ACS Publications. Most Trusted. Most Cited. Most Read
Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings:  Influence of Degradation Rate, Source Concentration, and Depth
My Activity

Figure 1Loading Img
    Article

    Simulating the Effect of Aerobic Biodegradation on Soil Vapor Intrusion into Buildings:  Influence of Degradation Rate, Source Concentration, and Depth
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Civil and Environmental Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287
    Other Access OptionsSupporting Information (2)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2006, 40, 7, 2304–2315
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es051335p
    Published February 17, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Steady-state vapor intrusion scenarios involving aerobically biodegradable chemicals are studied using a three-dimensional multicomponent numerical model. In these scenarios, sources of aerobically biodegradable chemical vapors are placed at depths of 1−14 m beneath a 10 m × 10 m basement or slab-on-grade construction building, and the simultaneous transport and reaction of hydrocarbon and oxygen vapors are simulated. The results are presented as Johnson and Ettinger attenuation factors α (predicted indoor air hydrocarbon concentration/source vapor concentration), and normalized contour plots of hydrocarbon and oxygen concentrations. In addition to varying the vapor source depth, the effects of source concentration (2−200 mg chemical/L vapor) and oxygen-limited first-order reaction rates (0.018−1.8 h-1) are studied. Hydrocarbon inputs were specific to benzene, although the relevant properties are similar to those for a range of hydrocarbons of interest. Overall, the results suggest that aerobic biodegradation could play a significant role in reducing vapor intrusion into buildings (decreased α-values) relative to the no-biodegradation case, with the significance of aerobic biodegradation increasing with increasing vapor source depth, decreasing vapor source concentration, and increasing first-order biodegradation rate. In contrast to the no-biodegradation case, differences in foundation construction can be significant in some settings. The significance of aerobic biodegradation is directly related to the extent to which oxygen is capable of migrating beneath the foundation. For example, in the case of a basement scenario with a 200 mg/L vapor source located at 3 m bgs, oxygen is consumed before it can migrate beneath the foundation, so the attenuation factors for simulations with and without aerobic biodegradation are similar for all first-order rates studied. For the case of a 2 mg/L vapor source located at 8 m bgs, the oxygen is widely distributed beneath the foundation, and the attenuation factor for the biodegradation case ranges from about 3 to 18 orders-of-magnitude less than that for the no-biodegradation case.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author phone:  (480) 965-9115; e-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Tables summarizing equations solved by the numerical code and boundary conditions,tabulated results for all simulations run, figures with normalized soil gas pressure field, figures with cracks distribution and model domain, and an example of a concentration profile for a source located 5 m off-set laterally from the foundation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 97 publications.

    1. Nicole C. Soucy and Kevin G. Mumford . Bubble-Facilitated VOC Transport from LNAPL Smear Zones and Its Potential Effect on Vapor Intrusion. Environmental Science & Technology 2017, 51 (5) , 2795-2802. https://doi.org/10.1021/acs.est.6b06061
    2. Zohre Kurt, E. Erin Mack, and Jim C. Spain . Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe. Environmental Science & Technology 2016, 50 (18) , 10172-10178. https://doi.org/10.1021/acs.est.6b02525
    3. Yiming Chen, Deyi Hou, Chunhui Lu, Jim C. Spain, and Jian Luo . Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation. Environmental Science & Technology 2016, 50 (17) , 9400-9406. https://doi.org/10.1021/acs.est.6b01840
    4. Yijun Yao, Yun Wu, Yue Wang, Iason Verginelli, Tian Zeng, Eric M. Suuberg, Lin Jiang, Yuezhong Wen, and Jie Ma . A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation. Environmental Science & Technology 2015, 49 (19) , 11577-11585. https://doi.org/10.1021/acs.est.5b01314
    5. Jian Luo, Zohre Kurt, Deyi Hou, and Jim C. Spain . Modeling Aerobic Biodegradation in the Capillary Fringe. Environmental Science & Technology 2015, 49 (3) , 1501-1510. https://doi.org/10.1021/es503086p
    6. Zohre Kurt, E. Erin Mack, and Jim C. Spain . Biodegradation of cis-Dichloroethene and Vinyl Chloride in the Capillary Fringe. Environmental Science & Technology 2014, 48 (22) , 13350-13357. https://doi.org/10.1021/es503071m
    7. Iason Verginelli and Renato Baciocchi . Vapor Intrusion Screening Model for the Evaluation of Risk-Based Vertical Exclusion Distances at Petroleum Contaminated Sites. Environmental Science & Technology 2014, 48 (22) , 13263-13272. https://doi.org/10.1021/es503723g
    8. Jie Ma, Hong Luo, George E. DeVaull, William G. Rixey, and Pedro J. J. Alvarez . Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend Releases. Environmental Science & Technology 2014, 48 (1) , 474-481. https://doi.org/10.1021/es403926k
    9. Zohre Kurt and Jim C. Spain . Biodegradation of Chlorobenzene, 1,2-Dichlorobenzene, and 1,4-Dichlorobenzene in the Vadose Zone. Environmental Science & Technology 2013, 47 (13) , 6846-6854. https://doi.org/10.1021/es3049465
    10. Yijun Yao, Rui Shen, Kelly G. Pennell, and Eric M. Suuberg . A Review of Vapor Intrusion Models. Environmental Science & Technology 2013, 47 (6) , 2457-2470. https://doi.org/10.1021/es302714g
    11. Hong Luo, Paul R. Dahlen, Paul C. Johnson, and Tom Peargin . Proof-of-Concept Study of an Aerobic Vapor Migration Barrier Beneath a Building at a Petroleum Hydrocarbon-Impacted Site. Environmental Science & Technology 2013, 47 (4) , 1977-1984. https://doi.org/10.1021/es3045532
    12. Yijun Yao, Rui Shen, Kelly G. Pennell, and Eric M. Suuberg . Examination of the U.S. EPA’s Vapor Intrusion Database Based on Models. Environmental Science & Technology 2013, 47 (3) , 1425-1433. https://doi.org/10.1021/es304546f
    13. Yijun Yao, Rui Shen, Kelly G. Pennell, and Eric M. Suuberg . Examination of the Influence of Environmental Factors on Contaminant Vapor Concentration Attenuation Factors Using the U.S. EPA’s Vapor Intrusion Database. Environmental Science & Technology 2013, 47 (2) , 906-913. https://doi.org/10.1021/es303441x
    14. Jie Ma, William G. Rixey, George E. DeVaull, Brent P. Stafford, and Pedro J. J. Alvarez . Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a Plume of Dissolved Ethanol. Environmental Science & Technology 2012, 46 (11) , 6013-6019. https://doi.org/10.1021/es300715f
    15. Yijun Yao, Rui Shen, Kelly G. Pennell, and Eric M. Suuberg . Comparison of the Johnson−Ettinger Vapor Intrusion Screening Model Predictions with Full Three-Dimensional Model Results. Environmental Science & Technology 2011, 45 (6) , 2227-2235. https://doi.org/10.1021/es102602s
    16. Paul D. Lundegard, Paul C. Johnson and Paul Dahlen. Oxygen Transport From the Atmosphere to Soil Gas Beneath a Slab-on-Grade Foundation Overlying Petroleum-Impacted Soil. Environmental Science & Technology 2008, 42 (15) , 5534-5540. https://doi.org/10.1021/es070607g
    17. George E. DeVaull. Indoor Vapor Intrusion with Oxygen-Limited Biodegradation for a Subsurface Gasoline Source. Environmental Science & Technology 2007, 41 (9) , 3241-3248. https://doi.org/10.1021/es060672a
    18. David W. Ostendorf,, Theodore H. Schoenberg,, Erich S. Hinlein, and, Sharon C. Long. Monod Kinetics for Aerobic Biodegradation of Petroleum Hydrocarbons in Unsaturated Soil Microcosms. Environmental Science & Technology 2007, 41 (7) , 2343-2349. https://doi.org/10.1021/es062313l
    19. Greg B. Davis, John L. Rayner, Mike J. Donn, Trevor P. Bastow, Andrew Furness, Yasuko Geste, Andrew King. Intercomparison of in-well, depth profile and online soil gas measurements for estimating petroleum natural source zone depletion rates: Will in-well gas samples suffice?. Journal of Hazardous Materials 2025, 488 , 137408. https://doi.org/10.1016/j.jhazmat.2025.137408
    20. Clarissa Settimi, Iason Verginelli, Daniela Zingaretti. Examining the role of density-driven transport on chlorinated vapor intrusion. Building and Environment 2024, 266 , 112096. https://doi.org/10.1016/j.buildenv.2024.112096
    21. Chris Lutes, Victoria Boyd, Gwen Buckley, Laurent Levy, Kate Bronstein, John H. Zimmerman, Alan Williams, Brian Schumacher. Impact of Hurricanes, Tropical Storms, and Coastal Extratropical Storms on Indoor Air VOC Concentrations. Groundwater Monitoring & Remediation 2024, 44 (2) , 101-117. https://doi.org/10.1111/gwmr.12642
    22. Iason Verginelli. Petroleum Vapor Intrusion. 2024, 139-169. https://doi.org/10.1007/978-3-031-34447-3_6
    23. Monami Kondo, Yasuhide Sakamoto, Yoshishige Kawabe, Takeshi Komai, Noriaki Watanabe. Numerical Analysis on the Effect of Soil Properties on the Generation of Volatilization Flux from Unsaturated Soil Contaminated by Volatile Chemical Substances. Environmental Modeling & Assessment 2023, 28 (6) , 1055-1081. https://doi.org/10.1007/s10666-023-09914-0
    24. J.R.R. Navodi Jayarathne, Richard S. Kolodziej, Stuart N. Riddick, Daniel J. Zimmerle, Kathleen M. Smits. Influence of soil-gas diffusivity on expansion of leaked underground natural gas plumes and application on simulation efforts. Journal of Hydrology 2023, 625 , 130049. https://doi.org/10.1016/j.jhydrol.2023.130049
    25. Christophe Guimbaud, Stéfan Colombano, Cécile Noel, Elicia Verardo, Agnès Grossel, Line Jourdain, Fabrice Jégou, Zhen Hu, Jérémy Jacob, Ioannis Ignatiadis, Michaela Blessing, Jean Christophe Gourry. Quantification of biodegradation rate of hydrocarbons in a contaminated aquifer by CO2 δ13C monitoring at ground surface. Journal of Contaminant Hydrology 2023, 256 , 104168. https://doi.org/10.1016/j.jconhyd.2023.104168
    26. Monami Kondo, Yasuhide Sakamoto, Yoshishige Kawabe, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai. Development of a Model for Predicting the Volatilization Flux from Unsaturated Soil Contaminated by Volatile Chemical Substances. Environmental Modeling & Assessment 2022, 27 (2) , 251-273. https://doi.org/10.1007/s10666-021-09796-0
    27. Yijun Yao, Qiang Chen. Screening Models of Vapor Intrusion. 2022, 1-33. https://doi.org/10.1007/978-981-19-2700-3_1
    28. Yijun Yao, Qiang Chen. Numerical Models of Vapor Intrusion. 2022, 35-47. https://doi.org/10.1007/978-981-19-2700-3_2
    29. Yijun Yao, Qiang Chen. US EPA’s Vapor Intrusion Database and Generic Attenuation Factor. 2022, 49-63. https://doi.org/10.1007/978-981-19-2700-3_3
    30. Yijun Yao, Qiang Chen. US EPA’s PVI Database and Vertical Screening Distances. 2022, 65-84. https://doi.org/10.1007/978-981-19-2700-3_4
    31. Yijun Yao, Qiang Chen. Vapor Intrusion Risk Assessments in Brownfield Redevelopment. 2022, 109-128. https://doi.org/10.1007/978-981-19-2700-3_6
    32. Zakaria Saâdi, Nahla Mansouri, Laurent Marie, Géraldine Ielsch. Towards a better assessment model of transient radon concentrations in dwellings basements for the study of the effectiveness of soil radon mitigation systems designs. Journal of Environmental Radioactivity 2021, 235-236 , 106651. https://doi.org/10.1016/j.jenvrad.2021.106651
    33. Yanqiu Liu, Iason Verginelli, Yijun Yao. Numerical study of building pressure cycling to generate sub-foundation aerobic barrier for mitigating petroleum vapor intrusion. Science of The Total Environment 2021, 779 , 146460. https://doi.org/10.1016/j.scitotenv.2021.146460
    34. Xinyue Liu, Enze Ma, You-Kuan Zhang, Xiuyu Liang. An analytical model of vapor intrusion with fluctuated water table. Journal of Hydrology 2021, 596 , 126085. https://doi.org/10.1016/j.jhydrol.2021.126085
    35. Gregory B. Davis, John H. Knight, John L. Rayner. Extinguishing Petroleum Vapor Intrusion and Methane Risks for Slab‐on‐ground Buildings: A Simple Guide. Groundwater Monitoring & Remediation 2021, 41 (2) , 61-72. https://doi.org/10.1111/gwmr.12440
    36. Iason Verginelli, Yijun Yao. A Review of Recent Vapor Intrusion Modeling Work. Groundwater Monitoring & Remediation 2021, 41 (2) , 138-144. https://doi.org/10.1111/gwmr.12455
    37. Carol J. Miller, Melissa Runge-Morris, Andrea E. Cassidy-Bushrow, Jennifer K. Straughen, Timothy M. Dittrich, Tracie R. Baker, Michael C. Petriello, Gil Mor, Douglas M. Ruden, Brendan F. O’Leary, Sadaf Teimoori, Chandra M. Tummala, Samantha Heldman, Manisha Agarwal, Katherine Roth, Zhao Yang, Bridget B. Baker. A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens. International Journal of Environmental Research and Public Health 2020, 17 (23) , 8755. https://doi.org/10.3390/ijerph17238755
    38. Yijun Yao, Jianping Zuo, Jian Luo, Qiang Chen, Jonathan Ström, Eric Suuberg. An examination of the building pressure cycling technique as a tool in vapor intrusion investigations with analytical simulations. Journal of Hazardous Materials 2020, 389 , 121915. https://doi.org/10.1016/j.jhazmat.2019.121915
    39. Yijun Yao, Yuting Xiao, Jian Luo, Genfu Wang, Jonathan Ström, Eric Suuberg. High-frequency fluctuations of indoor pressure: A potential driving force for vapor intrusion in urban areas. Science of The Total Environment 2020, 710 , 136309. https://doi.org/10.1016/j.scitotenv.2019.136309
    40. Enze Ma, You-Kuan Zhang, Xiuyu Liang, Jinzhong Yang, Yuqing Zhao, Xinyue Liu. An analytical model of bubble-facilitated vapor intrusion. Water Research 2019, 165 , 114992. https://doi.org/10.1016/j.watres.2019.114992
    41. Genfu Wang, Shuaishuai Ma, Jonathan Ström, Eric Suuberg, Yijun Yao, Lingzao Zeng. Investigating two-dimensional soil gas transport of trichloroethylene in vapor intrusion scenarios involving surface pavements using a pilot-scale tank. Journal of Hazardous Materials 2019, 371 , 138-145. https://doi.org/10.1016/j.jhazmat.2019.02.069
    42. Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow, Geoffrey J. Puzon. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches. Water Research 2019, 157 , 630-646. https://doi.org/10.1016/j.watres.2019.04.001
    43. Yijun Yao, Fang Mao, Yuting Xiao, Jian Luo. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination. Water Research 2019, 150 , 111-119. https://doi.org/10.1016/j.watres.2018.11.038
    44. Yijun Yao, Fang Mao, Yuting Xiao, Huanyu Chen, Iason Verginelli, Jian Luo. Investigating the Role of Soil Texture in Petroleum Vapor Intrusion. Journal of Environmental Quality 2018, 47 (5) , 1179-1185. https://doi.org/10.2134/jeq2018.04.0140
    45. Dawit N. Bekele, Ravi Naidu, Sreenivasulu Chadalavada. Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone. Environmental Geochemistry and Health 2018, 40 (2) , 887-902. https://doi.org/10.1007/s10653-017-0032-5
    46. Mark Felice, Nick de Sieyes, Juan Peng, Radomir Schmidt, Maya Buelow, Parisa Jourabchi, Kate Scow, Douglas Mackay. Methane Transport during a Controlled Release in the Vadose Zone. Vadose Zone Journal 2018, 17 (1) , 1-11. https://doi.org/10.2136/vzj2018.02.0028
    47. Haijian Xie, Qiao Wang, Huaxiang Yan, Yunmin Chen. Steady-state analytical model for vapour-phase volatile organic compound (VOC) diffusion in layered landfill composite cover systems. Canadian Geotechnical Journal 2017, 54 (11) , 1567-1579. https://doi.org/10.1139/cgj-2016-0293
    48. Yijun Yao, Fang Mao, Shuaishuai Ma, Yihong Yao, Eric M. Suuberg, Xianjin Tang. Three‐Dimensional Simulation of Land Drains as a Preferential Pathway for Vapor Intrusion into Buildings. Journal of Environmental Quality 2017, 46 (6) , 1424-1433. https://doi.org/10.2134/jeq2017.05.0211
    49. Zakaria Saâdi, Laurent Marie. An experimental and numerical study on radon transport from UMT-contaminated sand to a house basement under variable weather conditions. Journal of Environmental Chemical Engineering 2017, 5 (4) , 3667-3683. https://doi.org/10.1016/j.jece.2017.07.017
    50. Jie Ma, Desen Xiong, Haiyan Li, Yi Ding, Xiangcheng Xia, Yongqi Yang. Vapor intrusion risk of fuel ether oxygenates methyl tert -butyl ether (MTBE), tert -amyl methyl ether (TAME) and ethyl tert -butyl ether (ETBE): A modeling study. Journal of Hazardous Materials 2017, 332 , 10-18. https://doi.org/10.1016/j.jhazmat.2017.02.057
    51. Rivka Reichman, Mohammadyousef Roghani, Evan J. Willett, Elham Shirazi, Kelly G. Pennell. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments. Reviews on Environmental Health 2017, 32 (1-2) , 27-33. https://doi.org/10.1515/reveh-2016-0039
    52. Elham Shirazi, Kelly G. Pennell. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains. Environmental Science: Processes & Impacts 2017, 19 (12) , 1594-1607. https://doi.org/10.1039/C7EM00423K
    53. Yijun Yao, Yue Wang, Iason Verginelli, Eric M. Suuberg, Jianfeng Ye. Comparison between PVI2D and Abreu–Johnson's Model for Petroleum Vapor Intrusion Assessment. Vadose Zone Journal 2016, 15 (11) , 1-11. https://doi.org/10.2136/vzj2016.07.0063
    54. Simin Akbariyeh, Bradley M. Patterson, Manish Kumar, Yusong Li. Quantification of Vapor Intrusion Pathways: An Integration of Modeling and Site Characterization. Vadose Zone Journal 2016, 15 (10) , 1-12. https://doi.org/10.2136/vzj2015.12.0159
    55. Grégory J.V. Cohen, Florie Jousse, Nicolas Luze, Patrick Höhener, Olivier Atteia. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer. Journal of Contaminant Hydrology 2016, 192 , 20-34. https://doi.org/10.1016/j.jconhyd.2016.06.001
    56. Iason Verginelli, Yijun Yao, Yue Wang, Jie Ma, Eric M. Suuberg. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment. Journal of Hazardous Materials 2016, 312 , 84-96. https://doi.org/10.1016/j.jhazmat.2016.03.037
    57. Jie Ma, Haiyan Li, Richard Spiese, John Wilson, Guangxu Yan, Shaohui Guo. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA). Environmental Pollution 2016, 213 , 825-832. https://doi.org/10.1016/j.envpol.2016.03.032
    58. Iason Verginelli, Oriana Capobianco, Renato Baciocchi. Role of the source to building lateral separation distance in petroleum vapor intrusion. Journal of Contaminant Hydrology 2016, 189 , 58-67. https://doi.org/10.1016/j.jconhyd.2016.03.009
    59. Iason Verginelli, Yijun Yao, Eric M. Suuberg. An Excel ® ‐Based Visualization Tool of Two‐Dimensional Soil Gas Concentration Profiles in Petroleum Vapor Intrusion. Groundwater Monitoring & Remediation 2016, 36 (2) , 94-100. https://doi.org/10.1111/gwmr.12162
    60. Ali M. Khan, Lukas Y. Wick, Hauke Harms, Martin Thullner. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments. Environmental Pollution 2016, 211 , 325-331. https://doi.org/10.1016/j.envpol.2016.01.013
    61. Jie Ma, Guangxu Yan, Haiyan Li, Shaohui Guo. Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model. Journal of Hazardous Materials 2016, 304 , 522-531. https://doi.org/10.1016/j.jhazmat.2015.11.005
    62. Yijun Yao, Iason Verginelli, Eric M. Suuberg. A two‐dimensional analytical model of petroleum vapor intrusion. Water Resources Research 2016, 52 (2) , 1528-1539. https://doi.org/10.1002/2015WR018320
    63. Rui Shen, Eric M. Suuberg. Impacts of changes of indoor air pressure and air exchange rate in vapor intrusion scenarios. Building and Environment 2016, 96 , 178-187. https://doi.org/10.1016/j.buildenv.2015.11.015
    64. F. A. Swartjes. Human health risk assessment related to contaminated land: state of the art. Environmental Geochemistry and Health 2015, 37 (4) , 651-673. https://doi.org/10.1007/s10653-015-9693-0
    65. Kevin McCoy, Julio Zimbron, Tom Sale, Mark Lyverse. Measurement of Natural Losses of LNAPL Using CO 2 Traps. Groundwater 2015, 53 (4) , 658-667. https://doi.org/10.1111/gwat.12240
    66. Thierno M.O. Diallo, Bernard Collignan, Francis Allard. 2D Semi-empirical models for predicting the entry of soil gas pollutants into buildings. Building and Environment 2015, 85 , 1-16. https://doi.org/10.1016/j.buildenv.2014.11.013
    67. Robert D. Morrison. Forensic Applications of Subsurface Contaminant Transport Models. 2015, 555-591. https://doi.org/10.1016/B978-0-12-404696-2.00016-3
    68. Markus Hilpert, Patrick N. Breysse. Infiltration and evaporation of small hydrocarbon spills at gas stations. Journal of Contaminant Hydrology 2014, 170 , 39-52. https://doi.org/10.1016/j.jconhyd.2014.08.004
    69. Ian Hers, Parisa Jourabchi, Matthew A. Lahvis, Paul Dahlen, E. Hong Luo, Paul Johnson, George E. DeVaull, K. Ulrich Mayer. Evaluation of Seasonal Factors on Petroleum Hydrocarbon Vapor Biodegradation and Intrusion Potential in a Cold Climate. Groundwater Monitoring & Remediation 2014, 34 (4) , 60-78. https://doi.org/10.1111/gwmr.12085
    70. Yijun Yao, Fangxing Yang, Eric M. Suuberg, Jeroen Provoost, Weiping Liu. Estimation of contaminant subslab concentration in petroleum vapor intrusion. Journal of Hazardous Materials 2014, 279 , 336-347. https://doi.org/10.1016/j.jhazmat.2014.05.065
    71. Nizar Mustafa, Kevin G. Mumford, Jason I. Gerhard, Denis M. O'Carroll. A three-dimensional numerical model for linking community-wide vapour risks. Journal of Contaminant Hydrology 2014, 156 , 38-51. https://doi.org/10.1016/j.jconhyd.2013.10.003
    72. John H. Knight, Gregory B. Davis. A conservative vapour intrusion screening model of oxygen-limited hydrocarbon vapour biodegradation accounting for building footprint size. Journal of Contaminant Hydrology 2013, 155 , 46-54. https://doi.org/10.1016/j.jconhyd.2013.09.005
    73. Sara Picone, Tim Grotenhuis, Pauline van Gaans, Johan Valstar, Alette Langenhoff, Huub Rijnaarts. Toluene biodegradation rates in unsaturated soil systems versus liquid batches and their relevance to field conditions. Applied Microbiology and Biotechnology 2013, 97 (17) , 7887-7898. https://doi.org/10.1007/s00253-012-4480-7
    74. Matthew A. Lahvis, Ian Hers, Robin V. Davis, Jackie Wright, George E. DeVaull. Vapor Intrusion Screening at Petroleum UST Sites. Groundwater Monitoring & Remediation 2013, 33 (2) , 53-67. https://doi.org/10.1111/gwmr.12005
    75. Dawit N. Bekele, Ravi Naidu, Mark Bowman, Sreenivasulu Chadalavada. Vapor Intrusion Models for Petroleum and Chlorinated Volatile Organic Compounds: Opportunities for Future Improvements. Vadose Zone Journal 2013, 12 (2) , 1-13. https://doi.org/10.2136/vzj2012.0048
    76. Yijun Yao, Kelly G. Pennell, Eric M. Suuberg. Simulating the effect of slab features on vapor intrusion of crack entry. Building and Environment 2013, 59 , 417-425. https://doi.org/10.1016/j.buildenv.2012.09.007
    77. Yijun Yao, Rui Shen, Kelly G. Pennel, Eric M. Suuberg. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion. Environmental Science: Processes & Impacts 2013, 15 (12) , 2345. https://doi.org/10.1039/c3em00421j
    78. Xiaomin Wang, Andre J.A. Unger, Beth L. Parker. Simulating an exclusion zone for vapour intrusion of TCE from groundwater into indoor air. Journal of Contaminant Hydrology 2012, 140-141 , 124-138. https://doi.org/10.1016/j.jconhyd.2012.07.004
    79. Yijun Yao, Kelly G. Pennell, Eric M. Suuberg. Estimation of contaminant subslab concentration in vapor intrusion. Journal of Hazardous Materials 2012, 231-232 , 10-17. https://doi.org/10.1016/j.jhazmat.2012.06.016
    80. Leonid Turczynowicz, Dino Pisaniello, Terry Williamson. Health Risk Assessment and Vapor Intrusion: A Review and Australian Perspective. Human and Ecological Risk Assessment: An International Journal 2012, 18 (5) , 984-1013. https://doi.org/10.1080/10807039.2012.707929
    81. Sara Picone, Johan Valstar, Pauline van Gaans, Tim Grotenhuis, Huub Rijnaarts. Sensitivity analysis on parameters and processes affecting vapor intrusion risk. Environmental Toxicology and Chemistry 2012, 31 (5) , 1042-1052. https://doi.org/10.1002/etc.1798
    82. Sheau-Yun Dora Chiang, Rebecca Mora, William H. Diguiseppi, Greg Davis, Kerry Sublette, Phillip Gedalanga, Shaily Mahendra. Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools. Journal of Environmental Monitoring 2012, 14 (9) , 2317. https://doi.org/10.1039/c2em30358b
    83. Iason Verginelli, Renato Baciocchi. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation. Journal of Contaminant Hydrology 2011, 126 (3-4) , 167-180. https://doi.org/10.1016/j.jconhyd.2011.08.010
    84. Michael O. Rivett, Gary P. Wealthall, Rachel A. Dearden, Todd A. McAlary. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology 2011, 123 (3-4) , 130-156. https://doi.org/10.1016/j.jconhyd.2010.12.013
    85. Robin B. DeHate, Giffe T. Johnson, Raymond D. Harbison. Risk characterization of vapor intrusion in former manufactured gas plant sites. Regulatory Toxicology and Pharmacology 2011, 59 (2) , 353-359. https://doi.org/10.1016/j.yrtph.2010.12.001
    86. Todd A. McAlary, Jeroen Provoost, Helen E. Dawson. Vapor Intrusion. 2011, 409-453. https://doi.org/10.1007/978-90-481-9757-6_10
    87. Tim J.T.C. Grotenhuis, Huub H.H.M. Rijnaarts. In Situ Remediation Technologies. 2011, 949-977. https://doi.org/10.1007/978-90-481-9757-6_21
    88. Yijun Yao, Kelly G. Pennell, Eric Suuberg. Vapor intrusion in urban settings: effect of foundation features and source location. Procedia Environmental Sciences 2011, 4 , 245-250. https://doi.org/10.1016/j.proenv.2011.03.029
    89. Thomas McHugh, Robin Davis, George Devaull, Harley Hopkins, John Menatti, Tom Peargin. Evaluation of Vapor Attenuation at Petroleum Hydrocarbon Sites: Considerations for Site Screening and Investigation. Soil and Sediment Contamination: An International Journal 2010, 19 (6) , 725-745. https://doi.org/10.1080/15320383.2010.499923
    90. Soonyoung Yu, Andre J.A. Unger, Beth Parker. Simulating the fate and transport of TCE from groundwater to indoor air. Journal of Contaminant Hydrology 2009, 107 (3-4) , 140-161. https://doi.org/10.1016/j.jconhyd.2009.04.009
    91. Hong Luo, Paul Dahlen, Paul C. Johnson, Tom Peargin, Todd Creamer. Spatial Variability of Soil‐Gas Concentrations near and beneath a Building Overlying Shallow Petroleum Hydrocarbon–Impacted Soils. Groundwater Monitoring & Remediation 2009, 29 (1) , 81-91. https://doi.org/10.1111/j.1745-6592.2008.01217.x
    92. Ozgur Bozkurt, Kelly G. Pennell, Eric M. Suuberg. Simulation of the Vapor Intrusion Process for Nonhomogeneous Soils Using a Three‐Dimensional Numerical Model. Groundwater Monitoring & Remediation 2009, 29 (1) , 92-104. https://doi.org/10.1111/j.1745-6592.2008.01218.x
    93. Lilian D.V. Abreu, Robert Ettinger, Todd McAlary. Simulated Soil Vapor Intrusion Attenuation Factors Including Biodegradation for Petroleum Hydrocarbons. Groundwater Monitoring & Remediation 2009, 29 (1) , 105-117. https://doi.org/10.1111/j.1745-6592.2008.01219.x
    94. G.B. Davis, B.M. Patterson, M.G. Trefry. Evidence for Instantaneous Oxygen‐Limited Biodegradation of Petroleum Hydrocarbon Vapors in the Subsurface. Groundwater Monitoring & Remediation 2009, 29 (1) , 126-137. https://doi.org/10.1111/j.1745-6592.2008.01221.x
    95. Steven B. Hawthorne, Nick Azzolina, John T. Finn. Tracing Contributions of Benzene from Outdoor to Indoor Air. Environmental Forensics 2008, 9 (1) , 96-106. https://doi.org/10.1080/15275920801888475
    96. Leonid Turczynowicz, Neville I. Robinson. Exposure Assessment Modeling for Volatiles—Towards an Australian Indoor Vapor Intrusion Model. Journal of Toxicology and Environmental Health, Part A 2007, 70 (19) , 1619-1634. https://doi.org/10.1080/15287390701434711
    97. . Concentration of Tetrachloroethylene in Indoor Air at a Former Dry Cleaner Facility as a Function of Subsurface Contamination: A Case Study. Journal of the Air & Waste Management Association 2007https://doi.org/10.3155/1047-3289.57.6.753

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2006, 40, 7, 2304–2315
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es051335p
    Published February 17, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    1041

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.