015, 29 (5) , 3241-3250. https://doi.org/10.1021/acs.energyfuels.5b00351
    9. Jonathan R. Scheffe, Michael Welte, and Aldo Steinfeld . Thermal Reduction of Ceria within an Aerosol Reactor for H2O and CO2 Splitting. Industrial & Engineering Chemistry Research 2014, 53 (6) , 2175-2182. https://doi.org/10.1021/ie402620k
    10. Jonathan R. Scheffe, David Weibel, and Aldo Steinfeld . Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2. Energy & Fuels 2013, 27 (8) , 4250-4257. https://doi.org/10.1021/ef301923h
    11. Greg P. Smestad and Aldo Steinfeld . Review: Photochemical and Thermochemical Production of Solar Fuels from H2O and CO2 Using Metal Oxide Catalysts. Industrial & Engineering Chemistry Research 2012, 51 (37) , 11828-11840. https://doi.org/10.1021/ie3007962
    12. M. Hänchen, A. Stiel, Z. R. Jovanovic, and A. Steinfeld . Thermally Driven Copper Oxide Redox Cycle for the Separation of Oxygen from Gases. Industrial & Engineering Chemistry Research 2012, 51 (20) , 7013-7021. https://doi.org/10.1021/ie202474s
    13. A. Stamatiou, P. G. Loutzenhiser and A. Steinfeld . Solar Syngas Production from H2O and CO2 via Two-Step Thermochemical Cycles Based on Zn/ZnO and FeO/Fe3O4 Redox Reactions: Kinetic Analysis. Energy & Fuels 2010, 24 (4) , 2716-2722. https://doi.org/10.1021/ef901544v
    14. A. Stamatiou, P. G. Loutzenhiser and A. Steinfeld . Solar Syngas Production via H2O/CO2-Splitting Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions. Chemistry of Materials 2010, 22 (3) , 851-859. https://doi.org/10.1021/cm9016529
    15. Andrea Ambrosini Eric N. Coker Mark A. Rodriguez Stephanie Livers Lindsey R. Evans James E. Miller Ellen B. Stechel . Synthesis and Characterization of Ferrite Materials for Thermochemical CO2 Splitting Using Concentrated Solar Energy. 2010, 1-13. https://doi.org/10.1021/bk-2010-1056.ch001
    16. Justin T. Tran, Kent J. Warren, Steven A. Wilson, Christopher L. Muhich, Charles B. Musgrave, Alan W. Weimer. An updated review and perspective on efficient hydrogen generation via solar thermal water splitting. WIREs Energy and Environment 2024, 13 (4) https://doi.org/10.1002/wene.528
    17. Ali Margot Huerta-Flores, Francesco Torre, Maria Taeño, Rosalía Cid Barreno, Elena Palomo Del Barrio, Stefania Doppiu. Influence of physicochemical properties on the thermochemical water splitting performance and H2 production of CoFe2O4. International Journal of Hydrogen Energy 2024, 71 , 1293-1302. https://doi.org/10.1016/j.ijhydene.2024.05.333
    18. Ke Zheng, Zhiyi Yu, Si-Cong Tan, Tong Liu, Hui Kong. Research progress on metal oxide oxygen carrier materials for two-step solar thermochemical cycles in the last five years. Energy Conversion and Management 2024, 303 , 118116. https://doi.org/10.1016/j.enconman.2024.118116
    19. Chen Chen, Fan Jiao, Buchu Lu, Taixiu Liu, Qibin Liu, Hongguang Jin. Challenges and perspectives for solar fuel production from water/carbon dioxide with thermochemical cycles. Carbon Neutrality 2023, 2 (1) https://doi.org/10.1007/s43979-023-00048-6
    20. Robert B. Wexler, Ellen B. Stechel, Emily A. Carter. Materials Design Directions for Solar Thermochemical Water Splitting. 2023, 1-63. https://doi.org/10.1002/9781119752097.ch1
    21. Javaria Arshad, Fatimah Mohammed A. Alzahrani, Sana Munir, Usman Younis, M.S. Al-Buriahi, Z.A. Alrowaili, Muhammad Farooq Warsi. Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid. Ceramics International 2023, 49 (11) , 18988-19002. https://doi.org/10.1016/j.ceramint.2023.03.024
    22. Alex Le Gal, Anne Julbe, Stéphane Abanades. Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production. Molecules 2023, 28 (11) , 4327. https://doi.org/10.3390/molecules28114327
    23. Ke Gao, Xianglei Liu, Qi Wang, Zhixing Jiang, Cheng Tian, Nan Sun, Yimin Xuan. Remarkable solar thermochemical CO 2 splitting performances based on Ce- and Al-doped SrMnO 3 perovskites. Sustainable Energy & Fuels 2023, 7 (4) , 1027-1040. https://doi.org/10.1039/D2SE01496C
    24. Tian Zhao, Xiao-Yu Yang. Solar Thermochemical Water-Splitting. 2023, 295-328. https://doi.org/10.1007/978-981-99-0510-2_5
    25. Vishnu Kumar Budama, Juan Pablo Rincon Duarte, Martin Roeb, Christian Sattler. Potential of solar thermochemical water-splitting cycles: A review. Solar Energy 2023, 249 , 353-366. https://doi.org/10.1016/j.solener.2022.11.001
    26. Chandu N. Potangale, Satish K. Pardeshi. Effect of Ni2+ substitution on structural, magnetic and electrical traits of Ba1-xNixFe2O4. Advanced Powder Technology 2022, 33 (12) , 103843. https://doi.org/10.1016/j.apt.2022.103843
    27. Alex Le Gal, Marielle Vallès, Anne Julbe, Stéphane Abanades. Thermochemical Properties of High Entropy Oxides Used as Redox-Active Materials in Two-Step Solar Fuel Production Cycles. Catalysts 2022, 12 (10) , 1116. https://doi.org/10.3390/catal12101116
    28. Ke Gao, Xianglei Liu, Zhixing Jiang, Hangbin Zheng, Chao Song, Xinrui Wang, Cheng Tian, Chunzhuo Dang, Nan Sun, Yimin Xuan. Direct solar thermochemical CO2 splitting based on Ca- and Al- doped SmMnO3 perovskites: Ultrahigh CO yield within small temperature swing. Renewable Energy 2022, 194 , 482-494. https://doi.org/10.1016/j.renene.2022.05.105
    29. Jonathan Scheffe, Dylan McCord, Diego Gordon. Hydrogen (or Syngas) Generation – Solar Thermal. 2022, 439-487. https://doi.org/10.1002/9781119239390.ch21
    30. Laksmikanta Adak, Debasish Kundu, Keya Roy, Malay Saha, Anup Roy. Reusable Iron/Iron Oxide-based Nanoparticles Catalyzed Organic Reactions. Current Organic Chemistry 2022, 26 (4) , 399-417. https://doi.org/10.2174/1385272826666220209120545
    31. Zhen Qiu, Daniel Martín-Yerga, Pär A. Lindén, Gunnar Henriksson, Ann Cornell. Green hydrogen production via electrochemical conversion of components from alkaline carbohydrate degradation. International Journal of Hydrogen Energy 2022, 47 (6) , 3644-3654. https://doi.org/10.1016/j.ijhydene.2021.11.046
    32. James Eujin Park, Zachary J. L. Bare, Ryan J. Morelock, Mark A. Rodriguez, Andrea Ambrosini, Charles B. Musgrave, Anthony H. McDaniel, Eric N. Coker. Computationally Accelerated Discovery and Experimental Demonstration of Gd0.5La0.5Co0.5Fe0.5O3 for Solar Thermochemical Hydrogen Production. Frontiers in Energy Research 2021, 9 https://doi.org/10.3389/fenrg.2021.750600
    33. Rahul R. Bhosale, Rajesh V. Shende, Ram B. Gupta. Application of Zn-ferrite towards thermochemical utilization of carbon dioxide: A thermodynamic investigation. Energy Conversion and Management 2021, 245 , 114528. https://doi.org/10.1016/j.enconman.2021.114528
    34. Eric N. Coker, Andrea Ambrosini, James E. Miller. Compositional and operational impacts on the thermochemical reduction of CO 2 to CO by iron oxide/yttria-stabilized zirconia. RSC Advances 2021, 11 (3) , 1493-1502. https://doi.org/10.1039/D0RA08589H
    35. Alicia Bayon, Jayni Hashimoto, Christopher Muhich. Fundamentals of solar thermochemical gas splitting materials. 2021, 55-90. https://doi.org/10.1016/bs.ache.2021.10.006
    36. Jincheng Huang, Yu Fu, Yonghui Zhao, Jun Zhang, Shuqing Li, Shenggang Li, Guijun Li, Zhenpan Chen, Yuhan Sun. Anti-sintering non-stoichiometric nickel ferrite for highly efficient and thermal-stable thermochemical CO2 splitting. Chemical Engineering Journal 2021, 404 , 127067. https://doi.org/10.1016/j.cej.2020.127067
    37. Yibo Gao, Yanpeng Mao, Zhanlong Song, Xiqiang Zhao, Jing Sun, Wenlong Wang, Guifang Chen, Shouyan Chen. Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material. Applied Energy 2020, 279 , 115777. https://doi.org/10.1016/j.apenergy.2020.115777
    38. Azeem Mustafa, Bachirou Guene Lougou, Yong Shuai, Zhijiang Wang, Heping Tan. Current technology development for CO2 utilization into solar fuels and chemicals: A review. Journal of Energy Chemistry 2020, 49 , 96-123. https://doi.org/10.1016/j.jechem.2020.01.023
    39. Gorakshnath Takalkar, Rahul R. Bhosale, Fares AlMomani, Suliman Rashid, R. A. Shakoor. Ni incorporation in MgFe2O4 for improved CO2-splitting activity during solar fuel production. Journal of Materials Science 2020, 55 (25) , 11086-11094. https://doi.org/10.1007/s10853-020-04794-1
    40. Song Yang, Jun Wang, Peter D. Lund. Optical Design of a Novel Two-Stage Dish Applied to Thermochemical Water/CO2 Splitting with the Concept of Rotary Secondary Mirror. Energies 2020, 13 (14) , 3553. https://doi.org/10.3390/en13143553
    41. Fernando A. Costa Oliveira, M. Alexandra Barreiros, Anita Haeussler, Ana P. F. Caetano, Ana I. Mouquinho, Pedro M. Oliveira e Silva, Rui M. Novais, Robert C. Pullar, Stéphane Abanades. High performance cork-templated ceria for solar thermochemical hydrogen production via two-step water-splitting cycles. Sustainable Energy & Fuels 2020, 4 (6) , 3077-3089. https://doi.org/10.1039/D0SE00318B
    42. Yanpeng Mao, Yibo Gao, Wei Dong, Han Wu, Zhanlong Song, Xiqiang Zhao, Jing Sun, Wenlong Wang. Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review. Applied Energy 2020, 267 , 114860. https://doi.org/10.1016/j.apenergy.2020.114860
    43. Rahul R. Bhosale. Concentrated solar power driven water splitting cycle using Zn-ferrite based thermochemical redox reactions. International Journal of Hydrogen Energy 2020, 45 (17) , 10342-10352. https://doi.org/10.1016/j.ijhydene.2019.08.243
    44. Shang Zhai, Jimmy Rojas, Nadia Ahlborg, Kipil Lim, Chung Hon Michael Cheng, Chenlu Xie, Michael F. Toney, In-Ho Jung, William C. Chueh, Arun Majumdar. High-capacity thermochemical CO 2 dissociation using iron-poor ferrites. Energy & Environmental Science 2020, 13 (2) , 592-600. https://doi.org/10.1039/C9EE02795E
    45. Galip Akay. Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention. Catalysts 2020, 10 (2) , 152. https://doi.org/10.3390/catal10020152
    46. Darwin Arifin, Andrea Ambrosini, Steven A. Wilson, Bennett Mandal, Christopher L. Muhich, Alan W. Weimer. Investigation of Zr, Gd/Zr, and Pr/Zr – doped ceria for the redox splitting of water. International Journal of Hydrogen Energy 2020, 45 (1) , 160-174. https://doi.org/10.1016/j.ijhydene.2019.10.177
    47. M. A. Schnellmann, R. H. Görke, S. A. Scott, J. S. Dennis. Chemical Looping Technologies for CCS. 2019, 189-237. https://doi.org/10.1039/9781788012744-00189
    48. Gorakshnath Takalkar, Rahul R. Bhosale, Fares AlMomani, Majeda Khraisheh. Thermocatalytic splitting of CO2 using sol-gel synthesized Co-ferrite redox materials. Fuel 2019, 257 , 115965. https://doi.org/10.1016/j.fuel.2019.115965
    49. G.D. Takalkar, R.R. Bhosale. Application of cobalt incorporated Iron oxide catalytic nanoparticles for thermochemical conversion of CO2. Applied Surface Science 2019, 495 , 143508. https://doi.org/10.1016/j.apsusc.2019.07.250
    50. Gorakshnath Takalkar, Rahul R. Bhosale, Fares AlMomani. Sol-gel synthesized NixFe3−xO4 for thermochemical conversion of CO2. Applied Surface Science 2019, 489 , 693-700. https://doi.org/10.1016/j.apsusc.2019.05.285
    51. Guanyu Liu, Yuan Sheng, Joel W. Ager, Markus Kraft, Rong Xu. Research advances towards large-scale solar hydrogen production from water. EnergyChem 2019, 1 (2) , 100014. https://doi.org/10.1016/j.enchem.2019.100014
    52. ABANADES. Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy. ChemEngineering 2019, 3 (3) , 63. https://doi.org/10.3390/chemengineering3030063
    53. Gorakshnath Takalkar, Rahul R. Bhosale. Thermochemical CO 2 splitting using a sol‐gel–synthesized Mg‐ferrite–based redox system. International Journal of Energy Research 2019, 30 https://doi.org/10.1002/er.4716
    54. Ibraheam A. Al-Shankiti, Brian D. Ehrhart, Barbara J. Ward, Alicia Bayon, Mark A. Wallace, Roman Bader, Peter Kreider, Alan W. Weimer. Particle design and oxidation kinetics of iron-manganese oxide redox materials for thermochemical energy storage. Solar Energy 2019, 183 , 17-29. https://doi.org/10.1016/j.solener.2019.02.071
    55. Richard J. Carrillo, Kent J. Warren, Jonathan R. Scheffe. Experimental Framework for Evaluation of the Thermodynamic and Kinetic Parameters of Metal-Oxides for Solar Thermochemical Fuel Production. Journal of Solar Energy Engineering 2019, 141 (2) https://doi.org/10.1115/1.4042088
    56. Jincheng Huang, Yu Fu, Shuqing Li, Wenbo Kong, Jun Zhang, Yuhan Sun. Cobalt-based ferrites as efficient redox materials for thermochemical two-step CO 2 -splitting: enhanced performance due to cation diffusion. Sustainable Energy & Fuels 2019, 3 (4) , 975-984. https://doi.org/10.1039/C8SE00611C
    57. Heidi I. Villafán-Vidales, Camilo A. Arancibia-Bulnes, Patricio J. Valades-Pelayo, Hernando Romero-Paredes, Ana K. Cuentas-Gallegos, Carlos E. Arreola-Ramos. Hydrogen from solar thermal energy. 2019, 319-363. https://doi.org/10.1016/B978-0-12-814853-2.00010-2
    58. Rahul R. Bhosale. Thermodynamic analysis of Ni-ferrite based solar thermochemical H2O splitting cycle for H2 production. International Journal of Hydrogen Energy 2019, 44 (1) , 61-71. https://doi.org/10.1016/j.ijhydene.2018.03.145
    59. Christoph Falter, Robert Pitz-Paal. Energy analysis of solar thermochemical fuel production pathway with a focus on waste heat recuperation and vacuum generation. Solar Energy 2018, 176 , 230-240. https://doi.org/10.1016/j.solener.2018.10.042
    60. Debora R. Barcellos, Michael D. Sanders, Jianhua Tong, Anthony H. McDaniel, Ryan P. O’Hayre. BaCe 0.25 Mn 0.75 O 3−δ —a promising perovskite-type oxide for solar thermochemical hydrogen production. Energy & Environmental Science 2018, 11 (11) , 3256-3265. https://doi.org/10.1039/C8EE01989D
    61. Jincheng Huang, Yu Fu, Shenggang Li, Wenbo Kong, Jun Zhang, Yuhan Sun. Enhanced activity of Mg Fe O ferrites for two-step thermochemical CO2 splitting. Journal of CO2 Utilization 2018, 27 , 450-458. https://doi.org/10.1016/j.jcou.2018.08.007
    62. Suryakanti Debata, Santanu Patra, Sanchari Banerjee, Rashmi Madhuri, Prashant K. Sharma. Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: An efficient electrocatalyst for overall water splitting. Applied Surface Science 2018, 449 , 203-212. https://doi.org/10.1016/j.apsusc.2018.01.302
    63. N. Bashir, K. Hussain, Z. Hussain, M.Y. Naz, K.A. Ibrahim, N.M. Abdel-Salam. Effect of metal coil on product distribution of highly upgraded bio-oil produced by microwave-metal interaction pyrolysis of biomass. Chemical Engineering and Processing - Process Intensification 2018, 130 , 140-147. https://doi.org/10.1016/j.cep.2018.05.024
    64. Xiang Gao, Guanyu Liu, Ye Zhu, Peter Kreider, Alicia Bayon, Thomas Gengenbach, Teng Lu, Yun Liu, Jim Hinkley, Wojciech Lipiński, Antonio Tricoli. Earth-abundant transition metal oxides with extraordinary reversible oxygen exchange capacity for efficient thermochemical synthesis of solar fuels. Nano Energy 2018, 50 , 347-358. https://doi.org/10.1016/j.nanoen.2018.05.045
    65. Jincheng Huang, Yu Fu, Shenggang Li, Wenbo Kong, Jun Zhang, Yuhan Sun. Enhanced activity of Mg-Fe-O ferrites for two-step thermochemical CO2 splitting. Journal of CO2 Utilization 2018, 26 , 544-551. https://doi.org/10.1016/j.jcou.2018.06.014
    66. Bachirou Guene Lougou, Yong Shuai, Zhang Guohua, Gédéon Chaffa, Clément Ahouannou, Heping Tan. Analysis of H2 and CO production via solar thermochemical reacting system of NiFe2O4 redox cycles combined with CH4 partial oxidation. International Journal of Hydrogen Energy 2018, 43 (12) , 5996-6010. https://doi.org/10.1016/j.ijhydene.2018.01.197
    67. Christos Agrafiotis, Martin Roeb, Christian Sattler. 4.18 Solar Fuels. 2018, 733-761. https://doi.org/10.1016/B978-0-12-809597-3.00429-6
    68. Mahesh M. Nair, Stéphane Abanades. Experimental screening of perovskite oxides as efficient redox materials for solar thermochemical CO 2 conversion. Sustainable Energy & Fuels 2018, 2 (4) , 843-854. https://doi.org/10.1039/C7SE00516D
    69. C. N. R. Rao, Sunita Dey. Solar thermochemical splitting of water to generate hydrogen. Proceedings of the National Academy of Sciences 2017, 114 (51) , 13385-13393. https://doi.org/10.1073/pnas.1700104114
    70. J. Lachén, P. Durán, J.A. Peña, J. Herguido. High purity hydrogen from coupled dry reforming and steam iron process with cobalt ferrites as oxygen carrier: Process improvement with the addition of NiAl 2 O 4 catalyst. Catalysis Today 2017, 296 , 163-169. https://doi.org/10.1016/j.cattod.2017.04.046
    71. Richard J. Carrillo, Jonathan R. Scheffe. Advances and trends in redox materials for solar thermochemical fuel production. Solar Energy 2017, 156 , 3-20. https://doi.org/10.1016/j.solener.2017.05.032
    72. Rahul R. Bhosale, Anand Kumar, Fares AlMomani, Majeda Khraisheh, Ivo Alxneit. Catalytic Reduction of CO2 into Solar Fuels via Ferrite Based Thermochemical Redox Reactions. MRS Advances 2017, 2 (55) , 3389-3395. https://doi.org/10.1557/adv.2017.360
    73. Daniel Sastre, Alfonso J. Carrillo, David P. Serrano, Patricia Pizarro, Juan M. Coronado. Exploring the Redox Behavior of La0.6Sr0.4Mn1−xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles. Topics in Catalysis 2017, 60 (15-16) , 1108-1118. https://doi.org/10.1007/s11244-017-0790-4
    74. Garrett L. Schieber, Ellen B. Stechel, Andrea Ambrosini, James E. Miller, Peter G. Loutzenhiser. H2O splitting via a two-step solar thermoelectrolytic cycle based on non-stoichiometric ceria redox reactions: Thermodynamic analysis. International Journal of Hydrogen Energy 2017, 42 (30) , 18785-18793. https://doi.org/10.1016/j.ijhydene.2017.06.098
