ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

CO2 Mitigation via Capture and Chemical Conversion in Seawater

View Author Information
Institute of Marine Sciences, University of California, Santa Cruz, California 95064, United States, and Carbon Management Program, Lawrence Livermore National Laboratory, 7000 East Ave. Livermore, California 94550, United States
* Corresponding author phone: 1 925 423 7990; fax 1 925 422 7438; e-mail: [email protected]
Cite this: Environ. Sci. Technol. 2011, 45, 3, 1088–1092
Publication Date (Web):December 28, 2010
https://doi.org/10.1021/es102671x
Copyright © 2010 American Chemical Society

    Article Views

    4425

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO2 in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. After full equilibration with air, up to 85% of the captured carbon was retained in solution, that is, it did not degas or precipitate. Thus, above-ground CO2 hydration and mineral carbonate scrubbing may provide a relatively simple point-source CO2 capture and storage scheme at coastal locations. Such low-tech CO2 mitigation could be especially relevant for retrofitting to existing power plants and for deployment in the developing world, the primary source of future CO2 emissions. Addition of the resulting alkaline solution to the ocean may benefit marine ecosystems that are currently threatened by acidification, while also allowing the utilization of the vast potential of the sea to safely sequester anthropogenic carbon. This approach in essence hastens Nature’s own very effective but slow CO2 mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO2 and ocean acidity on geologic times scales.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 87 publications.

    1. Hong-Tao Cong, Xiao-Qiang Yan, Li-Kun Yang, Yuan Jiang, Chao Wang, Dongping Zhan, Yan Li, Minhan Dai. Coupling Electrochemical Alkalinization and Mineral Dissolution for Ambient Removal of Both Influent CO2 and Dissolved Nitrite in Seawater. Environmental Science & Technology Letters 2024, Article ASAP.
    2. Xu Han, Kostya Ken Ostrikov, Jeff Chen, Yao Zheng, Xiaoyong Xu. Electrochemical Reduction of Carbon Dioxide to Solid Carbon: Development, Challenges, and Perspectives. Energy & Fuels 2023, 37 (17) , 12665-12684. https://doi.org/10.1021/acs.energyfuels.3c02204
    3. Pu Zhang, Yao Huo, Fei Wang, Fang Fang, Dalin Sun. Direct Electrochemical Seawater Splitting for Green Hydrogen and Artificial Reefs. ACS Applied Energy Materials 2023, 6 (14) , 7636-7642. https://doi.org/10.1021/acsaem.3c01071
    4. Qing Xia, Kouer Zhang, Tingting Zheng, Liang An, Chuan Xia, Xiao Zhang. Integration of CO2 Capture and Electrochemical Conversion. ACS Energy Letters 2023, 8 (6) , 2840-2857. https://doi.org/10.1021/acsenergylett.3c00738
    5. Julia S. Kirchner, Andrew Berry, Frank Ohnemüller, Bernhard Schnetger, Egon Erich, Hans-Jürgen Brumsack, Karsten A. Lettmann. Reducing CO2 Emissions of a Coal-Fired Power Plant via Accelerated Weathering of Limestone: Carbon Capture Efficiency and Environmental Safety. Environmental Science & Technology 2020, 54 (7) , 4528-4535. https://doi.org/10.1021/acs.est.9b07009
    6. Johanna Beiron, Fredrik Normann, Lars Kristoferson, Lars Strömberg, Stefanìa Òsk Gardarsdòttir, Filip Johnsson. Enhancement of CO2 Absorption in Water through pH Control and Carbonic Anhydrase–A Technical Assessment. Industrial & Engineering Chemistry Research 2019, 58 (31) , 14275-14283. https://doi.org/10.1021/acs.iecr.9b02688
