ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Groundwater contamination: pump-and-treat remediation

Cite this: Environ. Sci. Technol. 1989, 23, 6, 630–636
Publication Date (Print):June 1, 1989
https://doi.org/10.1021/es00064a001
    ACS Legacy Archive

    Article Views

    6219

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (6 MB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 602 publications.

    1. Michael Hitzelberger, Naima A. Khan, Ruba A. M. Mohamed, Mark L. Brusseau, Kenneth C. Carroll. PFOS Mass Flux Reduction/Mass Removal: Impacts of a Lower-Permeability Sand Lens within Otherwise Homogeneous Systems. Environmental Science & Technology 2022, 56 (19) , 13675-13685. https://doi.org/10.1021/acs.est.2c02193
    2. Keith D. Morrison, Mavrik Zavarin, Annie B. Kersting, James D. Begg, Harris E. Mason, Enrica Balboni, Yongqin Jiao. Influence of Uranium Concentration and pH on U-Phosphate Biomineralization by Caulobacter OR37. Environmental Science & Technology 2021, 55 (3) , 1626-1636. https://doi.org/10.1021/acs.est.0c05437
    3. Fei Li, Daiyong Deng, Mengyan Li. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. Environmental Science & Technology 2020, 54 (3) , 1898-1908. https://doi.org/10.1021/acs.est.9b05671
    4. Mavis D. Boamah, Dieter Isheim, Franz M. Geiger. Dendritic Oxide Growth in Zerovalent Iron Nanofilms Revealed by Atom Probe Tomography. The Journal of Physical Chemistry C 2018, 122 (49) , 28225-28232. https://doi.org/10.1021/acs.jpcc.8b10535
    5. Minjune Yang, Michael D. Annable, and James W. Jawitz . Back Diffusion from Thin Low Permeability Zones. Environmental Science & Technology 2015, 49 (1) , 415-422. https://doi.org/10.1021/es5045634
    6. Daniel Sadowsky, Kristopher McNeill, and Christopher J. Cramer . Dehalogenation of Aromatics by Nucleophilic Aromatic Substitution. Environmental Science & Technology 2014, 48 (18) , 10904-10911. https://doi.org/10.1021/es5028822
    7. Biao Jin, Massimo Rolle, Ting Li, and Stefan B. Haderlein . Diffusive Fractionation of BTEX and Chlorinated Ethenes in Aqueous Solution: Quantification of Spatial Isotope Gradients. Environmental Science & Technology 2014, 48 (11) , 6141-6150. https://doi.org/10.1021/es4046956
    8. Chanat Chokejaroenrat, Negin Kananizadeh, Chainarong Sakulthaew, Steve Comfort, and Yusong Li . Improving the Sweeping Efficiency of Permanganate into Low Permeable Zones To Treat TCE: Experimental Results and Model Development. Environmental Science & Technology 2013, 47 (22) , 13031-13038. https://doi.org/10.1021/es403150x
    9. Julianne M. Troiano, David S. Jordan, Christopher J. Hull, and Franz M. Geiger . Interaction of Cr(III) and Cr(VI) with Hematite Studied by Second Harmonic Generation. The Journal of Physical Chemistry C 2013, 117 (10) , 5164-5171. https://doi.org/10.1021/jp3122819
    10. Yongchao Li Zongming Xiu Tielong Li Zhaohui Jin . Stabilization of Fe0 Nanoparticles with Silica for Enhanced Transport and Remediation of Hexavalent Chromium in Groundwater. 2013, 307-326. https://doi.org/10.1021/bk-2013-1124.ch017
    11. Karin S. Holland . A Framework for Sustainable Remediation. Environmental Science & Technology 2011, 45 (17) , 7116-7117. https://doi.org/10.1021/es202595w
    12. S. Harendra and C. Vipulanandan. Fe/Ni Bimetallic Particles Transport in Columns Packed with Sandy Clay Soil. Industrial & Engineering Chemistry Research 2011, 50 (1) , 404-411. https://doi.org/10.1021/ie101546k
    13. Bhanukiran Sunkara, Jingjing Zhan, Jibao He, Gary L. McPherson, Gerhard Piringer, and Vijay T. John . Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons. ACS Applied Materials & Interfaces 2010, 2 (10) , 2854-2862. https://doi.org/10.1021/am1005282
    14. Yoshiko Fujita, Joanna L. Taylor, Lynn M. Wendt, David W. Reed, and Robert W. Smith. Evaluating the Potential of Native Ureolytic Microbes To Remediate a 90Sr Contaminated Environment. Environmental Science & Technology 2010, 44 (19) , 7652-7658. https://doi.org/10.1021/es101752p
    15. Monica R. Higgins and Terese M. Olson. Life-Cycle Case Study Comparison of Permeable Reactive Barrier versus Pump-and-Treat Remediation. Environmental Science & Technology 2009, 43 (24) , 9432-9438. https://doi.org/10.1021/es9015537
    16. Jingjing Zhan, Bhanukiran Sunkara, Lynn Le, Vijay T. John, Jibao He, Gary L. McPherson, Gerhard Piringer and Yunfeng Lu . Multifunctional Colloidal Particles for in Situ Remediation of Chlorinated Hydrocarbons. Environmental Science & Technology 2009, 43 (22) , 8616-8621. https://doi.org/10.1021/es901968g
    17. Jingjing Zhan, Tonghua Zheng, Gerhard Piringer, Christopher Day, Gary L. McPherson, Yunfeng Lu, Kyriakos Papadopoulos and Vijay T. John. Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environmental Science & Technology 2008, 42 (23) , 8871-8876. https://doi.org/10.1021/es800387p
    18. Laura B. Hoch, Elizabeth J. Mack, Bianca W. Hydutsky, Jessica M. Hershman, Joanna M. Skluzacek and Thomas E. Mallouk. Carbothermal Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium. Environmental Science & Technology 2008, 42 (7) , 2600-2605. https://doi.org/10.1021/es702589u
    19. Federico Aulenta,, Andrea Canosa,, Michele Leccese,, Marco Petrangeli Papini,, Mauro Majone, and, Paolo Viotti. Field Study of In Situ Anaerobic Bioremediation of a Chlorinated Solvent Source Zone. Industrial & Engineering Chemistry Research 2007, 46 (21) , 6812-6819. https://doi.org/10.1021/ie070048m
    20. Aijaz Ahmad Dar,, Ghulam Mohammad Rather, and, Akhil Ranjan Das. Mixed Micelle Formation and Solubilization Behavior toward Polycyclic Aromatic Hydrocarbons of Binary and Ternary Cationic−Nonionic Surfactant Mixtures. The Journal of Physical Chemistry B 2007, 111 (12) , 3122-3132. https://doi.org/10.1021/jp066926w
    21. Eric J. Bylaska and, Michel Dupuis, , Paul G. Tratnyek. Ab Initio Electronic Structure Study of One-Electron Reduction of Polychlorinated Ethylenes. The Journal of Physical Chemistry A 2005, 109 (26) , 5905-5916. https://doi.org/10.1021/jp0407526
    22. Jan Schaerlaekens,, Jan Carmeliet, and, Jan Feyen. Multi-Objective Optimization of the Setup of a Surfactant-Enhanced DNAPL Remediation. Environmental Science & Technology 2005, 39 (7) , 2327-2333. https://doi.org/10.1021/es049148z
    23. Gavin Harrold,, Daren C. Gooddy,, Stephen Reid,, David N. Lerner, and, Stephen A. Leharne. Changes in Interfacial Tension of Chlorinated Solvents following Flow through U.K. Soils and Shallow Aquifer Material. Environmental Science & Technology 2003, 37 (9) , 1919-1925. https://doi.org/10.1021/es020117i
    24. Bettina Schrick,, Jennifer L. Blough,, A. Daniel Jones, and, Thomas E. Mallouk. Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel−Iron Nanoparticles. Chemistry of Materials 2002, 14 (12) , 5140-5147. https://doi.org/10.1021/cm020737i
    25. Jonathan D. Istok,, Jennifer A. Field,, Martin H. Schroth,, Brian M. Davis, and, Varadarajan Dwarakanath. Single-Well “Push−Pull” Partitioning Tracer Test for NAPL Detection in the Subsurface. Environmental Science & Technology 2002, 36 (12) , 2708-2716. https://doi.org/10.1021/es015624z
    26. Kim Broholm,, Stanley Feenstra, and, John A. Cherry. Solvent Release into a Sandy Aquifer. 1. Overview of Source Distribution and Dissolution Behavior. Environmental Science & Technology 1999, 33 (5) , 681-690. https://doi.org/10.1021/es980097d
    27. Joseph J. Piatt,, Debera A. Backhus,, Paul D. Capel, and, Steven J. Eisenreich. Temperature-Dependent Sorption of Naphthalene, Phenanthrene, and Pyrene to Low Organic Carbon Aquifer Sediments. Environmental Science & Technology 1996, 30 (3) , 751-760. https://doi.org/10.1021/es9406288
    28. Abdellatif. Fares, Benjamin T. Kindt, Peter. LaPuma, and Glen P. Perram. Desorption Kinetics of Trichloroethylene from Powdered Soils. Environmental Science & Technology 1995, 29 (6) , 1564-1568. https://doi.org/10.1021/es00006a019
    29. Ryan D. Wilson and Douglas M. Mackay. Direct Detection of Residual Nonaqueous Phase Liquid in the Saturated Zone Using SF6 as a Partitioning Tracer. Environmental Science & Technology 1995, 29 (5) , 1255-1258. https://doi.org/10.1021/es00005a017
    30. Thomas C. Harmon and Paul V. Roberts. Comparison of Intraparticle Sorption and Desorption Rates for a Halogenated Alkene in a Sandy Aquifer Material. Environmental Science & Technology 1994, 28 (9) , 1650-1660. https://doi.org/10.1021/es00058a017
    31. . Restoring Contaminated Groundwater: An Achievable Goal ?. Environmental Science & Technology 1994, 362A-368A. https://doi.org/10.1021/es00057a714
    32. . ISOTEC INC.. Environmental Science & Technology 1994, 368A-368A. https://doi.org/10.1021/es00057a715
    33. Richard G. Luthy, David A. Dzombak, Catherine A. Peters, Sujoy B. Roy, Anuradha Ramaswami, David V. Nakles, and Babu R. Nott. Remediating tar-contaminated soils at manufactured gas plant sites. Environmental Science & Technology 1994, 28 (6) , 266A-276A. https://doi.org/10.1021/es00055a002
    34. . REMEDIATING TAR-CONTAMINATED SOILS AT MANUFACTURED GAS PLANT SITES. Environmental Science & Technology 1994, 266A-276A. https://doi.org/10.1021/es00055a718
    35. Catherine A. Peters and Richard G. Luthy. Coal tar dissolution in water-miscible solvents: experimental evaluation. Environmental Science & Technology 1993, 27 (13) , 2831-2843. https://doi.org/10.1021/es00049a025
    36. Kurt D. Pennell, Linda M. Abriola, and Walter J. Weber, Jr.. Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environmental Science & Technology 1993, 27 (12) , 2332-2340. https://doi.org/10.1021/es00048a005
    37. Linda M. Abriola, Timothy J. Dekker, and Kurt D. Pennell. Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling. Environmental Science & Technology 1993, 27 (12) , 2341-2351. https://doi.org/10.1021/es00048a006
    38. Joseph J. Pignatello, Francis J. Ferrandino, and Lee Q. Huang. Elution of aged and freshly added herbicides from a soil. Environmental Science & Technology 1993, 27 (8) , 1563-1571. https://doi.org/10.1021/es00045a010
    39. Marisa Mazari and Douglas M. Mackay. Potential for groundwater contamination in Mexico City. Environmental Science & Technology 1993, 27 (5) , 794-802. https://doi.org/10.1021/es00042a002
    40. Paolo Ciampi, Carlo Esposito, Ernst Bartsch, Eduard J. Alesi, Marco Petrangeli Papini. Pump-and-treat (P&T) vs groundwater circulation wells (GCW): Which approach delivers more sustainable and effective groundwater remediation?. Environmental Research 2023, 234 , 116538. https://doi.org/10.1016/j.envres.2023.116538
    41. Saideep Pavuluri, Ran Holtzman, Luqman Kazeem, Malyah Mohammed, Thomas Daniel Seers, Harris Sajjad Rabbani. Interplay of viscosity and wettability controls fluid displacement in porous media. Physical Review Fluids 2023, 8 (9) https://doi.org/10.1103/PhysRevFluids.8.094002
    42. Zehao Chen, Hongbin Zhan. Universal Relationship between Mass Flux and Properties of Layered Heterogeneity on the Contaminant-Flushing Process. Water 2023, 15 (18) , 3292. https://doi.org/10.3390/w15183292
    43. Shuai Zhang, Xu-Sheng Wang. Regional Flow Influenced Recirculation Zones of Pump‒and‒Treat Systems for Groundwater Remediation with One or Two Injection Wells: An Analytical Comparison. Water 2023, 15 (15) , 2852. https://doi.org/10.3390/w15152852
    44. Clarissa Settimi, Daniela Zingaretti, Iason Verginelli, Renato Baciocchi. Degradation of trichloroethylene vapors by micrometric zero-valent Fe Cu and Fe Ni bimetals under partially saturated conditions. Journal of Contaminant Hydrology 2023, 257 , 104204. https://doi.org/10.1016/j.jconhyd.2023.104204
    45. Sofia Visitacion‐Carrillo, Stéfan Colombano, Nicolas Fatin‐Rouge, Dorian Davarzani. Fluorescent Dyes as Partitioning Tracers for the Estimation of NAPL ‐Mass Saturation in Porous Media. Groundwater Monitoring & Remediation 2023, 36 https://doi.org/10.1111/gwmr.12591
    46. Douglas I. Walker, Natalie L. Cápiro, Emmie Chen, Katelyn Anderson, Kurt D. Pennell. Micellar solubilization of binary organic liquid mixtures for surfactant enhanced aquifer remediation. Journal of Surfactants and Detergents 2023, 26 (3) , 357-368. https://doi.org/10.1002/jsde.12637
    47. Mohamed Gad, Aissam Gaagai, Mohamed Hamdy Eid, Péter Szűcs, Hend Hussein, Osama Elsherbiny, Salah Elsayed, Moataz M. Khalifa, Farahat S. Moghanm, Moustapha E. Moustapha, Dina A. Tolan, Hekmat Ibrahim. Groundwater Quality and Health Risk Assessment Using Indexing Approaches, Multivariate Statistical Analysis, Artificial Neural Networks, and GIS Techniques in El Kharga Oasis, Egypt. Water 2023, 15 (6) , 1216. https://doi.org/10.3390/w15061216
    48. Pratiksha Pandey, Shashi Mathur, V. Sivakumar. Flow and Transport Analysis and Suggested Optimal CAB Design Charts under Varying Hydraulic Conditions. Journal of Hazardous, Toxic, and Radioactive Waste 2023, 27 (1) https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000730
    49. Paolo Ciampi, Carlo Esposito, Ernst Bartsch, Eduard J. Alesi, Gert Rehner, Piero Morettin, Michele Pellegrini, Sandro Olivieri, Mauro Ranaldo, Giovanni Liali, Marco Petrangeli Papini. A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®). Environmental Research 2023, 217 , 114827. https://doi.org/10.1016/j.envres.2022.114827
    50. Joseph Rossabi, Dennis G. Jackson, Holly H. Vermeulen, Brian B. Looney. Dense non-aqueous phase liquid chlorinated contaminant detected far from the source release area in an aquifer. Communications Earth & Environment 2022, 3 (1) https://doi.org/10.1038/s43247-022-00556-w
    51. Arifullah, Huang Changsheng, Waseem Akram, Abdur Rashid, Zahid Ullah, Muddaser Shah, Abdulwahed Fahad Alrefaei, Mohamed Kamel, Lotfi Aleya, Mohamed M. Abdel-Daim. Quality Assessment of Groundwater Based on Geochemical Modelling and Water Quality Index (WQI). Water 2022, 14 (23) , 3888. https://doi.org/10.3390/w14233888
    52. Chen Feng, Fei Liu, Fuyang Huang, Linpeng Chen, Erping Bi. Dense nonaqueous phase liquids back diffusion controlled by biodegradation and heterogeneous sorption-desorption. Journal of Cleaner Production 2022, 4 , 135370. https://doi.org/10.1016/j.jclepro.2022.135370
    53. Rohi Masrat, Kowsar Majid. Solubilization of pyrene by mixed polymer-cationic/nonionic surfactant systems: Effect of polymer concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 653 , 129974. https://doi.org/10.1016/j.colsurfa.2022.129974
    54. Nianqing Zhou, Shuaishuai Lu, Yi Cai, Shan Zhao. Site Investigation and Remediation of Sulfate-Contaminated Groundwater Using Integrated Hydraulic Capture Techniques. Water 2022, 14 (19) , 2989. https://doi.org/10.3390/w14192989
    55. Beth L. Parker, John A. Cherry, Philipp Wanner. Determining effective diffusion coefficients of chlorohydrocarbons in natural clays: Unique results from highly resolved controlled release field experiments. Journal of Contaminant Hydrology 2022, 22 , 104075. https://doi.org/10.1016/j.jconhyd.2022.104075
    56. Paolo Ciampi, Carlo Esposito, Ernst Bartsch, Eduard J. Alesi, Christian Nielsen, Laura Ledda, Laura Lorini, Marco Petrangeli Papini. Coupled Hydrogeochemical Approach and Sustainable Technologies for the Remediation of a Chlorinated Solvent Plume in an Urban Area. Sustainability 2022, 14 (16) , 10317. https://doi.org/10.3390/su141610317
    57. Kien T. Pham, Ronald W. Falta. Use of semi-analytical and dual-porosity models for simulating matrix diffusion in systems with parallel fractures. Advances in Water Resources 2022, 164 , 104202. https://doi.org/10.1016/j.advwatres.2022.104202
    58. Kun-Hao Wei, Jie Ma, Bei-Dou Xi, Min-Da Yu, Jun Cui, Bao-Liang Chen, Yang Li, Qing-Bao Gu, Xiao-Song He. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. Journal of Hazardous Materials 2022, 432 , 128738. https://doi.org/10.1016/j.jhazmat.2022.128738
    59. Junling Zheng, Yi Jin, Jiabin Dong, Shunxi Liu, Qing Zhang, Huibo Song, Pinghua Huang. Reexamination of the permeability-aperture relationship for rough fractures with mismatched self-affine surfaces. Journal of Hydrology 2022, 609 , 127727. https://doi.org/10.1016/j.jhydrol.2022.127727
    60. Jessica Meyer, Jonathan Munn, Emmanuelle Arnaud, Jonathan Kennel, Beth Parker. Graphical Shading Logs: An Improved Approach for Collecting High Resolution Sedimentological Data at Contaminated Sites. Groundwater Monitoring & Remediation 2022, 42 (3) , 59-74. https://doi.org/10.1111/gwmr.12521
    61. Marta M. Rossi, Sara Alfano, Neda Amanat, Fabiano Andreini, Laura Lorini, Andrea Martinelli, Marco Petrangeli Papini. A Polyhydroxybutyrate (PHB)-Biochar Reactor for the Adsorption and Biodegradation of Trichloroethylene: Design and Startup Phase. Bioengineering 2022, 9 (5) , 192. https://doi.org/10.3390/bioengineering9050192
    62. Muhammad Mubashir Bhatti, Shen Jun, Chaudry Masood Khalique, Anwar Shahid, Liu Fasheng, Mohamed S. Mohamed. Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model. Applied Mathematics and Computation 2022, 421 , 126936. https://doi.org/10.1016/j.amc.2022.126936
    63. Betty Cepeda-Salgado, Hazem Fleifel, Gyu S. Lee, Seung I. Kam. A simulation study of in-situ NAPL remediation treatment by using surfactant and foam processes in a military base South Korea. Journal of Contaminant Hydrology 2022, 247 , 103982. https://doi.org/10.1016/j.jconhyd.2022.103982
    64. Negar Nazari, Muhammad M. Almajid, Anthony R. Kovscek. Mechanistic modeling and measurement of foamed gas flow resistance in fractures. Advances in Water Resources 2022, 162 , 104154. https://doi.org/10.1016/j.advwatres.2022.104154
    65. Yufei Wang, Daniel Fernàndez‐Garcia, Guillem Sole‐Mari, Paula Rodríguez‐Escales. Enhanced NAPL Removal and Mixing With Engineered Injection and Extraction. Water Resources Research 2022, 58 (4) https://doi.org/10.1029/2021WR031114
    66. Stephen Leharne. Risk assessment and remediation of NAPL contaminated soil and groundwater. ChemTexts 2022, 8 (1) https://doi.org/10.1007/s40828-021-00156-9
    67. Prashant Kumar, Reema Sharma, Subhasis Bhaumik. MCDA techniques used in optimization of weights and ratings of DRASTIC model for groundwater vulnerability assessment. Data Science and Management 2022, 5 (1) , 28-41. https://doi.org/10.1016/j.dsm.2022.03.004
    68. Charles J. Newell, William H. DiGuiseppi, Daniel P. Cassidy, Craig E. Divine, James M. Fenstermacher, Nathan W. Hagelin, Ryan A. Thomas, Paul Tomiczek, Scott D. Warner, Zhong John Xiong, Paul B. Hatzinger. PFAS Experts Symposium 2: PFAS Remediation research – Evolution from past to present, current efforts, and potential futures. Remediation Journal 2022, 32 (1-2) , 65-73. https://doi.org/10.1002/rem.21705
    69. Lee K. Rhea, Catherine Clark. Management of large dilute plumes of chloroethenes and 1,4‐dioxane via monitored natural attenuation (MNA) and MNA augmentation. Remediation Journal 2022, 32 (1-2) , 97-118. https://doi.org/10.1002/rem.21710
    70. Turlough F. Guerin. Using prototypes to enable development of commercially viable field scale contaminated site remediation processes. Chemosphere 2022, 288 , 132481. https://doi.org/10.1016/j.chemosphere.2021.132481
    71. Marta M. Rossi, Bruna Matturro, Neda Amanat, Simona Rossetti, Marco Petrangeli Papini. Coupled Adsorption and Biodegradation of Trichloroethylene on Biochar from Pine Wood Wastes: A Combined Approach for a Sustainable Bioremediation Strategy. Microorganisms 2022, 10 (1) , 101. https://doi.org/10.3390/microorganisms10010101
    72. Morteza Aminnaji, Korcan Yakşi, Nadim K. Copty, Vahid J. Niasar, Masoud Babaei. Pore network and Darcy scale modelling of DNAPL remediation using ethanol flushing: Study of physical properties in DNAPL remediation. Journal of Contaminant Hydrology 2021, 243 , 103886. https://doi.org/10.1016/j.jconhyd.2021.103886
    73. Han Wang, Tianbei Wang, Gang Xue, Jiang Zhao, Weiwu Ma, Yajie Qian, Min Wu, Zhuoran Zhang, Pin Gao, Changqing Su, Bingnian Zong, Junwu Yu, Jingsong Guo, Yayi Wang. Key technologies and equipment for contaminated surface/groundwater environment in the rural river network area of China: integrated remediation. Environmental Sciences Europe 2021, 33 (1) https://doi.org/10.1186/s12302-020-00451-1
    74. Justin G. Morrissy, Matthew J. Currell, Suzie M. Reichman, Aravind Surapaneni, Mallavarapu Megharaj, Nicholas D. Crosbie, Daniel Hirth, Simon Aquilina, William Rajendram, Andrew S. Ball. Nitrogen contamination and bioremediation in groundwater and the environment: A review. Earth-Science Reviews 2021, 222 , 103816. https://doi.org/10.1016/j.earscirev.2021.103816
    75. Reza Shams, Saeed Alimohammadi, Jafar Yazdi. Optimizing surfactant-enhanced aquifer remediation based on Gaussian process surrogate model in DNAPL-contaminated sites considering different wells patterns. Groundwater for Sustainable Development 2021, 15 , 100675. https://doi.org/10.1016/j.gsd.2021.100675
    76. Meng Wu, Jun Hu, Yuexin Wu, Yuwei Tang, Yan Zhang, Yanhong Guan, Zimo Lou, Zhiliang Yu, Jianming Yu. Enhanced dechlorination of an enzyme-catalyzed electrolysis system by ionic liquids: Electron transfer, enzyme activity and dichloromethane diffusion. Chemosphere 2021, 281 , 130913. https://doi.org/10.1016/j.chemosphere.2021.130913
    77. Bente H. Hyldegaard, Lisbeth M. Ottosen. Electrokinetic and Electrochemical Removal of Chlorinated Ethenes: Application in Low‐ and High‐Permeability Saturated Soils. 2021, 503-540. https://doi.org/10.1002/9781119670186.ch21
    78. Mehran Naseri-Rad, Ronny Berndtsson, Ursula S. McKnight, Magnus Persson, Kenneth M. Persson. INSIDE-T: A Groundwater Contamination Transport Model for Sustainability Assessment in Remediation Practice. Sustainability 2021, 13 (14) , 7596. https://doi.org/10.3390/su13147596
    79. Heejun Suk, Jui-Sheng Chen, Eungyu Park, Weon Shik Han, You Hong Kihm. Numerical evaluation of the performance of injection/extraction well pair operation strategies with temporally variable injection/pumping rates. Journal of Hydrology 2021, 598 , 126494. https://doi.org/10.1016/j.jhydrol.2021.126494
    80. Silpi Sarkar, Manoj Kumar Enamala, Murthy Chavali, G.V.S. Subbaroy Sarma, Mannam Krishna Murthy, Abudukeremu Kadier, Ashokkumar Veeramuthu, K. Chandrasekhar. Nanophytoremediation: An Overview of Novel and Sustainable Biological Advancement. 2021https://doi.org/10.5772/intechopen.93300
    81. Yanhong Zhang, Jichun Wu, Shujun Ye. Quantification of the fluid saturation of three phases of NAPL/Water/Gas in 2D porous media systems using a light transmission technique. Journal of Hydrology 2021, 597 , 125718. https://doi.org/10.1016/j.jhydrol.2020.125718
    82. John K. Golden, Daniel O’Malley. Pre- and post-processing in quantum-computational hydrologic inverse analysis. Quantum Information Processing 2021, 20 (5) https://doi.org/10.1007/s11128-021-03115-y
    83. Somayeh G. Esfahani, Albert J. Valocchi, Charles J. Werth. Using MODFLOW and RT3D to simulate diffusion and reaction without discretizing low permeability zones. Journal of Contaminant Hydrology 2021, 239 , 103777. https://doi.org/10.1016/j.jconhyd.2021.103777
    84. Marta M. Rossi, Ludovica Silvani, Neda Amanat, Marco Petrangeli Papini. Biochar from Pine Wood, Rice Husks and Iron-Eupatorium Shrubs for Remediation Applications: Surface Characterization and Experimental Tests for Trichloroethylene Removal. Materials 2021, 14 (7) , 1776. https://doi.org/10.3390/ma14071776
    85. Christian Engelmann, Kaveh Sookhak Lari, Luisa Schmidt, Charles J. Werth, Marc Walther. Towards predicting DNAPL source zone formation to improve plume assessment: Using robust laboratory and numerical experiments to evaluate the relevance of retention curve characteristics. Journal of Hazardous Materials 2021, 407 , 124741. https://doi.org/10.1016/j.jhazmat.2020.124741
    86. Yaru Li, He-Ping Zhao, Lizhong Zhu. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. Science of The Total Environment 2021, 760 , 143413. https://doi.org/10.1016/j.scitotenv.2020.143413
    87. Yiyang Liu, Rongbin Zhang, Zhenjie Sun, Qin Shen, Yuan Li, Yuan Wang, Siqing Xia, Jianfu Zhao, Xuejiang Wang. Remediation of artificially contaminated soil and groundwater with copper using hydroxyapatite/calcium silicate hydrate recovered from phosphorus-rich wastewater. Environmental Pollution 2021, 272 , 115978. https://doi.org/10.1016/j.envpol.2020.115978
    88. S. Colombano, H. Davarzani, E.D. van Hullebusch, D. Huguenot, D. Guyonnet, J. Deparis, F. Lion, I. Ignatiadis. Comparison of thermal and chemical enhanced recovery of DNAPL in saturated porous media: 2D tank pumping experiments and two-phase flow modelling. Science of The Total Environment 2021, 760 , 143958. https://doi.org/10.1016/j.scitotenv.2020.143958
    89. Muhammad Muniruzzaman, Massimo Rolle. Impact of diffuse layer processes on contaminant forward and back diffusion in heterogeneous sandy-clayey domains. Journal of Contaminant Hydrology 2021, 237 , 103754. https://doi.org/10.1016/j.jconhyd.2020.103754
    90. Jian-Wu Liu, Kun-Hao Wei, Shao-Wei Xu, Jun Cui, Jie Ma, Xiao-Long Xiao, Bei-Dou Xi, Xiao-Song He. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Science of The Total Environment 2021, 756 , 144142. https://doi.org/10.1016/j.scitotenv.2020.144142
    91. Yu Ye, Yu Zhang, Chunhui Lu, Yifan Xie, Jian Luo. Effective Chemical Delivery Through Multi‐Screen Wells to Enhance Mixing and Reaction of Solute Plumes in Porous Media. Water Resources Research 2021, 57 (2) https://doi.org/10.1029/2020WR028551
    92. Tian Xie, Zhi Dang, Jian Zhang, Qian Zhang, Rong-Hai Zhang, Chang-Jun Liao, Gui-Ning Lu. Decontamination of dense nonaqueous-phase liquids in groundwater using pump-and-treat and in situ chemical oxidation processes: a field test. RSC Advances 2021, 11 (7) , 4237-4246. https://doi.org/10.1039/D0RA10010B
    93. Arnab Kumar Sarkar, Dipjyoti Kalita, Sunandan Baruah. Nanomaterials for aquatic contamination sensing and remediation. 2021, 67-89. https://doi.org/10.1016/B978-0-12-821141-0.00007-0
    94. Michael C. Brooks, Eunice Yarney, Junqi Huang. Strategies for Managing Risk due to Back Diffusion. Groundwater Monitoring & Remediation 2021, 41 (1) , 76-98. https://doi.org/10.1111/gwmr.12423
    95. Daniele Pedretti. Heterogeneity-controlled uncertain optimization of pump-and-treat systems explained through geological entropy. GEM - International Journal on Geomathematics 2020, 11 (1) https://doi.org/10.1007/s13137-020-00158-8
    96. U. Eberhard, H. J. Seybold, E. Secchi, J. Jiménez-Martínez, P. A. Rühs, A. Ofner, J. S. Andrade, M. Holzner. Mapping the local viscosity of non-Newtonian fluids flowing through disordered porous structures. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-68545-7
    97. Xueji You, Shuguang Liu, Chaomeng Dai, Yiping Guo, Guihui Zhong, Yanping Duan. Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. Science of The Total Environment 2020, 743 , 140703. https://doi.org/10.1016/j.scitotenv.2020.140703
    98. Daniela Zingaretti, Iason Verginelli, Igor Luisetto, Renato Baciocchi. Horizontal permeable reactive barriers with zero-valent iron for preventing upward diffusion of chlorinated solvent vapors in the unsaturated zone. Journal of Contaminant Hydrology 2020, 234 , 103687. https://doi.org/10.1016/j.jconhyd.2020.103687
    99. Jimmie R. Baran, Gary A. Pope, Christopher Schultz, William H. Wade, Vinitha Weerasooriya, Anusha Yapa. Toxic Spill Remediation of Chlorinated Hydrocarbons Via Microemulsion Formation. 2020, 393-411. https://doi.org/10.1201/9781003067580-28
    100. Viet Cao, Huichen Yang, Arnaud Igor Ndé-Tchoupé, Rui Hu, Willis Gwenzi, Chicgoua Noubactep. Tracing the Scientific History of Fe0-Based Environmental Remediation Prior to the Advent of Permeable Reactive Barriers. Processes 2020, 8 (8) , 977. https://doi.org/10.3390/pr8080977
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect