ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Technetium Incorporation into Hematite (α-Fe2O3)

View Author Information
Pacific Northwest National Laboratory, Richland, Washington, U.S.A.
* Corresponding author phone: +1-509-371-6368; fax: +1-509-371-6354; e-mail: [email protected]
†In memorium.
Cite this: Environ. Sci. Technol. 2010, 44, 15, 5855–5861
Publication Date (Web):July 13, 2010
https://doi.org/10.1021/es100069x
Copyright © 2010 American Chemical Society

    Article Views

    1161

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Quantum-mechanical methods were used to evaluate mechanisms for possible structural incorporation of Tc species into the model iron oxide, hematite (α-Fe2O3). Using periodic supercell models, energies for charge-neutral incorporation of Tc4+ or TcO4 ions were calculated using either a Tc4+/Fe2+ substitution scheme on the metal sublattice, or by insertion of TcO4 as an interstitial species within a hypothetical vacancy cluster. Although pertechnetate incorporation is found to be invariably unfavorable, incorporation of small amounts of Tc4+ (at least 2.6 wt %) is energetically feasible. Energy minimized bond distances around this impurity are provided to aid in future spectroscopic identification of these impurity species. The calculations also show that Fe2+ and Tc4+ prefer to cluster in the hematite lattice, attributed to less net Coulombic repulsion relative to that of Fe3+−Fe3+. These modeling predictions are generally consistent with observed selective association of Tc with iron oxide under reducing conditions, and in residual waste solids from underground storage tanks at the U.S. Department of Energy Hanford Site (Washington, U.S.). Here, even though relatively high pH and oxidizing conditions are dominant, Tc incorporation into iron oxides and (oxy)hydroxides is prospectively enabled by prior reduction of TcO4 to Tc4+ via interaction with radiolytic species.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional computational details are included, along with Eh-pH diagrams illustrating the overlapping stability fields of aqueous Tc and Fe species and their corresponding solid phases. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 44 publications.

    1. Enrico Bianchetti, Augusto F. Oliveira, Andreas C. Scheinost, Cristiana Di Valentin, Gotthard Seifert. Chemistry of the Interaction and Retention of TcVII and TcIV Species at the Fe3O4(001) Surface. The Journal of Physical Chemistry C 2023, 127 (16) , 7674-7682. https://doi.org/10.1021/acs.jpcc.3c00688
    2. Eugene S. Ilton, Richard N. Collins, Cristiana L. Ciobanu, Nigel J. Cook, Max Verdugo-Ihl, Ashley D. Slattery, David J. Paterson, Sebastian T. Mergelsberg, Eric J. Bylaska, Kathy Ehrig. Pentavalent Uranium Incorporated in the Structure of Proterozoic Hematite. Environmental Science & Technology 2022, 56 (16) , 11857-11864. https://doi.org/10.1021/acs.est.2c02113
    3. Guohui Wang, Matthew J. Olszta, Sarah A. Saslow, Dong-Sang Kim, Mark E. Bowden, Wooyong Um, Jing Wang, Albert A. Kruger. A Focused Ion Beam-Scanning Transmission Electron Microscopy with Energy-Dispersive X-ray Spectroscopy Study on Technetium Incorporation within Iron Oxides through Fe(OH)2(s) Mineral Transformation. ACS Earth and Space Chemistry 2021, 5 (3) , 525-534. https://doi.org/10.1021/acsearthspacechem.0c00305
    4. Sarah A. Saslow, Carolyn I. Pearce, Mark E. Bowden, Wayne W. Lukens, Dong-Sang Kim, Albert A. Kruger, Wooyong Um. Kinetics of Co-Mingled 99Tc and Cr Removal during Mineral Transformation of Ferrous Hydroxide. ACS Earth and Space Chemistry 2020, 4 (2) , 218-228. https://doi.org/10.1021/acsearthspacechem.9b00277