    7. Hsing-Jung Ho, Atsushi Iizuka, Etsuro Shibata. Carbon Capture and Utilization Technology without Carbon Dioxide Purification and Pressurization: A Review on Its Necessity and Available Technologies. Industrial & Engineering Chemistry Research 2019, 58 (21) , 8941-8954. https://doi.org/10.1021/acs.iecr.9b01213
    8. Eloy S. Sanz-Pérez, Christopher R. Murdock, Stephanie A. Didas, and Christopher W. Jones . Direct Capture of CO2 from Ambient Air. Chemical Reviews 2016, 116 (19) , 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173
    9. Marta C. Figueiredo, Isis Ledezma-Yanez, and Marc T. M. Koper . In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile. ACS Catalysis 2016, 6 (4) , 2382-2392. https://doi.org/10.1021/acscatal.5b02543
    10. Xin Liu, Wenlong Wang, Man Wang, and Peng Wang . Experimental Study of CO2 Mineralization in Ca2+-Rich Aqueous Solutions Using Tributylamine as an Enhancing Medium. Energy & Fuels 2014, 28 (3) , 2047-2053. https://doi.org/10.1021/ef402272k
    11. William C. Floyd, III, Sarah E. Baker, Carlos A. Valdez, Joshuah K. Stolaroff, Jane P. Bearinger, Joe H. Satcher, Jr., and Roger D. Aines . Evaluation of a Carbonic Anhydrase Mimic for Industrial Carbon Capture. Environmental Science & Technology 2013, 47 (17) , 10049-10055. https://doi.org/10.1021/es401336f
    12. Amir H. Mohammadi, Ali Eslamimanesh, Veronica Belandria, and Dominique Richon . Phase Equilibria of Semiclathrate Hydrates of CO2, N2, CH4, or H2 + Tetra-n-butylammonium Bromide Aqueous Solution. Journal of Chemical & Engineering Data 2011, 56 (10) , 3855-3865. https://doi.org/10.1021/je2005159
    13. Yadi Lou, Ying Wang, Shiyue Li, Fuwei Yu, Xing Liu, Yi Cong, Zhaochuan Li, Fei Jin, Mingxing Zhang, Ziwei Yao, Juying Wang. Different responses of marine microalgae Phaeodactylum tricornutum upon exposures to WAF and CEWAF of crude oil: A case study coupled with stable isotopic signatures. Journal of Hazardous Materials 2024, 468 , 133833. https://doi.org/10.1016/j.jhazmat.2024.133833
    14. Joseph Wilson. Modeling the measurement of carbon dioxide removal: perspectives from the philosophy of measurement. Frontiers in Climate 2024, 5 https://doi.org/10.3389/fclim.2023.1283333
    15. Ofélia de Queiroz F. Araújo, Icaro B. Boa Morte, Carmen L.T. Borges, Cláudia R.V. Morgado, José Luiz de Medeiros. Beyond clean and affordable transition pathways: A review of issues and strategies to sustainable energy supply. International Journal of Electrical Power & Energy Systems 2024, 155 , 109544. https://doi.org/10.1016/j.ijepes.2023.109544
    16. Lock Hei Ngu. Carbon Capture Technologies. 2024, 358-377. https://doi.org/10.1016/B978-0-323-90386-8.00028-0
    17. Remya Kadamkotte Puthanveettil, Youjeong Lee, Jinuk Heo, Myoung-Jin Kim. Morphological control of CaCO3 superstructures in seawater: Insights into Ca-source anion influence and formation mechanism. Advanced Powder Technology 2023, 34 (12) , 104249. https://doi.org/10.1016/j.apt.2023.104249
    18. Da Hee Jung, Gyeol Ko, Jin-Su Kwak, Do Yun Kim, Seul Gi Jeon, Seungkwan Hong. Feasibility study of storing CO2 in the ocean by marine environmental impact assessment. Science of The Total Environment 2023, 903 , 166270. https://doi.org/10.1016/j.scitotenv.2023.166270
    19. Bin Wang, Xuelu Gao, Jinming Song, Xuegang Li, Huamao Yuan, Lei Xie, Jianmin Zhao, Qianguo Xing, Song Qin. Feasibility of increasing marine carbon storage through olivine addition. Journal of Environmental Chemical Engineering 2023, 11 (6) , 111221. https://doi.org/10.1016/j.jece.2023.111221
    20. Divya Pant, Kabita Kumari Shah, Sadikshya Sharma, Maya Bhatta, Subina Tripathi, Hari Prasad Pandey, Himanshu Tiwari, Jiban Shrestha, Ashbin Kumar Bhat. Soil and Ocean Carbon Sequestration, Carbon Capture, Utilization, and Storage as Negative Emission Strategies for Global Climate Change. Journal of Soil Science and Plant Nutrition 2023, 23 (2) , 1421-1437. https://doi.org/10.1007/s42729-023-01215-5
    21. Hai Jiang, Shuo Wang, Lei Xing, Valerie J. Pinfield, Jin Xuan. Machine learning based techno-economic process optimisation for CO2 capture via enhanced weathering. Energy and AI 2023, 12 , 100234. https://doi.org/10.1016/j.egyai.2023.100234
    22. Jinyuan Zhang, Aidong Yang, Richard Darton, Lei Xing, Adam Vaughan. Surrogate modelling-assisted comparison of reactor schemes for carbon dioxide removal by enhanced weathering of minerals using seawater. Chemical Engineering Journal 2023, 461 , 141804. https://doi.org/10.1016/j.cej.2023.141804
    23. Yasser Abdullatif, Ahmed Sodiq, Namra Mir, Yusuf Bicer, Tareq Al-Ansari, Muftah H. El-Naas, Abdulkarem I. Amhamed. Emerging trends in direct air capture of CO 2 : a review of technology options targeting net-zero emissions. RSC Advances 2023, 13 (9) , 5687-5722. https://doi.org/10.1039/D2RA07940B
    24. Eelco J Rohling. Marine methods for carbon dioxide removal: fundamentals and myth-busting for the wider community. Oxford Open Climate Change 2023, 3 (1) https://doi.org/10.1093/oxfclm/kgad004
    25. Mei Zhang, Hualong Wang, Feng Chen. Time‐resolved transcriptome analysis of Scenedesmus obliquus HTB1 under 10% CO 2 condition. Microbial Biotechnology 2023, 16 (2) , 448-462. https://doi.org/10.1111/1751-7915.14100
    26. Steve Rackley, Michael Tyka. Ocean storage and ocean CDR methods. 2023, 357-390. https://doi.org/10.1016/B978-0-12-819663-2.00003-4
    27. Toheeb A. Jimoh, Fredrick O. Omoarukhe, Emmanuel I. Epelle, Patrick U. Okoye, Emmanuel Oke Olusola, Alivia Mukherjee, Jude A. Okolie. Introduction to Carbon Capture by Solvent‐based Technologies. 2023https://doi.org/10.1016/B978-0-323-93940-9.00003-7
    28. Hongjie Wang, Darren J. Pilcher, Kelly A. Kearney, Jessica N. Cross, O. Melissa Shugart, Matthew D. Eisaman, Brendan R. Carter. Simulated Impact of Ocean Alkalinity Enhancement on Atmospheric CO 2 Removal in the Bering Sea. Earth's Future 2023, 11 (1) https://doi.org/10.1029/2022EF002816
    29. Linquan Mu, Jaime B. Palter, Hongjie Wang. Considerations for hypothetical carbon dioxide removal via alkalinity addition in the Amazon River watershed. Biogeosciences 2023, 20 (10) , 1963-1977. https://doi.org/10.5194/bg-20-1963-2023
    30. Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, Jakob Rønning. Assessing the technical aspects of ocean-alkalinity-enhancement approaches. State of the Planet 2023, 2-oae2023 , 1-29. https://doi.org/10.5194/sp-2-oae2023-3-2023
    31. Jiaju Fu, Pan Li, Yuan Lin, Huitong Du, Hongzhi Liu, Wenlei Zhu, Hongqiang Ren. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. Eco-Environment & Health 2022, 1 (4) , 259-279. https://doi.org/10.1016/j.eehl.2022.11.005
    32. Yayuan Liu, Éowyn Lucas, Ian Sullivan, Xing Li, Chengxiang Xiang. Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 2022, 25 (10) , 105153. https://doi.org/10.1016/j.isci.2022.105153
    33. Jian Hou, Fahd Alghunaimi, Ming Han, Norah Aljuryyed, . Removal of High-Concentration Sulfate from Seawater by Ettringite Precipitation. Journal of Chemistry 2022, 2022 , 1-11. https://doi.org/10.1155/2022/8723962
    34. Kadamkotte Puthanveettil Remya, Sehun Kim, Myoung-Jin Kim. Surfactant-free hydrothermal fabrication of vaterite CaCO3 with hexagonal bipyramidal morphologies using seawater. Powder Technology 2022, 410 , 117865. https://doi.org/10.1016/j.powtec.2022.117865
    35. James S. Campbell, Spyros Foteinis, Veronica Furey, Olivia Hawrot, Daniel Pike, Silvan Aeschlimann, Cara N. Maesano, Paul L. Reginato, Daniel R. Goodwin, Loren L. Looger, Edward S. Boyden, Phil Renforth. Geochemical Negative Emissions Technologies: Part I. Review. Frontiers in Climate 2022, 4 https://doi.org/10.3389/fclim.2022.879133
    36. Slyvester Yew Wang Chai, Lock Hei Ngu, Bing Shen How. Review of carbon capture absorbents for CO 2 utilization. Greenhouse Gases: Science and Technology 2022, 12 (3) , 394-427. https://doi.org/10.1002/ghg.2151
    37. Lei Xing, Huw Pullin, Liam Bullock, Phil Renforth, Richard C. Darton, Aidong Yang. Potential of enhanced weathering of calcite in packed bubble columns with seawater for carbon dioxide removal. Chemical Engineering Journal 2022, 431 , 134096. https://doi.org/10.1016/j.cej.2021.134096
    38. Pushp Bajaj, Saurabh Thakur. Carbon Dioxide Capture and Sequestration to Achieve Paris Climate Targets. 2022, 215-233. https://doi.org/10.1007/978-3-030-86290-9_13
    39. Stefano Caserini, Giovanni Cappello, Davide Righi, Guido Raos, Francesco Campo, Serena De Marco, Phil Renforth, Selene Varliero, Mario Grosso. Buffered accelerated weathering of limestone for storing CO2: Chemical background. International Journal of Greenhouse Gas Control 2021, 112 , 103517. https://doi.org/10.1016/j.ijggc.2021.103517
    40. Julia S. Kirchner, Karsten A. Lettmann, Bernhard Schnetger, Jörg-Olaf Wolff, Hans-Jürgen Brumsack. Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions. Minerals 2021, 11 (11) , 1261. https://doi.org/10.3390/min11111261
    41. P. Renforth, J. S. Campbell. The role of soils in the regulation of ocean acidification. Philosophical Transactions of the Royal Society B: Biological Sciences 2021, 376 (1834) , 20200174. https://doi.org/10.1098/rstb.2020.0174
    42. Ji Hyun Lee, Jay Hyung Lee. Techno-economic and environmental feasibility of mineral carbonation technology for carbon neutrality: A Perspective. Korean Journal of Chemical Engineering 2021, 38 (9) , 1757-1767. https://doi.org/10.1007/s11814-021-0840-2
    43. Congquan Zhou, Jihong Ni, Huiqi Chen, Xiaofei Guan. Harnessing electrochemical pH gradient for direct air capture with hydrogen and oxygen by-products in a calcium-based loop. Sustainable Energy & Fuels 2021, 5 (17) , 4355-4367. https://doi.org/10.1039/D1SE00718A
    44. Kate Dooley, Ellycia Harrould‐Kolieb, Anita Talberg. Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework. Global Policy 2021, 12 (S1) , 34-44. https://doi.org/10.1111/1758-5899.12828
    45. R. Sharifian, R. M. Wagterveld, I. A. Digdaya, C. Xiang, D. A. Vermaas. Electrochemical carbon dioxide capture to close the carbon cycle. Energy & Environmental Science 2021, 14 (2) , 781-814. https://doi.org/10.1039/D0EE03382K
    46. Leah D. Ellis, Andres F. Badel, Miki L. Chiang, Richard J.-Y. Park, Yet-Ming Chiang. Toward electrochemical synthesis of cement—An electrolyzer-based process for decarbonating CaCO 3 while producing useful gas streams. Proceedings of the National Academy of Sciences 2020, 117 (23) , 12584-12591. https://doi.org/10.1073/pnas.1821673116
    47. Lauren M. Yumol, Joji Uchikawa, Richard E. Zeebe. Kinetic isotope effects during CO2 hydration: Experimental results for carbon and oxygen fractionation. Geochimica et Cosmochimica Acta 2020, 279 , 189-203. https://doi.org/10.1016/j.gca.2020.03.041
    48. Matthew D. Eisaman. Negative Emissions Technologies: The Tradeoffs of Air-Capture Economics. Joule 2020, 4 (3) , 516-520. https://doi.org/10.1016/j.joule.2020.02.007
    49. Julia S. Kirchner, Karsten A. Lettmann, Bernhard Schnetger, Jörg-Olaf Wolff, Hans-Jürgen Brumsack. Carbon capture via accelerated weathering of limestone: Modeling local impacts on the carbonate chemistry of the southern North Sea. International Journal of Greenhouse Gas Control 2020, 92 , 102855. https://doi.org/10.1016/j.ijggc.2019.102855
    50. Stefano Caserini, Beatriz Barreto, Caterina Lanfredi, Giovanni Cappello, Dennis Ross Morrey, Mario Grosso. Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage. Mitigation and Adaptation Strategies for Global Change 2019, 24 (7) , 1231-1248. https://doi.org/10.1007/s11027-018-9835-7
    51. Xiang Liu, Kaijun Wang, Jingyao Wang, Jiane Zuo, Fei Peng, Jing Wu, Erfu San. Carbon dioxide fixation coupled with ammonium uptake by immobilized Scenedesmus obliquus and its potential for protein production. Bioresource Technology 2019, 289 , 121685. https://doi.org/10.1016/j.biortech.2019.121685
    52. J.C.M. Pires. Negative emissions technologies: A complementary solution for climate change mitigation. Science of The Total Environment 2019, 672 , 502-514. https://doi.org/10.1016/j.scitotenv.2019.04.004
    53. Paul Balcombe, James Brierley, Chester Lewis, Line Skatvedt, Jamie Speirs, Adam Hawkes, Iain Staffell. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management 2019, 182 , 72-88. https://doi.org/10.1016/j.enconman.2018.12.080
    54. Chandra Sekhar Kuppan, Murthy Chavali. CO2 Sequestration: Processes and Methodologies. 2019, 1-50. https://doi.org/10.1007/978-3-319-48281-1_6-2
    55. Chandra Sekhar Kuppan, Murthy Chavali. CO2 Sequestration: Processes and Methodologies. 2019, 619-668. https://doi.org/10.1007/978-3-319-68255-6_6
    56. Jean-Pierre Gattuso, Alexandre K. Magnan, Laurent Bopp, William W. L. Cheung, Carlos M. Duarte, Jochen Hinkel, Elizabeth Mcleod, Fiorenza Micheli, Andreas Oschlies, Phillip Williamson, Raphaël Billé, Vasiliki I. Chalastani, Ruth D. Gates, Jean-Olivier Irisson, Jack J. Middelburg, Hans-Otto Pörtner, Greg H. Rau. Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Frontiers in Marine Science 2018, 5 https://doi.org/10.3389/fmars.2018.00337
    57. Byeong-Mo Gim, Seongjin Hong, Jung-Suk Lee, Nam-Hyun Kim, Eun-Mi Kwon, Joon-Woo Gil, Hyun-Hwa Lim, Eui-Chan Jeon, Jong Seong Khim. Potential ecotoxicological effects of elevated bicarbonate ion concentrations on marine organisms. Environmental Pollution 2018, 241 , 194-199. https://doi.org/10.1016/j.envpol.2018.05.057
    58. Byung Hoon Jo, Seul-Ki Im, Hyung Joon Cha. Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments. Journal of CO2 Utilization 2018, 26 , 415-424. https://doi.org/10.1016/j.jcou.2018.05.030
    59. Greg H. Rau, Heather D. Willauer, Zhiyong Jason Ren. The global potential for converting renewable electricity to negative-CO2-emissions hydrogen. Nature Climate Change 2018, 8 (7) , 621-625. https://doi.org/10.1038/s41558-018-0203-0
    60. Dr. Chandrasekhar Kuppan, Chavali Yadav. CO2 Sequestration: Processes and Methodologies. 2018, 1-50. https://doi.org/10.1007/978-3-319-48281-1_6-1
    61. Phil Renforth, Gideon Henderson. Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics 2017, 55 (3) , 636-674. https://doi.org/10.1002/2016RG000533
    62. Daniela Medas, Giovanna Cappai, Giovanni De Giudici, Martina Piredda, Simona Podda. Accelerated carbonation by cement kiln dust in aqueous slurries: chemical and mineralogical investigation. Greenhouse Gases: Science and Technology 2017, 7 (4) , 692-705. https://doi.org/10.1002/ghg.1681
    63. Junghyun Lee, Misun Park, Jisun Joo, Joon-Woo Gil. Capture and Ocean Storage of Carbon Dioxide Using Alkaline Wastes and Seawater. Journal of Korean Society of Environmental Engineers 2017, 39 (3) , 149-154. https://doi.org/10.4491/KSEE.2017.39.3.149
    64. Pen-Chi Chiang, Shu-Yuan Pan. Natural Silicate and Carbonate Minerals (Ores). 2017, 221-232. https://doi.org/10.1007/978-981-10-3268-4_10
    65. Rosa Perfetto, Sonia Del Prete, Daniela Vullo, Giovanni Sansone, Carmela M.A. Barone, Mosè Rossi, Claudiu T. Supuran, Clemente Capasso. Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles. Journal of Enzyme Inhibition and Medicinal Chemistry 2017, 32 (1) , 759-766. https://doi.org/10.1080/14756366.2017.1316719
    66. P. Renforth, P.A.E. Pogge von Strandmann, G.M. Henderson. The dissolution of olivine added to soil: Implications for enhanced weathering. Applied Geochemistry 2015, 61 , 109-118. https://doi.org/10.1016/j.apgeochem.2015.05.016
    67. Hesam Najibi, Kamalodin Momeni, Mohammad T. Sadeghi, Amir H. Mohammadi. Experimental measurement and thermodynamic modelling of phase equilibria of semi-clathrate hydrates of (CO2+tetra-n-butyl-ammonium bromide) aqueous solution. The Journal of Chemical Thermodynamics 2015, 87 , 122-128. https://doi.org/10.1016/j.jct.2015.03.024
    68. A. Cuneyt Tas. Aragonite coating solutions (ACS) based on artificial seawater. Applied Surface Science 2015, 330 , 262-269. https://doi.org/10.1016/j.apsusc.2014.12.195
    69. Wen-Chen Chou, Gwo-Ching Gong, Pei-Shan Hsieh, Ming-Hui Chang, Hung-Yu Chen, Chin-Yo Yang, Rong-Wei Syu. Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: A case study for the Hoping power plant in northeastern Taiwan. Marine Chemistry 2015, 168 , 27-36. https://doi.org/10.1016/j.marchem.2014.10.008
    70. Liwen Hu, Yang Song, Jianbang Ge, Jun Zhu, Shuqiang Jiao. Capture and electrochemical conversion of CO 2 to ultrathin graphite sheets in CaCl 2 -based melts. Journal of Materials Chemistry A 2015, 3 (42) , 21211-21218. https://doi.org/10.1039/C5TA05127D
    71. Thomas Goreau. Global Biogeochemical Restoration to Stabilize CO2 at Safe Levels in Time to Avoid Severe Climate Change Impacts to Earth’s Life Support Systems: Implications for the United Nations Framework Convention on Climate Change. 2014, 5-58. https://doi.org/10.1201/b13788-3
    72. Klaus S. Lackner. The Use of Artificial Trees. 2014, 80-104. https://doi.org/10.1039/9781782621225-00080
    73. Greg H. Rau. Enhancing the Ocean’s Role in CO2 Mitigation. 2014, 817-824. https://doi.org/10.1007/978-94-007-5784-4_54
    74. A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M. M. Maroto-Valer. A review of mineral carbonation technologies to sequester CO 2. Chem. Soc. Rev. 2014, 43 (23) , 8049-8080. https://doi.org/10.1039/C4CS00035H
    75. Tatiana Ilyina, Dieter Wolf-Gladrow, Guy Munhoven, Christoph Heinze. Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO 2 and ocean acidification. Geophysical Research Letters 2013, 40 (22) , 5909-5914. https://doi.org/10.1002/2013GL057981
    76. Raphaël Billé, Ryan Kelly, Arne Biastoch, Ellycia Harrould-Kolieb, Dorothée Herr, Fortunat Joos, Kristy Kroeker, Dan Laffoley, Andreas Oschlies, Jean-Pierre Gattuso. Taking Action Against Ocean Acidification: A Review of Management and Policy Options. Environmental Management 2013, 52 (4) , 761-779. https://doi.org/10.1007/s00267-013-0132-7
    77. P. Renforth, B.G. Jenkins, T. Kruger. Engineering challenges of ocean liming. Energy 2013, 60 , 442-452. https://doi.org/10.1016/j.energy.2013.08.006
    78. François S. Paquay, Richard E. Zeebe. Assessing possible consequences of ocean liming on ocean pH, atmospheric CO2 concentration and associated costs. International Journal of Greenhouse Gas Control 2013, 17 , 183-188. https://doi.org/10.1016/j.ijggc.2013.05.005
    79. Greg H. Rau, Susan A. Carroll, William L. Bourcier, Michael J. Singleton, Megan M. Smith, Roger D. Aines. Direct electrolytic dissolution of silicate minerals for air CO 2 mitigation and carbon-negative H 2 production. Proceedings of the National Academy of Sciences 2013, 110 (25) , 10095-10100. https://doi.org/10.1073/pnas.1222358110
    80. Liang Zhao, Chen Zhu, Junfeng Ji, Jun Chen, H. Henry Teng. Thermodynamic and kinetic effect of organic solvent on the nucleation of nesquehonite. Geochimica et Cosmochimica Acta 2013, 106 , 192-202. https://doi.org/10.1016/j.gca.2012.12.029
    81. Peter Köhler, Jesse F Abrams, Christoph Völker, Judith Hauck, Dieter A Wolf-Gladrow. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO 2 , surface ocean pH and marine biology. Environmental Research Letters 2013, 8 (1) , 014009. https://doi.org/10.1088/1748-9326/8/1/014009
    82. Duncan McLaren. A comparative global assessment of potential negative emissions technologies. Process Safety and Environmental Protection 2012, 90 (6) , 489-500. https://doi.org/10.1016/j.psep.2012.10.005
    83. Greg H. Rau, Elizabeth L. McLeod, Ove Hoegh-Guldberg. The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change 2012, 2 (10) , 720-724. https://doi.org/10.1038/nclimate1555
    84. P. Renforth. The potential of enhanced weathering in the UK. International Journal of Greenhouse Gas Control 2012, 10 , 229-243. https://doi.org/10.1016/j.ijggc.2012.06.011
    85. Lynn M. Russell, Philip J. Rasch, Georgina M. Mace, Robert B. Jackson, John Shepherd, Peter Liss, Margaret Leinen, David Schimel, Naomi E. Vaughan, Anthony C. Janetos, Philip W. Boyd, Richard J. Norby, Ken Caldeira, Joonas Merikanto, Paulo Artaxo, Jerry Melillo, M. Granger Morgan. Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan. AMBIO 2012, 41 (4) , 350-369. https://doi.org/10.1007/s13280-012-0258-5
    86. Duncan P McLaren. Procedural Justice in Carbon Capture and Storage. Energy & Environment 2012, 23 (2-3) , 345-365. https://doi.org/10.1260/0958-305X.23.2-3.345
    87. Wei-Hsin Chen, Yu-Lin Hou, Chen-I Hung. Influence of droplet mutual interaction on carbon dioxide capture process in sprays. Applied Energy 2012, 92 , 185-193. https://doi.org/10.1016/j.apenergy.2011.10.035

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect