Estimation of Liquid Fuel Yields from BiomassClick to copy article linkArticle link copied!
Abstract
We have estimated sun-to-fuel yields for the cases when dedicated fuel crops are grown and harvested to produce liquid fuel. The stand-alone biomass to liquid fuel processes, that use biomass as the main source of energy, are estimated to produce one-and-one-half to three times less sun-to-fuel yield than the augmented processes. In an augmented process, solar energy from a fraction of the available land area is used to produce other forms of energy such as H2, heat etc., which are then used to increase biomass carbon recovery in the conversion process. However, even at the highest biomass growth rate of 6.25 kg/m2·y considered in this study, the much improved augmented processes are estimated to have sun-to-fuel yield of about 2%. We also propose a novel stand-alone H2Bioil-B process, where a portion of the biomass is gasified to provide H2 for the fast-hydropyrolysis/hydrodeoxygenation of the remaining biomass. This process is estimated to be able to produce 125−146 ethanol gallon equivalents (ege)/ton of biomass of high energy density oil but needs experimental development. The augmented version of fast-hydropyrolysis/hydrodeoxygenation, where H2 is generated from a nonbiomass energy source, is estimated to provide liquid fuel yields as high as 215 ege/ton of biomass. These estimated yields provide reasonable targets for the development of efficient biomass conversion processes to provide liquid fuel for a sustainable transport sector.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 78 publications.
- Sneha A. Akhade, Nirala Singh, Oliver Y. Gutiérrez, Juan Lopez-Ruiz, Huamin Wang, Jamie D. Holladay, Yue Liu, Abhijeet Karkamkar, Robert S. Weber, Asanga B. Padmaperuma, Mal-Soon Lee, Greg A. Whyatt, Michael Elliott, Johnathan E. Holladay, Jonathan L. Male, Johannes A. Lercher, Roger Rousseau, Vassiliki-Alexandra Glezakou. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chemical Reviews 2020, 120
(20)
, 11370-11419. https://doi.org/10.1021/acs.chemrev.0c00158
- Yao-Bin Shen, Shuai-Shuai Li, Liang Wang, Xiao-De An, Qing Liu, Xicheng Liu, Jian Xiao. Organocatalytic Dearomative [4 + 2] Cycloadditions of Biomass-Derived 2,5-Dimethylfuran with ortho-Quinone Methides: Access to Multisubstituted Chromanes. Organic Letters 2018, 20
(19)
, 6069-6073. https://doi.org/10.1021/acs.orglett.8b02448
- Ivo F. Teixeira, Benedict T. W. Lo, Pavlo Kostetskyy, Lin Ye, Chiu C. Tang, Giannis Mpourmpakis, and Shik Chi Edman Tsang . Direct Catalytic Conversion of Biomass-Derived Furan and Ethanol to Ethylbenzene. ACS Catalysis 2018, 8
(3)
, 1843-1850. https://doi.org/10.1021/acscatal.7b03952
- Balakrishna Maddi, Sridhar Viamajala, and Sasidhar Varanasi . Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass. ACS Sustainable Chemistry & Engineering 2018, 6
(1)
, 237-247. https://doi.org/10.1021/acssuschemeng.7b02309
- David C. Dayton, Joshua Hlebak, John R. Carpenter, Kaige Wang, Ofei D. Mante, and Jonathan E. Peters . Biomass Hydropyrolysis in a Fluidized Bed Reactor. Energy & Fuels 2016, 30
(6)
, 4879-4887. https://doi.org/10.1021/acs.energyfuels.6b00373
- Hao Luo, Ian M. Klein, Yuan Jiang, Hanyu Zhu, Baoyuan Liu, Hilkka I. Kenttämaa, and Mahdi M. Abu-Omar . Total Utilization of Miscanthus Biomass, Lignin and Carbohydrates, Using Earth Abundant Nickel Catalyst. ACS Sustainable Chemistry & Engineering 2016, 4
(4)
, 2316-2322. https://doi.org/10.1021/acssuschemeng.5b01776
- Yong Liu, Lungang Chen, Tiejun Wang, Qi Zhang, Chenguang Wang, Jinyue Yan, and Longlong Ma . One-Pot Catalytic Conversion of Raw Lignocellulosic Biomass into Gasoline Alkanes and Chemicals over LiTaMoO6 and Ru/C in Aqueous Phosphoric Acid. ACS Sustainable Chemistry & Engineering 2015, 3
(8)
, 1745-1755. https://doi.org/10.1021/acssuschemeng.5b00256
- Paul J. Dietrich, M. Cem Akatay, Fred G. Sollberger, Eric A. Stach, Jeffrey T. Miller, W. Nicholas Delgass, and Fabio H. Ribeiro . Effect of Co Loading on the Activity and Selectivity of PtCo Aqueous Phase Reforming Catalysts. ACS Catalysis 2014, 4
(2)
, 480-491. https://doi.org/10.1021/cs4008705
- David C. Dayton, John Carpenter, Justin Farmer, Brian Turk, and Raghubir Gupta . Biomass Hydropyrolysis in a Pressurized Fluidized Bed Reactor. Energy & Fuels 2013, 27
(7)
, 3778-3785. https://doi.org/10.1021/ef400355t
- Dharik S. Mallapragada, Navneet R. Singh, Vlad Curteanu, and Rakesh Agrawal . Sun-to-Fuel Assessment of Routes for Fixing CO2 as Liquid Fuel. Industrial & Engineering Chemistry Research 2013, 52
(14)
, 5136-5144. https://doi.org/10.1021/ie301125c
- David Kubička and Radek Černý . Upgrading of Fischer–Tropsch Waxes by Fluid Catalytic Cracking. Industrial & Engineering Chemistry Research 2012, 51
(26)
, 8849-8857. https://doi.org/10.1021/ie201969s
- J. Manganaro, B. Chen, J. Adeosun, S. Lakhapatri, D. Favetta, and A. Lawal , R. Farrauto and L. Dorazio , D. J. Rosse . Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis. Energy & Fuels 2011, 25
(6)
, 2711-2720. https://doi.org/10.1021/ef200327e
- Yu-Ting Cheng and George W. Huber . Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction. ACS Catalysis 2011, 1
(6)
, 611-628. https://doi.org/10.1021/cs200103j
- Giuseppe Bagnato, Jamie Horgan, Aimaro Sanna. Techno-economic assessment of two-stage hydropyrolysis of lignin for BTX production using iron-based catalysts. RSC Sustainability 2025, 3
(3)
, 1448-1460. https://doi.org/10.1039/D4SU00652F
- Siddharth Shankar Mishra, V Shanmugapriya. Pyrolysis of Biomass Using Renewable Energy as A Heating Medium : A Review. 2024, 367-376. https://doi.org/10.1109/ICCMSO61761.2024.00079
- Siphumelele Majodina, Olwethu Poswayo, Tendai O. Dembaremba, Zenixole R. Tshentu. Towards improvement of hydroprocessing catalysts - understanding the role of advanced mineral materials in hydroprocessing catalysts. Minerals and Mineral Materials 2023, 2
(4)
https://doi.org/10.20517/mmm.2023.23
- Archita Sharma, Gursharan Singh, Anthonia O'Donovan, Minaxi Sharma, Anupreet Kaur, Shailendra Kumar Arya. A review on development of a greener approach via One-Pot tandem catalysis for biofuels production. Fuel 2023, 350 , 128837. https://doi.org/10.1016/j.fuel.2023.128837
- Tewodros Kassa Dada, Madoc Sheehan, S. Murugavelh, Elsa Antunes. A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Conversion and Biorefinery 2023, 13
(4)
, 2595-2614. https://doi.org/10.1007/s13399-021-01391-3
- Zhibao Huo. Highly Selective Hydrothermal Production of Cyclohexanol from Biomass-Derived Cyclohexanone Over Cu Powder. 2023, 133-146. https://doi.org/10.1007/978-981-99-1673-3_8
- Shinyoung Oh, Jechan Lee, Su Shiung Lam, Eilhann E. Kwon, Jeong-Myeong Ha, Daniel C.W. Tsang, Yong Sik Ok, Wei-Hsin Chen, Young-Kwon Park. Fast hydropyrolysis of biomass Conversion: A comparative review. Bioresource Technology 2021, 342 , 126067. https://doi.org/10.1016/j.biortech.2021.126067
- Cong Yu, Zhilei Qi, Junjie Bian, Ranran Song, Wanyuan Wang, Chunhu Li. Insight into acid-base bifunctional catalysts for microalgae liquefaction and bio-oil pyrolysis: Product characteristics, energy recovery and kinetics. Journal of Analytical and Applied Pyrolysis 2021, 155 , 105086. https://doi.org/10.1016/j.jaap.2021.105086
- . Biomass as a Source of Energy, Fuels and Chemicals. 2021, 589-741. https://doi.org/10.1039/BK9781788012058-00589
- Young-Kwon Park, Jeong-Myeong Ha, Shinyoung Oh, Jechan Lee. Bio-oil upgrading through hydrogen transfer reactions in supercritical solvents. Chemical Engineering Journal 2021, 404 , 126527. https://doi.org/10.1016/j.cej.2020.126527
- Yeonjoon Kim, Anna E. Thomas, David J. Robichaud, Kristiina Iisa, Peter C. St. John, Brian D. Etz, Gina M. Fioroni, Abhijit Dutta, Robert L. McCormick, Calvin Mukarakate, Seonah Kim. A perspective on biomass-derived biofuels: From catalyst design principles to fuel properties. Journal of Hazardous Materials 2020, 400 , 123198. https://doi.org/10.1016/j.jhazmat.2020.123198
- Yifeng He, Yingnan Zhao, Meiyun Chai, Zhongyue Zhou, Manobendro Sarker, Chong Li, Ronghou Liu, Junmeng Cai, Xinghua Liu. Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system: Insights into product distribution, quantum description and reaction mechanism. Renewable and Sustainable Energy Reviews 2020, 119 , 109604. https://doi.org/10.1016/j.rser.2019.109604
- Rakesh Agrawal. Chemical engineering for a solar economy (2017 P. V. Danckwerts Lecture). Chemical Engineering Science 2019, 210 , 115215. https://doi.org/10.1016/j.ces.2019.115215
- Huiyuan Xue, Jingjing Xu, Xingxing Gong, Rongrong Hu. Performance of a Ni-Cu-Co/Al2O3 Catalyst on in-situ Hydrodeoxygenation of Bio-derived Phenol. Catalysts 2019, 9
(11)
, 952. https://doi.org/10.3390/catal9110952
- Caleb K. Miskin, Yiru Li, Allison Perna, Ryan G. Ellis, Elizabeth K. Grubbs, Peter Bermel, Rakesh Agrawal. Sustainable co-production of food and solar power to relax land-use constraints. Nature Sustainability 2019, 2
(10)
, 972-980. https://doi.org/10.1038/s41893-019-0388-x
- Aaron W. Palumbo, Christopher J. Bartel, Jeni C. Sorli, Alan W. Weimer. Characterization of products derived from the high temperature flash pyrolysis of microalgae and rice hulls. Chemical Engineering Science 2019, 196 , 527-537. https://doi.org/10.1016/j.ces.2018.11.029
- Wega Trisunaryanti, Endah Suarsih, Triyono Triyono, Iip Izul Falah. Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose. RSC Advances 2019, 9
(3)
, 1230-1237. https://doi.org/10.1039/C8RA09034C
- Hossein Jahromi, Foster A. Agblevor. Hydrodeoxygenation of pinyon-juniper catalytic pyrolysis oil using red mud-supported nickel catalysts. Applied Catalysis B: Environmental 2018, 236 , 1-12. https://doi.org/10.1016/j.apcatb.2018.05.008
- Trine M.H. Dabros, Magnus Zingler Stummann, Martin Høj, Peter Arendt Jensen, Jan-Dierk Grunwaldt, Jostein Gabrielsen, Peter M. Mortensen, Anker Degn Jensen. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science 2018, 68 , 268-309. https://doi.org/10.1016/j.pecs.2018.05.002
- María V. Gil, Kumar R. Rout, De Chen. Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery. Applied Energy 2018, 222 , 595-607. https://doi.org/10.1016/j.apenergy.2018.03.181
- Haftom Weldekidan, Vladimir Strezov, Graham Town. Review of solar energy for biofuel extraction. Renewable and Sustainable Energy Reviews 2018, 88 , 184-192. https://doi.org/10.1016/j.rser.2018.02.027
- Hao Luo, Mahdi M. Abu-Omar. Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chemistry 2018, 20
(3)
, 745-753. https://doi.org/10.1039/C7GC03417B
- Emre Gençer, Rakesh Agrawal. Strategy to synthesize integrated solar energy coproduction processes with optimal process intensification. Case study: Efficient solar thermal hydrogen production. Computers & Chemical Engineering 2017, 105 , 328-347. https://doi.org/10.1016/j.compchemeng.2017.01.038
- Xiangping Li, Guanyi Chen, Caixia Liu, Wenchao Ma, Beibei Yan, Jianguang Zhang. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review. Renewable and Sustainable Energy Reviews 2017, 71 , 296-308. https://doi.org/10.1016/j.rser.2016.12.057
- Samira Bagheri. Catalytic Upgrading of Bio-oil: Biomass Gasification in the Presence of Catalysts. 2017, 155-176. https://doi.org/10.1007/978-3-319-43104-8_9
- Stephen R. Decker, John Sheehan, David C. Dayton, Joseph J. Bozell, William S. Adney, Andy Aden, Bonnie Hames, Steven R. Thomas, Richard L. Bain, Roman Brunecky, Chien-Yuan Lin, Antonella Amore, Hui Wei, Xiaowen Chen, Melvin P. Tucker, Stefan Czernik, Amie Sluiter, Min Zhang, Kim Magrini, Michael E. Himmel. Biomass Conversion. 2017, 285-419. https://doi.org/10.1007/978-3-319-52287-6_6
- Hao Luo, Mahdi M. Abu-Omar. Chemicals From Lignin. 2017, 573-585. https://doi.org/10.1016/B978-0-12-409548-9.10235-0
- Zhiyuan Song, Dezhang Ren, Tian Wang, Fangming Jin, Qianhui Jiang, Zhibao Huo. Highly selective hydrothermal production of cyclohexanol from biomass-derived cyclohexanone over Cu powder. Catalysis Today 2016, 274 , 94-98. https://doi.org/10.1016/j.cattod.2015.11.016
- Dekui Shen, Jing Zhao, Rui Xiao. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species. Energy Conversion and Management 2016, 124 , 61-72. https://doi.org/10.1016/j.enconman.2016.06.067
- Fernando L.P. Resende. Recent advances on fast hydropyrolysis of biomass. Catalysis Today 2016, 269 , 148-155. https://doi.org/10.1016/j.cattod.2016.01.004
- Kelsey Gerbrandt, Pei Lin Chu, Allison Simmonds, Kimberley A Mullins, Heather L MacLean, W Michael Griffin, Bradley A Saville. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Current Opinion in Biotechnology 2016, 38 , 63-70. https://doi.org/10.1016/j.copbio.2015.12.021
- V. Piemonte, M. Capocelli, G. Orticello, L. Di Paola. Bio-oil production and upgrading. 2016, 263-287. https://doi.org/10.1016/B978-0-08-100451-7.00011-6
- A. Deneyer, T. Ennaert, G. Cavents, J. Dijkmans, J. Vanneste, C. M. Courtin, M. Dusselier, B. F. Sels. Compositional and structural feedstock requirements of a liquid phase cellulose-to-naphtha process in a carbon- and hydrogen-neutral biorefinery context. Green Chemistry 2016, 18
(20)
, 5594-5606. https://doi.org/10.1039/C6GC01644H
- Emre Gençer, Rakesh Agrawal. A commentary on the US policies for efficient large scale renewable energy storage systems: Focus on carbon storage cycles. Energy Policy 2016, 88 , 477-484. https://doi.org/10.1016/j.enpol.2015.11.003
- Farshid Mohammadparast, Rouein Halladj, Sima Askari. The Crystal Size Effect of Nano-Sized ZSM-5 in the Catalytic Performance of Petrochemical Processes: A Review. Chemical Engineering Communications 2015, 202
(4)
, 542-556. https://doi.org/10.1080/00986445.2014.952815
- Beau Op de Beeck, Michiel Dusselier, Jan Geboers, Jensen Holsbeek, Eline Morré, Steffen Oswald, Lars Giebeler, Bert F. Sels. Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy & Environmental Science 2015, 8
(1)
, 230-240. https://doi.org/10.1039/C4EE01523A
- Vinod Kumar Venkatakrishnan, W. Nicholas Delgass, Fabio H. Ribeiro, Rakesh Agrawal. Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation. Green Chemistry 2015, 17
(1)
, 178-183. https://doi.org/10.1039/C4GC01746C
- Junming Sun, Ayman M. Karim, Xiaohong Shari Li, James Rainbolt, Libor Kovarik, Yongsoon Shin, Yong Wang. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions. Chemical Communications 2015, 51
(93)
, 16617-16620. https://doi.org/10.1039/C5CC07244A
- Laura Faba, Eva Díaz, Salvador Ordóñez. Hydrodeoxygenation of acetone–furfural condensation adducts over alumina-supported noble metal catalysts. Applied Catalysis B: Environmental 2014, 160-161 , 436-444. https://doi.org/10.1016/j.apcatb.2014.05.053
- Zhichao Tan, Xingmin Xu, Yonggang Liu, Changsen Zhang, Yunpu Zhai, Peng liu, Yu Li, Ruiqin Zhang. Upgrading bio‐oil model compounds phenol and furfural with
in situ
generated hydrogen. Environmental Progress & Sustainable Energy 2014, 33
(3)
, 751-755. https://doi.org/10.1002/ep.11915
- Sergio Morales, Rosa Miranda, Diana Bustos, Thania Cazares, Honghi Tran. Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal of Analytical and Applied Pyrolysis 2014, 109 , 65-78. https://doi.org/10.1016/j.jaap.2014.07.012
- Dharik S. Mallapragada, Mohit Tawarmalani, Rakesh Agrawal. Synthesis of augmented biofuel processes using solar energy. AIChE Journal 2014, 60
(7)
, 2533-2545. https://doi.org/10.1002/aic.14456
- Pranav U. Karanjkar, Robert J. Coolman, George W. Huber, Michael T. Blatnik, Saba Almalkie, Stephen M. de Bruyn Kops, Triantafillos J. Mountziaris, William C. Conner. Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor. AIChE Journal 2014, 60
(4)
, 1320-1335. https://doi.org/10.1002/aic.14376
- Bhavya Balagurumurthy, Thallada Bhaskar. Hydropyrolysis of lignocellulosic biomass: state of the art review. Biomass Conversion and Biorefinery 2014, 4
(1)
, 67-75. https://doi.org/10.1007/s13399-013-0086-2
- Emre Gencer, Dharik Mallapragada, Mohit Tawarmalani, Rakesh Agrawal. Synergistic Biomass and Natural Gas Conversion to Liquid Fuel with Reduced CO2 Emissions. 2014, 525-530. https://doi.org/10.1016/B978-0-444-63433-7.50072-9
- Jitendra Kumar, K.R. Gota, Bharat Modhera. Influence of Pyrrole Concentration on Cracking Activity of n-hexane in a Performance FCC Catalyst and Additives. APCBEE Procedia 2014, 9 , 159-164. https://doi.org/10.1016/j.apcbee.2014.01.028
- Cory Hargus, Ronald Michalsky, Andrew A. Peterson. Looped-oxide catalysis: a solar thermal approach to bio-oil deoxygenation. Energy Environ. Sci. 2014, 7
(10)
, 3122-3134. https://doi.org/10.1039/C4EE01684J
- Vinod Kumar Venkatakrishnan, John C. Degenstein, Andrew D. Smeltz, W. Nicholas Delgass, Rakesh Agrawal, Fabio H. Ribeiro. High-pressure fast-pyrolysis, fast-hydropyrolysis and catalytic hydrodeoxygenation of cellulose: production of liquid fuel from biomass. Green Chemistry 2014, 16
(2)
, 792. https://doi.org/10.1039/c3gc41558a
- Xue-Song Zhang, Guang-Xi Yang, Hong Jiang, Wu-Jun Liu, Hong-Sheng Ding. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis. Scientific Reports 2013, 3
(1)
https://doi.org/10.1038/srep01120
- Syed Ali Gardezi, Babu Joseph, Faustino Prado, Alejandro Barbosa. Thermochemical biomass to liquid (BTL) process: Bench-scale experimental results and projected process economics of a commercial scale process. Biomass and Bioenergy 2013, 59 , 168-186. https://doi.org/10.1016/j.biombioe.2013.09.010
- Yan Zhao, Tao Pan, Yong Zuo, Qing-Xiang Guo, Yao Fu. Production of aromatic hydrocarbons through catalytic pyrolysis of 5-Hydroxymethylfurfural from biomass. Bioresource Technology 2013, 147 , 37-42. https://doi.org/10.1016/j.biortech.2013.07.068
- Nathan S. Mosier. Fundamentals of Aqueous Pretreatment of Biomass. 2013, 129-143. https://doi.org/10.1002/9780470975831.ch7
- Nagabhatla Viswanadham, Sandeep K. Saxena. Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction. Fuel 2013, 105 , 490-495. https://doi.org/10.1016/j.fuel.2012.07.015
- Pavel Šimáček, David Kubička, Milan Pospíšil, Vlastimil Rubáš, Lukáš Hora, Gustav Šebor. Fischer–Tropsch product as a co-feed for refinery hydrocracking unit. Fuel 2013, 105 , 432-439. https://doi.org/10.1016/j.fuel.2012.08.020
- David Kubička, Iva Kubičková, Jiří Čejka. Application of Molecular Sieves in Transformations of Biomass and Biomass-Derived Feedstocks. Catalysis Reviews 2013, 55
(1)
, 1-78. https://doi.org/10.1080/01614940.2012.685811
- Yu‐Ting Cheng, Zhuopeng Wang, Christopher J. Gilbert, Wei Fan, George W. Huber. Production of
p
‐Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM‐5 Catalysts with Reduced Pore Openings. Angewandte Chemie 2012, 124
(44)
, 11259-11262. https://doi.org/10.1002/ange.201205230
- Yu‐Ting Cheng, Zhuopeng Wang, Christopher J. Gilbert, Wei Fan, George W. Huber. Production of
p
‐Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM‐5 Catalysts with Reduced Pore Openings. Angewandte Chemie International Edition 2012, 51
(44)
, 11097-11100. https://doi.org/10.1002/anie.201205230
- Navneet R. Singh, Dharik S. Mallapragada, Rakesh Agrawal, Wallace E. Tyner. Economic analysis of novel synergistic biofuel (H2Bioil) processes. Biomass Conversion and Biorefinery 2012, 2
(2)
, 141-148. https://doi.org/10.1007/s13399-012-0043-5
- Yan Zhao, Yao Fu, Qing-Xiang Guo. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass. Bioresource Technology 2012, 114 , 740-744. https://doi.org/10.1016/j.biortech.2012.03.057
- Yu-Ting Cheng, George W. Huber. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chemistry 2012, 14
(11)
, 3114. https://doi.org/10.1039/c2gc35767d
- P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 2011, 407
(1-2)
, 1-19. https://doi.org/10.1016/j.apcata.2011.08.046
- Eoin Butler, Ger Devlin, Dietrich Meier, Kevin McDonnell. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews 2011, 15
(8)
, 4171-4186. https://doi.org/10.1016/j.rser.2011.07.035
- Dharik S. Mallapragada, Navneet R. Singh, Rakesh Agrawal. Energy Systems Analysis for a Renewable Transportation Sector. 2011, 1889-1893. https://doi.org/10.1016/B978-0-444-54298-4.50156-2
- Rakesh Agrawal, Dharik S. Mallapragada. Chemical engineering in a solar energy‐driven sustainable future. AIChE Journal 2010, 56
(11)
, 2762-2768. https://doi.org/10.1002/aic.12435
- Rakesh Agrawal, Navneet R. Singh. Solar Energy to Biofuels. Annual Review of Chemical and Biomolecular Engineering 2010, 1
(1)
, 343-364. https://doi.org/10.1146/annurev-chembioeng-073009-100955
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.