    75. Rahul R. Bhosale, Anand Kumar, Fares AlMomani, Ujjal Ghosh, Parag Sutar, Gorakshnath Takalkar, Anchu Ashok, Ivo Alxneit. Effectiveness of Ni incorporation in iron oxide crystal structure towards thermochemical CO2 splitting reaction. Ceramics International 2017, 43 (6) , 5150-5155. https://doi.org/10.1016/j.ceramint.2017.01.034
    76. Anthony H. McDaniel. Renewable energy carriers derived from concentrating solar power and nonstoichiometric oxides. Current Opinion in Green and Sustainable Chemistry 2017, 4 , 37-43. https://doi.org/10.1016/j.cogsc.2017.02.004
    77. Zhenpan Chen, Qingqing Jiang, Jinhui Tong, Min Yang, Zongxuan Jiang, Can Li. Enhancement effects of dopants and SiO2 support on mixed metal ferrites based two-step thermochemical water splitting. Solar Energy 2017, 144 , 643-659. https://doi.org/10.1016/j.solener.2017.01.049
    78. R. Bader, W. Lipiński. Solar thermal processing. 2017, 403-459. https://doi.org/10.1016/B978-0-08-100516-3.00018-6
    79. Markus Kubicek, Alexander H. Bork, Jennifer L. M. Rupp. Perovskite oxides – a review on a versatile material class for solar-to-fuel conversion processes. Journal of Materials Chemistry A 2017, 5 (24) , 11983-12000. https://doi.org/10.1039/C7TA00987A
    80. Christopher Muhich, Aldo Steinfeld. Principles of doping ceria for the solar thermochemical redox splitting of H 2 O and CO 2. Journal of Materials Chemistry A 2017, 5 (30) , 15578-15590. https://doi.org/10.1039/C7TA04000H
    81. F. Carraro, O. Vozniuk, L. Calvillo, L. Nodari, C. La Fontaine, F. Cavani, S. Agnoli. In operando XAS investigation of reduction and oxidation processes in cobalt and iron mixed spinels during the chemical loop reforming of ethanol. J. Mater. Chem. A 2017, 5 (39) , 20808-20817. https://doi.org/10.1039/C7TA06785B
    82. E.J. Opila. Thermodynamics and kinetics of gaseous metal hydroxide formation from oxides relevant to power and propulsion applications. Calphad 2016, 55 , 32-40. https://doi.org/10.1016/j.calphad.2016.06.007
    83. Guene L. Bachirou, Yong Shuai, Jiahui Zhang, Xing Huang, Yuan Yuan, Heping Tan. Syngas production by simultaneous splitting of H 2 O and CO 2 via iron oxide (Fe 3 O 4 ) redox reactions under high-pressure. International Journal of Hydrogen Energy 2016, 41 (44) , 19936-19946. https://doi.org/10.1016/j.ijhydene.2016.09.053
    84. Victoria J. Aston, Alan W. Weimer. Comparison of Nickel and Cobalt Mixed‐Metal Ferrites for Hydrogen Production using Chemical Looping. Energy Technology 2016, 4 (10) , 1188-1199. https://doi.org/10.1002/ente.201600039
    85. J.-P. Säck, S. Breuer, P. Cotelli, A. Houaijia, M. Lange, M. Wullenkord, C. Spenke, M. Roeb, Chr. Sattler. High temperature hydrogen production: Design of a 750 KW demonstration plant for a two step thermochemical cycle. Solar Energy 2016, 135 , 232-241. https://doi.org/10.1016/j.solener.2016.05.059
    86. Mahesh M. Nair, Stéphane Abanades. Insights into the Redox Performance of Non–stoichiometric Lanthanum Manganite Perovskites for Solar Thermochemical CO 2 Splitting. ChemistrySelect 2016, 1 (15) , 4449-4457. https://doi.org/10.1002/slct.201601171
    87. Christopher L. Muhich, Brian D. Ehrhart, Ibraheam Al‐Shankiti, Barbara J. Ward, Charles B. Musgrave, Alan W. Weimer. A review and perspective of efficient hydrogen generation via solar thermal water splitting. WIREs Energy and Environment 2016, 5 (3) , 261-287. https://doi.org/10.1002/wene.174
    88. Rahul R. Bhosale, Anand Kumar, Fares AlMomani, Ivo Alxneit. Sol–gel derived CeO2–Fe2O3 nanoparticles: Synthesis, characterization and solar thermochemical application. Ceramics International 2016, 42 (6) , 6728-6737. https://doi.org/10.1016/j.ceramint.2016.01.042
    89. Rahul R. Bhosale, Parag Sutar, Anand Kumar, Fares AlMomani, Moustafa Hussein Ali, Ujjal Ghosh, Shaheen AlMuhtaseb, Majeda Khraisheh. Solar hydrogen production via erbium oxide based thermochemical water splitting cycle. Journal of Renewable and Sustainable Energy 2016, 8 (3) https://doi.org/10.1063/1.4953166
    90. Saskia Buller, Jennifer Strunk. Nanostructure in energy conversion. Journal of Energy Chemistry 2016, 25 (2) , 171-190. https://doi.org/10.1016/j.jechem.2016.01.025
    91. M. Takacs, M. Hoes, M. Caduff, T. Cooper, J.R. Scheffe, A. Steinfeld. Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping. Acta Materialia 2016, 103 , 700-710. https://doi.org/10.1016/j.actamat.2015.10.026
    92. D. A. Dimitrakis, N. I. Tsongidis, A. G. Konstandopoulos. Reduction enthalpy and charge distribution of substituted ferrites and doped ceria for thermochemical water and carbon dioxide splitting with DFT+U. Physical Chemistry Chemical Physics 2016, 18 (34) , 23587-23595. https://doi.org/10.1039/C6CP05073E
    93. Sunita Dey, B. S. Naidu, C. N. R. Rao. Ln 0.5 A 0.5 MnO 3 (Ln=Lanthanide, A= Ca, Sr) Perovskites Exhibiting Remarkable Performance in the Thermochemical Generation of CO and H 2 from CO 2 and H 2 O. Chemistry – A European Journal 2015, 21 (19) , 7077-7081. https://doi.org/10.1002/chem.201500442
    94. Christos Agrafiotis, Martin Roeb, Christian Sattler. Solar-Aided Syngas Production via Two-Step, Redox-Pair-Based Thermochemical Cycles. 2015, 475-513. https://doi.org/10.1201/b18075-19
    95. Christos Agrafiotis, Martin Roeb, Christian Sattler. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renewable and Sustainable Energy Reviews 2015, 42 , 254-285. https://doi.org/10.1016/j.rser.2014.09.039
    96. M. Roeb, C. Agrafiotis, C. Sattler. Hydrogen production via thermochemical water splitting. 2015, 319-347. https://doi.org/10.1016/B978-1-78242-361-4.00011-X
    97. R.C. Stehle, M.M. Bobek, D.W. Hahn. Iron oxidation kinetics for H2 and CO production via chemical looping. International Journal of Hydrogen Energy 2015, 40 (4) , 1675-1689. https://doi.org/10.1016/j.ijhydene.2014.11.035
    98. Isabelle Polaert, Samuel Bastien, Benoit Legras, Lionel Estel, Nadi Braidy. Dielectric and magnetic properties of NiFe2O4 at 2.45GHz and heating capacity for potential uses under microwaves. Journal of Magnetism and Magnetic Materials 2015, 374 , 731-739. https://doi.org/10.1016/j.jmmm.2014.09.027
    99. Jeffrey A. Herron, Jiyong Kim, Aniruddha A. Upadhye, George W. Huber, Christos T. Maravelias. A general framework for the assessment of solar fuel technologies. Energy & Environmental Science 2015, 8 (1) , 126-157. https://doi.org/10.1039/C4EE01958J
    100. Christopher L. Muhich, Brian D. Ehrhart, Vanessa A. Witte, Samantha L. Miller, Eric N. Coker, Charles B. Musgrave, Alan W. Weimer. Predicting the solar thermochemical water splitting ability and reaction mechanism of metal oxides: a case study of the hercynite family of water splitting cycles. Energy & Environmental Science 2015, 8 (12) , 3687-3699. https://doi.org/10.1039/C5EE01979F
    Load all citations

    Energy & Fuels

    Cite this: Energy Fuels 2008, 22, 6, 4115–4124
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ef8005004
    Published October 22, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    2732

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.