    5. Carolyn I. Pearce, R. Jeffrey Serne, Sarah A. Saslow, Wooyong Um, Robert M. Asmussen, Micah D. Miller, Odeta Qafoku, Michelle M. V. Snyder, Charles T. Resch, Kayla C. Johnson, Guohui Wang, Steve M. Heald, Jim E. Szecsody, John M. Zachara, Nikolla P. Qafoku, Andrew. E. Plymale, Vicky L. Freedman. Characterizing Technetium in Subsurface Sediments for Contaminant Remediation. ACS Earth and Space Chemistry 2018, 2 (11) , 1145-1160. https://doi.org/10.1021/acsearthspacechem.8b00077
    6. Sarah A. Saslow, Wooyong Um, Carolyn I. Pearce, Mark E. Bowden, Mark H. Engelhard, Wayne L. Lukens, Dong-Sang Kim, Michael J. Schweiger, Albert A. Kruger. Cr(VI) Effect on Tc-99 Removal from Hanford Low-Activity Waste Simulant by Ferrous Hydroxide. Environmental Science & Technology 2018, 52 (20) , 11752-11759. https://doi.org/10.1021/acs.est.8b03314
    7. Carolyn I. Pearce, Jonathan P. Icenhower, R. Matthew Asmussen, Paul G. Tratnyek, Kevin M. Rosso, Wayne W. Lukens, Nikolla P. Qafoku. Technetium Stabilization in Low-Solubility Sulfide Phases: A Review. ACS Earth and Space Chemistry 2018, 2 (6) , 532-547. https://doi.org/10.1021/acsearthspacechem.8b00015
    8. Sarah A. Saslow, Wooyong Um, Carolyn I. Pearce, Mark H. Engelhard, Mark E. Bowden, Wayne Lukens, Ian I. Leavy, Brian J. Riley, Dong-Sang Kim, Michael J. Schweiger, and Albert A. Kruger . Reduction and Simultaneous Removal of 99Tc and Cr by Fe(OH)2(s) Mineral Transformation. Environmental Science & Technology 2017, 51 (15) , 8635-8642. https://doi.org/10.1021/acs.est.7b02278
    9. Laura Newsome, Adrian Cleary, Katherine Morris, and Jonathan R. Lloyd . Long-Term Immobilization of Technetium via Bioremediation with Slow-Release Substrates. Environmental Science & Technology 2017, 51 (3) , 1595-1604. https://doi.org/10.1021/acs.est.6b04876
    10. Wayne W. Lukens, Nicola Magnani, Tolek Tyliszczak, Carolyn I. Pearce, and David K. Shuh . Incorporation of Technetium into Spinel Ferrites. Environmental Science & Technology 2016, 50 (23) , 13160-13168. https://doi.org/10.1021/acs.est.6b04209
    11. Frances N. Smith, Wooyong Um, Christopher D. Taylor, Dong-Sang Kim, Michael J. Schweiger, and Albert A. Kruger . Computational Investigation of Technetium(IV) Incorporation into Inverse Spinels: Magnetite (Fe3O4) and Trevorite (NiFe2O4). Environmental Science & Technology 2016, 50 (10) , 5216-5224. https://doi.org/10.1021/acs.est.6b00200
    12. Frances N. Smith, Christopher D. Taylor, Wooyong Um, and Albert A. Kruger . Technetium Incorporation into Goethite (α-FeOOH): An Atomic-Scale Investigation. Environmental Science & Technology 2015, 49 (22) , 13699-13707. https://doi.org/10.1021/acs.est.5b03354
    13. Timothy A. Marshall, Katherine Morris, Gareth T. W. Law, J. Frederick W. Mosselmans, Pieter Bots, Stephen A. Parry, and Samuel Shaw . Incorporation and Retention of 99-Tc(IV) in Magnetite under High pH Conditions. Environmental Science & Technology 2014, 48 (20) , 11853-11862. https://doi.org/10.1021/es503438e
    14. Christopher D. Taylor . Oxidation of Technetium Metal as Simulated by First Principles. The Journal of Physical Chemistry C 2014, 118 (19) , 10017-10023. https://doi.org/10.1021/jp411976s
    15. David S. Jordan, Christopher J. Hull, Julianne M. Troiano, Shannon C. Riha, Alex B. F. Martinson, Kevin M. Rosso, and Franz M. Geiger . Second Harmonic Generation Studies of Fe(II) Interactions with Hematite (α-Fe2O3). The Journal of Physical Chemistry C 2013, 117 (8) , 4040-4047. https://doi.org/10.1021/jp3113057
    16. Edward J. O’Loughlin Maxim I. Boyanov Dionysios A. Antonopoulos Kenneth M. Kemner . Redox Processes Affecting the Speciation of Technetium, Uranium, Neptunium, and Plutonium in Aquatic and Terrestrial Environments. 2011, 477-517. https://doi.org/10.1021/bk-2011-1071.ch022
    17. D.A. Kamorny, A.V. Safonov, K.A. Boldyrev, E.S. Abramova, E.A. Tyupina, O.A. Gorbunova. Modification of the Cement Matrix with Organic Additives for Stabilizing Pertechnetate Ions. Journal of Nuclear Materials 2021, 557 , 153295. https://doi.org/10.1016/j.jnucmat.2021.153295
    18. Natalia Mayordomo, Diana M. Rodríguez, André Rossberg, Harald Foerstendorf, Karsten Heim, Vinzenz Brendler, Katharina Müller. Analysis of technetium immobilization and its molecular retention mechanisms by Fe(II)-Al(III)-Cl layered double hydroxide. Chemical Engineering Journal 2021, 408 , 127265. https://doi.org/10.1016/j.cej.2020.127265
    19. Daria Boglaienko, Jennifer A. Soltis, Ravi K. Kukkadapu, Yingge Du, Lucas E. Sweet, Vanessa E. Holfeltz, Gabriel B. Hall, Edgar C. Buck, Carlo U. Segre, Hilary P. Emerson, Yelena Katsenovich, Tatiana G. Levitskaia. Spontaneous redox continuum reveals sequestered technetium clusters and retarded mineral transformation of iron. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0334-x
    20. Shuai Liao, Xiaoming Wang, Hui Yin, Jeffrey E. Post, Yupeng Yan, Wenfeng Tan, Qiaoyun Huang, Fan Liu, Xionghan Feng. Effects of Al substitution on local structure and morphology of lepidocrocite and its phosphate adsorption kinetics. Geochimica et Cosmochimica Acta 2020, 276 , 109-121. https://doi.org/10.1016/j.gca.2020.02.027
    21. Carolyn I. Pearce, Robert C. Moore, Joseph W. Morad, R. Matthew Asmussen, Sayandev Chatterjee, Amanda R. Lawter, Tatiana G. Levitskaia, James J. Neeway, Nikolla P. Qafoku, Mark J. Rigali, Sarah A. Saslow, Jim E. Szecsody, Praveen K. Thallapally, Guohui Wang, Vicky L. Freedman. Technetium immobilization by materials through sorption and redox-driven processes: A literature review. Science of The Total Environment 2020, 716 , 132849. https://doi.org/10.1016/j.scitotenv.2019.06.195
    22. Mal-Soon Lee, Sarah A. Saslow, Wooyong Um, Dong-Sang Kim, Albert A. Kruger, Roger Rousseau, Vassiliki-Alexandra Glezakou. Impact of Cr and Co on 99Tc retention in magnetite: A combined study of ab initio molecular dynamics and experiments. Journal of Hazardous Materials 2020, 387 , 121721. https://doi.org/10.1016/j.jhazmat.2019.121721
    23. Daria Boglaienko, Tatiana G. Levitskaia. The abiotic reductive removal and subsequent incorporation of Tc( iv ) into iron oxides: a frontier review. Environmental Science: Nano 2019, 6 (12) , 3492-3500. https://doi.org/10.1039/C9EN00903E
    24. Zaihong Wang, Qingyun Chen, Kaimin Shih, Changzhong Liao, Lielin Wang, Hua Xie, Yantao Luo. Uranium(IV) incorporation into inverse spinel magnetite ($$\hbox {FeFe}_{2}\hbox {O}_{4}$$): A charge-balanced substitution case analysis. Pramana 2019, 93 (3) https://doi.org/10.1007/s12043-019-1795-2
    25. Dien Li, John C. Seaman, Simona E. Hunyadi Murph, Daniel I. Kaplan, Kathryn Taylor-Pashow, Renfei Feng, Hyunshik Chang, Madan Tandukar. Porous iron material for TcO4- and ReO4- sequestration from groundwater under ambient oxic conditions. Journal of Hazardous Materials 2019, 374 , 177-185. https://doi.org/10.1016/j.jhazmat.2019.04.030
    26. Wei Xie, Michihisa Koyama. Theoretical design of a technetium-like alloy and its catalytic properties. Chemical Science 2019, 10 (21) , 5461-5469. https://doi.org/10.1039/C9SC00912D
    27. Tadahiro Yokosawa, Eric Prestat, Robert Polly, Muriel Bouby, Kathy Dardenne, Nicolas Finck, Sarah J. Haigh, Melissa A. Denecke, Horst Geckeis. Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. II: insights from STEM-EDXS and DFT calculations. Environmental Science and Pollution Research 2019, 26 (6) , 5282-5293. https://doi.org/10.1007/s11356-018-1904-7
    28. Steven A. Luksic, Dong-Sang Kim, Wooyong Um, Guohui Wang, Michael J. Schweiger, Chuck Z. Soderquist, Wayne Lukens, Albert A. Kruger. Effect of Technetium-99 sources on its retention in low activity waste glass. Journal of Nuclear Materials 2018, 503 , 235-244. https://doi.org/10.1016/j.jnucmat.2018.02.019
    29. Wayne W. Lukens, Sarah A. Saslow. Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ : precursors to iron oxide nuclear waste forms. Dalton Transactions 2018, 47 (30) , 10229-10239. https://doi.org/10.1039/C8DT01356J
    30. Robert B. Heimann. Weathering of ancient and medieval glasses—potential proxy for nuclear fuel waste glasses. A perennial challenge revisited. International Journal of Applied Glass Science 2018, 9 (1) , 29-41. https://doi.org/10.1111/ijag.12277
    31. Amanda H. Meena, Yuji Arai. Environmental geochemistry of technetium. Environmental Chemistry Letters 2017, 15 (2) , 241-263. https://doi.org/10.1007/s10311-017-0605-7
    32. Nicolas Börsig, Andreas C. Scheinost, Samuel Shaw, Dieter Schild, Thomas Neumann. Uptake mechanisms of selenium oxyanions during the ferrihydrite-hematite recrystallization. Geochimica et Cosmochimica Acta 2017, 206 , 236-253. https://doi.org/10.1016/j.gca.2017.03.004
    33. Zhifen Wang, Jianying Zhang, Jiang Chen, Zhiqiang Zhang, Qing Zheng, Jinying Li, Tao Wu. Diffusion behavior of Re(VII) in compacted illite-, hematite- and limonite-montmorillonite mixtures. Journal of Radioanalytical and Nuclear Chemistry 2017, 311 (1) , 655-661. https://doi.org/10.1007/s10967-016-5092-y
    34. Wei Li, Xiaoliang Liang, Pengfei An, Xionghan Feng, Wenfeng Tan, Guohong Qiu, Hui Yin, Fan Liu. Mechanisms on the morphology variation of hematite crystals by Al substitution: The modification of Fe and O reticular densities. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep35960
    35. Tatiana G. Levitskaia, Sayandev Chatterjee, Natasha K. Pence, Jesus Romero, Tamas Varga, Mark H. Engelhard, Yingge Du, Libor Kovarik, Bruce W. Arey, Mark E. Bowden, Eric D. Walter. Inorganic tin aluminophosphate nanocomposite for reductive separation of pertechnetate. Environmental Science: Nano 2016, 3 (5) , 1003-1013. https://doi.org/10.1039/C6EN00130K
    36. Steven A. Luksic, Brian J. Riley, Michael Schweiger, Pavel Hrma. Incorporating technetium in minerals and other solids: A review. Journal of Nuclear Materials 2015, 466 , 526-538. https://doi.org/10.1016/j.jnucmat.2015.08.052
    37. Sarah M. Walker, Udo Becker. Uranyl (VI) and neptunyl (V) incorporation in carbonate and sulfate minerals: Insight from first-principles. Geochimica et Cosmochimica Acta 2015, 161 , 19-35. https://doi.org/10.1016/j.gca.2015.03.002
    38. Lindsay Shuller-Nickles, Will Bender, Sarah Walker, Udo Becker. Quantum-Mechanical Methods for Quantifying Incorporation of Contaminants in Proximal Minerals. Minerals 2014, 4 (3) , 690-715. https://doi.org/10.3390/min4030690
    39. Rūta Druteikienė, Benedikta Lukšienė, Dalia Pečiulytė, Kęstutis Mažeika, Arūnas Gudelis, Dalis Baltrūnas. Behaviour of 99Tc in aqueous solutions in the presence of iron oxides and microorganisms. Applied Radiation and Isotopes 2014, 89 , 85-94. https://doi.org/10.1016/j.apradiso.2014.02.020
    40. Taishi Kobayashi, Andreas C. Scheinost, D. Fellhauer, Xavier Gaona, Marcus Altmaier. Redox behavior of Tc(VII)/Tc(IV) under various reducing conditions in 0.1 M NaCl solutions. Radiochimica Acta 2013, 101 (5) , 323-332. https://doi.org/10.1524/ract.2013.2040
    41. Lindsay C. Shuller, Rodney C. Ewing, Udo Becker. Np-incorporation into uranyl phases: A quantum–mechanical evaluation. Journal of Nuclear Materials 2013, 434 (1-3) , 440-450. https://doi.org/10.1016/j.jnucmat.2011.04.016
    42. Drew E. Latta, Christopher A. Gorski, Michelle M. Scherer. Influence of Fe2+-catalysed iron oxide recrystallization on metal cycling. Biochemical Society Transactions 2012, 40 (6) , 1191-1197. https://doi.org/10.1042/BST20120161
    43. D. R. Brookshaw, R. A. D. Pattrick, J. R. Lloyd, D. J. Vaughan. Microbial effects on mineral–radionuclide interactions and radionuclide solid-phase capture processes. Mineralogical Magazine 2012, 76 (3) , 777-806. https://doi.org/10.1180/minmag.2012.076.3.25
    44. J. M. McBeth, J. R. Lloyd, G. T. W. Law, F. R. Livens, I. T. Burke, K. Morris. Redox interactions of technetium with iron-bearing minerals. Mineralogical Magazine 2011, 75 (4) , 2419-2430. https://doi.org/10.1180/minmag.2011.075.4.2419

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect