ACS Publications. Most Trusted. Most Cited. Most Read
Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems
My Activity

Figure 1Loading Img
    Article

    Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C., Canada, V8W 3P6
    Department of Chemistry, University of Victoria, P.O. Box 3065 Stn CSC, Victoria, B.C., Canada, V8W 3 V6
    Phone: (250) 721-6146; fax: (250) 721-8855; e-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2011, 45, 12, 5395–5402
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es1041942
    Published May 16, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Triclosan (TCS) and triclocarban (TCC) are widely used broad spectrum bactericides that are common pollutants of waterways and soils. Methyl triclosan (mTCS) is the predominant bacterial TCS metabolite. Previous studies have shown that TCS disrupts thyroid hormone (TH) action; however, the effects of mTCS or TCC are not known. The present study uses the cultured frog tadpole tail fin biopsy (C-fin) assay and the TH-responsive rat pituitary GH3 cell line to assess the effects of these three chemicals (1–1000 nM) on TH signaling and cellular stress within 48 h. mRNA abundance of TH receptor β, Rana larval keratin type I (TH-response), heat shock protein 30, and catalase (stress-response) was measured using quantitative real-time polymerase chain reaction in the C-fin assay. The TH-responsive gene transcripts encoding growth hormone, deiodinase I, and prolactin were measured in GH3 cells with the heat shock protein 70 transcript acting as a cellular stress indicator. We found alteration of stress indicators at a wide range of concentrations of TCS, mTCS, and TCC in both test systems. mTCS and TCC affected TH-responsive gene transcripts at the highest concentration in mammalian cells, whereas a modest effect included lower concentrations in the C-fin assay. In contrast, TCS did not affect TH-responsive transcripts. These results identify nontarget biological effects of these bacteriocides on amphibian and mammalian cells and suggest the TH-disrupting effects observed for TCS could be mediated through its metabolite.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Chemical structures for T3, TCS, mTCS, and TCC; mTCS synthesis and characterization, cell and organ culture methodology, RNA preparation, and QPCR and statistical analyses; list of the QPCR primers that are used in the present study to measure the mRNA steady-state levels of selected transcripts along with QPCR parameters and sequence information; comparison of Ct values obtained for rpL8 mRNAs in the C-fin assays and GH3 cells. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 132 publications.

    1. Jing An, Weiwei Yao, Waner Tang, Jingjing Jiang, Yu Shang. Hormesis Effect of Methyl Triclosan on Cell Proliferation and Migration in Human Hepatocyte L02 Cells. ACS Omega 2021, 6 (29) , 18904-18913. https://doi.org/10.1021/acsomega.1c02127
    2. Xiaying Xin, Gordon Huang, Chunjiang An, Renfei Feng. Interactive Toxicity of Triclosan and Nano-TiO2 to Green Alga Eremosphaera viridis in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectromicroscopy and Synchrotron-Based X-ray Fluorescence Imaging. Environmental Science & Technology 2019, 53 (16) , 9884-9894. https://doi.org/10.1021/acs.est.9b03117
    3. Mingzhu Li, Yuning He, Jing Sun, Jing Li, Junhong Bai, Chengdong Zhang. Chronic Exposure to an Environmentally Relevant Triclosan Concentration Induces Persistent Triclosan Resistance but Reversible Antibiotic Tolerance in Escherichia coli. Environmental Science & Technology 2019, 53 (6) , 3277-3286. https://doi.org/10.1021/acs.est.8b06763
    4. Jie Han, Wei Qiu, Elizabeth C. Campbell, Jason C. White, and Baoshan Xing . Nylon Bristles and Elastomers Retain Centigram Levels of Triclosan and Other Chemicals from Toothpastes: Accumulation and Uncontrolled Release. Environmental Science & Technology 2017, 51 (21) , 12264-12273. https://doi.org/10.1021/acs.est.7b02839
    5. Xiaoyun Ye, Lee-Yang Wong, Prabha Dwivedi, Xiaoliu Zhou, Tao Jia, and Antonia M. Calafat . Urinary Concentrations of the Antibacterial Agent Triclocarban in United States Residents: 2013–2014 National Health and Nutrition Examination Survey. Environmental Science & Technology 2016, 50 (24) , 13548-13554. https://doi.org/10.1021/acs.est.6b04668
    6. Pu Xia, Xiaowei Zhang, Yuwei Xie, Miao Guan, Daniel L. Villeneuve, and Hongxia Yu . Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening. Environmental Science & Technology 2016, 50 (19) , 10682-10692. https://doi.org/10.1021/acs.est.6b02328
    7. Pola Wojnarowicz, Olumuyiwa O. Ogunlaja, Chen Xia, Wayne J. Parker, and Caren C. Helbing . Impact of Wastewater Treatment Configuration and Seasonal Conditions on Thyroid Hormone Disruption and Stress Effects in Rana catesbeiana Tailfin. Environmental Science & Technology 2013, 47 (23) , 13840-13847. https://doi.org/10.1021/es403767y
    8. Erika B. Fritsch, Richard E. Connon, Inge Werner, Rebecca E. Davies, Sebastian Beggel, Wei Feng, and Isaac N. Pessah . Triclosan Impairs Swimming Behavior and Alters Expression of Excitation-Contraction Coupling Proteins in Fathead Minnow (Pimephales promelas). Environmental Science & Technology 2013, 47 (4) , 2008-2017. https://doi.org/10.1021/es303790b
    9. Paul DeLeo, Ph.D. , Sascha Pawlowski, Ph.D. , Charles Barton, Ph.D., DABT , Douglas J. Fort, Ph.D. . Comment on “Effects of Triclocarban, Triclosan, and Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems”. Environmental Science & Technology 2011, 45 (23) , 10283-10284. https://doi.org/10.1021/es202937q
    10. Caren C. Helbing, Ashley Hinther, Jeremy E. Wulff, Caleb M. Bromba, and Nik Veldhoen . Reply to 2nd Comment on “Effects of Triclocarban, Triclosan, And Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems”. Environmental Science & Technology 2011, 45 (23) , 10285-10287. https://doi.org/10.1021/es203357w
    11. Douglas J. Fort , Michael Mathis , Sascha Pawlowski . Comment on “Effects of Triclocarban, Triclosan, And Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems”. Environmental Science & Technology 2011, 45 (17) , 7602-7602. https://doi.org/10.1021/es2021582
    12. Caren C. Helbing, Ph.D. , Jeremy E. Wulff, Ph.D. , Caleb M. Bromba , Ashley Hinther, M.Sc. , Nik Veldhoen, Ph.D. . Reply to Comment on “Effects of Triclocarban, Triclosan, And Methyl Triclosan on Thyroid Hormone Action and Stress in Frog and Mammalian Culture Systems”. Environmental Science & Technology 2011, 45 (17) , 7600-7601. https://doi.org/10.1021/es202358r
    13. Jessica M. McCormick, Theo Van Es, Keith R. Cooper, Lori A. White, and Max M. Häggblom . Microbially Mediated O-Methylation of Bisphenol a Results in Metabolites with Increased Toxicity to the Developing Zebrafish (Danio rerio) Embryo. Environmental Science & Technology 2011, 45 (15) , 6567-6574. https://doi.org/10.1021/es200588w
    14. Peisi Xie, Jing Chen, Akang Dan, Zian Lin, Yu He, Zongwei Cai. Long-term exposure to triclocarban induces splenic injuries in mice: Insights from spatial metabolomics and lipidomics. Journal of Hazardous Materials 2024, 480 , 136370. https://doi.org/10.1016/j.jhazmat.2024.136370
    15. Tiago Azevedo, Mariana Gonçalves, Rita Silva-Reis, Beatriz Medeiros-Fonseca, Marta Roboredo, João R. Sousa, Paula A. Oliveira, Maria de Lurdes Pinto, Francisco Peixoto, Isabel Gaivão, Manuela Matos, Ana M. Coimbra. Do endocrine disrupting compounds impact earthworms? A comprehensive evidence review. Reviews in Environmental Science and Bio/Technology 2024, 23 (3) , 633-677. https://doi.org/10.1007/s11157-024-09698-z
    16. Qian Song, Chengchen Hu, Xueying Zhang, Pengweilin Ji, Yansong Li, Hanyong Peng, Yuxin Zheng, Hongna Zhang. Integrated multi-omics approaches reveal the neurotoxicity of triclocarban in mouse brain. Environment International 2024, 191 , 108987. https://doi.org/10.1016/j.envint.2024.108987
    17. Xiaowen Cheng, Hongzhi Shen, Wen Zhang, Biao Chen, Shengmin Xu, Lijun Wu. Characterizing the Effects of Triclosan and Triclocarban on the Intestinal Epithelial Homeostasis using Small Intestinal Organoids. Journal of Hazardous Materials 2024, 22 , 135734. https://doi.org/10.1016/j.jhazmat.2024.135734
    18. Ruchika Sah, Gautam Talukdar, Megha Khanduri, Pooja Chaudhary, Ruchi Badola, Syed Ainul Hussain. Do dietary exposures to multi-class endocrine disrupting chemicals translate into health risks for Gangetic dolphins? An assessment and way forward. Heliyon 2024, 10 (15) , e35130. https://doi.org/10.1016/j.heliyon.2024.e35130
    19. , , , , . Amphibian conservation action plan: A status review and roadmap for global amphibian conservation. 2024https://doi.org/10.2305/QWVH2717
    20. Peisi Xie, Jing Chen, Yongjun Xia, Zian Lin, Yu He, Zongwei Cai. Spatial metabolomics reveal metabolic alternations in the injured mice kidneys induced by triclocarban treatment. Journal of Pharmaceutical Analysis 2024, 787 , 101024. https://doi.org/10.1016/j.jpha.2024.101024
    21. Tyrone Lucon-Xiccato, Beste Başak Savaşçı, Carmine Merola, Elisabetta Benedetti, Giulia Caioni, Valbona Aliko, Cristiano Bertolucci, Monia Perugini. Environmentally relevant concentrations of triclocarban affect behaviour, learning, and brain gene expression in fish. Science of The Total Environment 2023, 903 , 166717. https://doi.org/10.1016/j.scitotenv.2023.166717
    22. Mehak Dagar, Priya Kumari, Agha Muhammad Wali Mirza, Shivani Singh, Noor U Ain, Zainab Munir, Tamleel Javed, Muhammad Furqan Ismat Virk, Saleha Javed, Farwa Haider Qizilbash, Anil KC, Chukwuyem Ekhator, Sophia B Bellegarde. The Hidden Threat: Endocrine Disruptors and Their Impact on Insulin Resistance. Cureus 2023, 30 https://doi.org/10.7759/cureus.47282
    23. Dana L. Armstrong, Sarah J. Fischer, Robert Lupitskyy, Birthe V. Kjellerup, Clifford P. Rice, Mark Ramirez, Alba Torrents. Thermal Hydrolysis Pretreatment Effects on Endocrine Disrupting Compounds and Microbial Communities in Wastewater Sludge from Anaerobic Digestion. Environmental Engineering Science 2023, 40 (6) , 219-232. https://doi.org/10.1089/ees.2023.0006
    24. Giulia Caioni, Carmine Merola, Cristiano Bertolucci, Tyrone Lucon-Xiccato, Beste Başak Savaşçı, Mara Massimi, Martina Colasante, Giulia Fioravanti, Nunzio Antonio Cacciola, Rodolfo Ippoliti, Michele d’Angelo, Monia Perugini, Elisabetta Benedetti. Early-life exposure to environmentally relevant concentrations of triclocarban impairs ocular development in zebrafish larvae. Chemosphere 2023, 324 , 138348. https://doi.org/10.1016/j.chemosphere.2023.138348
    25. Tao Zhang, Zhiyi Niu, Jie He, Peng Pu, Fei Meng, Lu Xi, Xiaolong Tang, Li Ding, Miaojun Ma, Qiang Chen. Potential Effects of High Temperature and Heat Wave on Nanorana pleskei Based on Transcriptomic Analysis. Current Issues in Molecular Biology 2023, 45 (4) , 2937-2949. https://doi.org/10.3390/cimb45040192
    26. Diana Lin, Coreen Hamilton, James Hobbs, Ezra Miller, Rebecca Sutton. Triclosan and Methyl Triclosan in Prey Fish in a Wastewater-Influenced Estuary. Environmental Toxicology and Chemistry 2023, 42 (3) , 620-627. https://doi.org/10.1002/etc.5557
    27. Pan-Pan Chen, Pan Yang, Chong Liu, Yan-Ling Deng, Qiong Luo, Yu Miao, Min Zhang, Fei-Peng Cui, Jia-Yue Zeng, Tian Shi, Ting-Ting Lu, Da Chen, Long-Qiang Wang, Chun-Ping Liu, Ming Jiang, Qiang Zeng. Urinary concentrations of phenols, oxidative stress biomarkers and thyroid cancer: Exploring associations and mediation effects. Journal of Environmental Sciences 2022, 120 , 30-40. https://doi.org/10.1016/j.jes.2022.01.009
    28. Inés Aguilar-Romero, Pieter van Dillewijn, Joseph Nesme, Søren J. Sørensen, Rogelio Nogales, Laura Delgado-Moreno, Esperanza Romero. A novel and affordable bioaugmentation strategy with microbial extracts to accelerate the biodegradation of emerging contaminants in different media. Science of The Total Environment 2022, 834 , 155234. https://doi.org/10.1016/j.scitotenv.2022.155234
    29. Azeezah Amigun Taiwo, Saheed Mustapha, Tijani Jimoh Oladejo, Adekola Folahan Amoo, Rabi Elabor. Occurrence, effects, detection, and photodegradation of triclosan and triclocarban in the environment: a review. International Journal of Environmental Analytical Chemistry 2022, 27 , 1-19. https://doi.org/10.1080/03067319.2022.2106860
    30. Ning Tang, Pianpian Fan, Li Chen, Xiaogang Yu, Wenjuan Wang, Weiye Wang, Fengxiu Ouyang. The Effect of Early Life Exposure to Triclosan on Thyroid Follicles and Hormone Levels in Zebrafish. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.850231
    31. Habibeh Nasab, Saeed Rajabi, Moghaddameh Mirzaee, Majid Hashemi. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). Environmental Science and Pollution Research 2022, 29 (20) , 30754-30763. https://doi.org/10.1007/s11356-021-18466-3
    32. Xianping Wei, Yu Hu, Qingqing Zhu, Jia Gao, Chunyang Liao, Guibin Jiang. Co-exposure and health risks of several typical endocrine disrupting chemicals in general population in eastern China. Environmental Research 2022, 204 , 112366. https://doi.org/10.1016/j.envres.2021.112366
    33. Mercedes de la Fuente, Raquel Martín Folgar, Pedro Martínez-Paz, Estrella Cortés, José Luis Martínez-Guitarte, Mónica Morales. Effect of environmental stressors on the mRNA expression of ecdysone cascade genes in Chironomus riparius. Environmental Science and Pollution Research 2022, 29 (7) , 10210-10221. https://doi.org/10.1007/s11356-021-16339-3
    34. Hudda Khaleeq Khan, Muhammad Yasir Abdur Rehman, Muhammad Junaid, Ming Lv, Linxia Yue, Ihsan-ul Haq, Nan Xu, Riffat Naseem Malik. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. Science of The Total Environment 2022, 807 , 151010. https://doi.org/10.1016/j.scitotenv.2021.151010
    35. Carmine Merola, Anton Vremere, Federico Fanti, Annamaria Iannetta, Giulia Caioni, Manuel Sergi, Dario Compagnone, Stefano Lorenzetti, Monia Perugini, Michele Amorena. Oxysterols Profile in Zebrafish Embryos Exposed to Triclocarban and Propylparaben—A Preliminary Study. International Journal of Environmental Research and Public Health 2022, 19 (3) , 1264. https://doi.org/10.3390/ijerph19031264
    36. Jessica Phillips, Alex S. Haimbaugh, Camille Akemann, Jeremiah N. Shields, Chia-Chen Wu, Danielle N. Meyer, Bridget B. Baker, Zoha Siddiqua, David K. Pitts, Tracie R. Baker. Developmental Phenotypic and Transcriptomic Effects of Exposure to Nanomolar Levels of 4-Nonylphenol, Triclosan, and Triclocarban in Zebrafish (Danio rerio). Toxics 2022, 10 (2) , 53. https://doi.org/10.3390/toxics10020053
    37. Georgeta Ramona Ivan, Ion Ion, Luiza Capra, Alina Catrinel Ion. EFFECTS OF PH, TEMPERATURE, IONIC STRENGTH AND ORGANIC MATTER ON TRICLOCARBAN SOLUBILITY. Journal of Environmental Engineering and Landscape Management 2021, 29 (3) , 244-250. https://doi.org/10.3846/jeelm.2021.14638
    38. Guodi Zheng, Bao Yu, Yuewei Wang, Chuang Ma, Tongbin Chen. Fate and biodegradation characteristics of triclocarban in wastewater treatment plants and sewage sludge composting processes and risk assessment after entering the ecological environment. Journal of Hazardous Materials 2021, 412 , 125270. https://doi.org/10.1016/j.jhazmat.2021.125270
    39. Cheng Sheng, Shenghu Zhang, Yan Zhang. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. Journal of Hazardous Materials 2021, 402 , 123733. https://doi.org/10.1016/j.jhazmat.2020.123733
    40. Timothy Abbott, Gokce Kor-Bicakci, Mohammad S. Islam, Cigdem Eskicioglu. A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. International Journal of Molecular Sciences 2020, 21 (23) , 9241. https://doi.org/10.3390/ijms21239241
    41. Haixia Yang, Katherine Z. Sanidad, Weicang Wang, Minhao Xie, Min Gu, Xiaoqiong Cao, Hang Xiao, Guodong Zhang. Triclocarban exposure exaggerates colitis and colon tumorigenesis: roles of gut microbiota involved. Gut Microbes 2020, 12 (1) , 1690364. https://doi.org/10.1080/19490976.2019.1690364
    42. Manyuan Dong, Peihong Yuan, Yuchen Song, Hehua Lei, Gui Chen, Xuehang Zhu, Fang Wu, Chuan Chen, Caixiang Liu, Zunji Shi, Limin Zhang. In vitro effects of Triclocarban on adipogenesis in murine preadipocyte and human hepatocyte. Journal of Hazardous Materials 2020, 399 , 122829. https://doi.org/10.1016/j.jhazmat.2020.122829
    43. Nathália Orlandini Costa, Simone Forcato, Andreza Manzato Cavichioli, Marina Rangel Ferro Pereira, Daniela Cristina Ceccatto Gerardin. In utero and lactational exposure to triclocarban: Age-associated changes in reproductive parameters of male rat offspring. Toxicology and Applied Pharmacology 2020, 401 , 115077. https://doi.org/10.1016/j.taap.2020.115077
    44. Hongna Zhang, Yao Lu, Yanshan Liang, Lilong Jiang, Zongwei Cai. Triclocarban-induced responses of endogenous and xenobiotic metabolism in human hepatic cells: Toxicity assessment based on nontargeted metabolomics approach. Journal of Hazardous Materials 2020, 392 , 122475. https://doi.org/10.1016/j.jhazmat.2020.122475
    45. Lihua Yang, Jinmiao Zha, Yongyong Guo, Bingsheng Zhou. Evaluation and mechanistic study of chlordecone-induced thyroid disruption: Based on in vivo, in vitro and in silico assays. Science of The Total Environment 2020, 716 , 136987. https://doi.org/10.1016/j.scitotenv.2020.136987
    46. Xiao Dong Wang, Yi Chen Lu, Xiao Hui Xiong, Yi Yuan, Li Xia Lu, Yuan Jian Liu, Jia Hao Mao, Wei Wei Xiao. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Environmental Science and Pollution Research 2020, 27 (10) , 11246-11259. https://doi.org/10.1007/s11356-020-07704-9
    47. Xin Xie, Congying Lu, Min Wu, Jiayu Liang, Yuting Ying, Kailiang Liu, Xiuxia Huang, Shaoling Zheng, Xiuben Du, Dandan Liu, Zihao Wen, Guang Hao, Guang Yang, Liping Feng, Chunxia Jing. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013–2014). Environment International 2020, 136 , 105445. https://doi.org/10.1016/j.envint.2019.105445
    48. Minhao Xie, Hongna Zhang, Weicang Wang, Heather L Sherman, Lisa M Minter, Zongwei Cai, Guodong Zhang. Triclocarban Exposure Exaggerates Spontaneous Colonic Inflammation in Il-10−/− Mice. Toxicological Sciences 2020, 174 (1) , 92-99. https://doi.org/10.1093/toxsci/kfz248
    49. Jing Fu, Yue Xuan Rochelle Tan, Zhiyuan Gong, Sungwoo Bae. The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos. Ecotoxicology and Environmental Safety 2020, 189 , 110039. https://doi.org/10.1016/j.ecoenv.2019.110039
    50. Yun Wang, Guoliang Li, Qingqing Zhu, Chunyang Liao. A multi-residue method for determination of 36 endocrine disrupting chemicals in human serum with a simple extraction procedure in combination of UPLC-MS/MS analysis. Talanta 2019, 205 , 120144. https://doi.org/10.1016/j.talanta.2019.120144
    51. Francesca Simoncelli, Livia Lucentini, Gianandrea La Porta, Silvia Belia, Ines Di Rosa, Anna Fagotti. Small heat shock proteins in the amphibian Pelophylax bergeri: Cloning and characterization of Hsp27 and Hsp30 cDNAs and their expression analysis in ex vivo skin exposed to abiotic stresses. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2019, 235 , 90-101. https://doi.org/10.1016/j.cbpa.2019.05.022
    52. Krishnamoorthi Vimalkumar, Sangeetha Seethappan, Arivalagan Pugazhendhi. Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. Chemosphere 2019, 230 , 201-209. https://doi.org/10.1016/j.chemosphere.2019.04.145
    53. Vanh Phonsiri, Samuel Choi, Canh Nguyen, Yu-Li Tsai, Ron Coss, Sudarshan Kurwadkar. Monitoring occurrence and removal of selected pharmaceuticals in two different wastewater treatment plants. SN Applied Sciences 2019, 1 (7) https://doi.org/10.1007/s42452-019-0774-z
    54. Anita A. Thambirajah, Emily M. Koide, Jacob J. Imbery, Caren C. Helbing. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Frontiers in Endocrinology 2019, 10 https://doi.org/10.3389/fendo.2019.00276
    55. M. Kajta, A. Wnuk, J. Rzemieniec, W. Lason, M. Mackowiak, E. Chwastek, M. Staniszewska, I. Nehring, A. K. Wojtowicz. Triclocarban Disrupts the Epigenetic Status of Neuronal Cells and Induces AHR/CAR-Mediated Apoptosis. Molecular Neurobiology 2019, 56 (5) , 3113-3131. https://doi.org/10.1007/s12035-018-1285-4
    56. Anele Mpupa, Geaneth P. Mashile, Philiswa N. Nomngongo. Ultrasound-assisted dispersive solid phase nanoextraction of selected personal care products in wastewater followed by their determination using high performance liquid chromatography-diode array detector. Journal of Hazardous Materials 2019, 370 , 33-41. https://doi.org/10.1016/j.jhazmat.2018.08.049
    57. Andrew Cameron, Ruth Barbieri, Ron Read, Deirdre Church, Emelia H. Adator, Rahat Zaheer, Tim A. McAllister, . Functional screening for triclosan resistance in a wastewater metagenome and isolates of Escherichia coli and Enterococcus spp. from a large Canadian healthcare region. PLOS ONE 2019, 14 (1) , e0211144. https://doi.org/10.1371/journal.pone.0211144
    58. Lu Wang, Boyu Mao, Huixin He, Yu Shang, Yufang Zhong, Zhiqiang Yu, Yiting Yang, Hui Li, Jing An. Comparison of hepatotoxicity and mechanisms induced by triclosan (TCS) and methyl-triclosan (MTCS) in human liver hepatocellular HepG2 cells. Toxicology Research 2019, 8 (1) , 38-45. https://doi.org/10.1039/C8TX00199E
    59. Mengbi Wei, Xianhai Yang, Peter Watson, Feifei Yang, Huihui Liu. A cyclodextrin polymer membrane-based passive sampler for measuring triclocarban, triclosan and methyl triclosan in rivers. Science of The Total Environment 2019, 648 , 109-115. https://doi.org/10.1016/j.scitotenv.2018.08.151
    60. Vienvilay Phandanouvong-Lozano, Wen Sun, Jennie M. Sanders, Anthony G. Hay. Biochar does not attenuate triclosan's impact on soil bacterial communities. Chemosphere 2018, 213 , 215-225. https://doi.org/10.1016/j.chemosphere.2018.08.132
    61. Wentao Li, Wenpeng Zhang, Mengyang Chang, Juan Ren, Wenping Xie, Huiming Chen, Zhenqing Zhang, Xiaomei Zhuang, Guolin Shen, Haishan Li. Metabonomics reveals that triclocarban affects liver metabolism by affecting glucose metabolism, β-oxidation of fatty acids, and the TCA cycle in male mice. Toxicology Letters 2018, 299 , 76-85. https://doi.org/10.1016/j.toxlet.2018.09.011
    62. Muhammad Ashfaq, Yan Li, Yuwen Wang, Dan Qin, Muhammad Saif Ur Rehman, Azhar Rashid, Chang-Ping Yu, Qian Sun. Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China. Chemosphere 2018, 204 , 170-177. https://doi.org/10.1016/j.chemosphere.2018.04.028
    63. Krishnamoorthi Vimalkumar, Elaiyaraja Arun, Selvaraj Krishna-Kumar, Rama Krishnan Poopal, Nishikant Patil Nikhil, Annamalai Subramanian, Ramaswamy Babu-Rajendran. Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers. Science of The Total Environment 2018, 625 , 1351-1360. https://doi.org/10.1016/j.scitotenv.2018.01.042
    64. Christophe Regnault, Marie Usal, Sylvie Veyrenc, Karine Couturier, Cécile Batandier, Anne-Laure Bulteau, David Lejon, Alexandre Sapin, Bruno Combourieu, Maud Chetiveaux, Cédric Le May, Thomas Lafond, Muriel Raveton, Stéphane Reynaud. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proceedings of the National Academy of Sciences 2018, 115 (19) https://doi.org/10.1073/pnas.1721267115
    65. Pedro Martínez-Paz. Response of detoxification system genes on Chironomus riparius aquatic larvae after antibacterial agent triclosan exposures. Science of The Total Environment 2018, 624 , 1-8. https://doi.org/10.1016/j.scitotenv.2017.12.107
    66. Chenguang Li, Ruijuan Qu, Jing Chen, Shuo Zhang, Ahmed A. Allam, Jamaan Ajarem, Zunyao Wang. The pH-dependent toxicity of triclosan to five aquatic organisms (Daphnia magna, Photobacterium phosphoreum, Danio rerio, Limnodrilus hoffmeisteri, and Carassius auratus). Environmental Science and Pollution Research 2018, 25 (10) , 9636-9646. https://doi.org/10.1007/s11356-018-1284-z
    67. Rachel Clarke, Mark G. Healy, Owen Fenton, Enda Cummins. Quantitative risk assessment of antimicrobials in biosolids applied on agricultural land and potential translocation into food. Food Research International 2018, 106 , 1049-1060. https://doi.org/10.1016/j.foodres.2017.12.072
    68. Xing Dong, Hai Xu, Xiangyang Wu, Liuqing Yang. Multiple bioanalytical method to reveal developmental biological responses in zebrafish embryos exposed to triclocarban. Chemosphere 2018, 193 , 251-258. https://doi.org/10.1016/j.chemosphere.2017.11.033
    69. Fan Wang, Fei Liu, Wanguang Chen, Ruijie Xu, Wei Wang. Effects of triclosan (TCS) on hormonal balance and genes of hypothalamus-pituitary- gonad axis of juvenile male Yellow River carp (Cyprinus carpio). Chemosphere 2018, 193 , 695-701. https://doi.org/10.1016/j.chemosphere.2017.11.088
    70. Dana L. Armstrong, Nuria Lozano, Clifford P. Rice, Mark Ramirez, Alba Torrents. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors. Environmental Research 2018, 161 , 17-25. https://doi.org/10.1016/j.envres.2017.10.048
    71. Nuria Lozano, Clifford P. Rice, Mark Ramirez, Alba Torrents. Fate of triclocarban in agricultural soils after biosolid applications. Environmental Science and Pollution Research 2018, 25 (1) , 222-232. https://doi.org/10.1007/s11356-017-0433-0
    72. Raisibe F. Lehutso, Adegbenro P. Daso, Jonathan O. Okonkwo. Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerging Contaminants 2017, 3 (3) , 107-114. https://doi.org/10.1016/j.emcon.2017.07.001
    73. Catherine Ley, Lauren Pischel, Julie Parsonnet. Triclosan and triclocarban exposure and thyroid function during pregnancy—A randomized intervention. Reproductive Toxicology 2017, 74 , 143-149. https://doi.org/10.1016/j.reprotox.2017.09.005
    74. Lisa M. Weatherly, Julie A. Gosse. Triclosan exposure, transformation, and human health effects. Journal of Toxicology and Environmental Health, Part B 2017, 20 (8) , 447-469. https://doi.org/10.1080/10937404.2017.1399306
    75. Xu Hua, Xin-Yuan Cao, Xiao-Li Wang, Peng Sun, Ling Chen. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction. Toxicological Sciences 2017, 160 (1) , 150-160. https://doi.org/10.1093/toxsci/kfx166
    76. Zhou Zhou, Jie Yang, King Ming Chan. Toxic effects of triclosan on a zebrafish (Danio rerio) liver cell line, ZFL. Aquatic Toxicology 2017, 191 , 175-188. https://doi.org/10.1016/j.aquatox.2017.08.009
    77. Jennifer Lyndall, Timothy Barber, Wendy Mahaney, Michael Bock, Marie Capdevielle. Evaluation of triclosan in Minnesota lakes and rivers: Part I – ecological risk assessment. Ecotoxicology and Environmental Safety 2017, 142 , 578-587. https://doi.org/10.1016/j.ecoenv.2017.04.049
    78. Suéllen Satyro, Enrico Mendes Saggioro, Fábio Veríssimo, Daniel Forsin Buss, Danielly de Paiva Magalhães, Anabela Oliveira. Triclocarban: UV photolysis, wastewater disinfection, and ecotoxicity assessment using molecular biomarkers. Environmental Science and Pollution Research 2017, 24 (19) , 16077-16085. https://doi.org/10.1007/s11356-017-9165-4
    79. Paul M. Bradley, William A. Battaglin, Jimmy M. Clark, Frank P. Henning, Michelle L. Hladik, Luke R. Iwanowicz, Celeste A. Journey, Jeffrey W. Riley, Kristin M. Romanok. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA. Environmental Toxicology and Chemistry 2017, 36 (11) , 3045-3056. https://doi.org/10.1002/etc.3873
    80. Pedro Martínez-Paz, Mónica Morales, Josune Urien, Gloria Morcillo, José Luis Martínez-Guitarte. Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae. Ecotoxicology and Environmental Safety 2017, 140 , 185-190. https://doi.org/10.1016/j.ecoenv.2017.02.047
    81. Ellen Mihaich, Marie Capdevielle, Daniella Urbach-Ross, Brian Slezak. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan. Critical Reviews in Toxicology 2017, 47 (4) , 263-285. https://doi.org/10.1080/10408444.2016.1269722
    82. Dana L. Armstrong, Clifford P. Rice, Mark Ramirez, Alba Torrents. Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of triclosan, triclocarban, and their transformation products in biosolids. Chemosphere 2017, 171 , 609-616. https://doi.org/10.1016/j.chemosphere.2016.12.122
    83. John J. Heikkila. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2017, 203 , 179-192. https://doi.org/10.1016/j.cbpa.2016.09.011
    84. Johanna R. Rochester, Ashley L. Bolden, Katherine E. Pelch, Carol F. Kwiatkowski. Potential Developmental and Reproductive Impacts of Triclocarban: A Scoping Review. Journal of Toxicology 2017, 2017 , 1-15. https://doi.org/10.1155/2017/9679738
    85. Alisha Saley, Megan Hess, Kelsey Miller, David Howard, Tisha C. King-Heiden. Cardiac Toxicity of Triclosan in Developing Zebrafish. Zebrafish 2016, 13 (5) , 399-404. https://doi.org/10.1089/zeb.2016.1257
    86. Bin Huang, Dan Xiong, Tingting Zhao, Huan He, Xuejun Pan. Adsorptive removal of PPCPs by biomorphic HAP templated from cotton. Water Science and Technology 2016, 74 (1) , 276-286. https://doi.org/10.2166/wst.2016.209
    87. Gerty J. H. P. Gielen, Andrew P. van Schaik, Grant Northcott, Jacqui Horswell. Effect of copper and zinc on microbial tolerance to triclosan in two soil types. Journal of Soils and Sediments 2016, 16 (7) , 1944-1959. https://doi.org/10.1007/s11368-016-1389-2
    88. Jeonghoon Han, Eun-Ji Won, Un-Ki Hwang, Il-Chan Kim, Joung Han Yim, Jae-Seong Lee. Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer ( Brachionus koreanus ). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2016, 185-186 , 131-137. https://doi.org/10.1016/j.cbpc.2016.04.002
    89. Yuanfeng Wu, Frederick A. Beland, Jia-Long Fang. Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicology in Vitro 2016, 32 , 310-319. https://doi.org/10.1016/j.tiv.2016.01.014
    90. Christopher G. Goodchild, Markus Frederich, Stephan I. Zeeman. Is altered behavior linked to cellular energy regulation in a freshwater mussel (Elliptio complanata) exposed to triclosan?. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2016, 179 , 150-157. https://doi.org/10.1016/j.cbpc.2015.10.008
    91. Deborah Molehin, Marloes Dekker Nitert, Kerry Richard. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism. Journal of Thyroid Research 2016, 2016 , 1-14. https://doi.org/10.1155/2016/8765049
    92. Nai-Sheng Zhang, You-sheng Liu, Paul J. Van den Brink, Oliver R. Price, Guang-Guo Ying. Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities. Ecotoxicology and Environmental Safety 2015, 122 , 417-425. https://doi.org/10.1016/j.ecoenv.2015.09.004
    93. Paul M. Bradley, William A. Battaglin, Luke R. Iwanowicz, Jimmy M. Clark, Celeste A. Journey. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA. Environmental Toxicology and Chemistry 2015, 35 (5) , 1087-1096. https://doi.org/10.1002/etc.3266
    94. Brittan A. Wilson, Alfred K. Addo-Mensah, Monica O. Mendez. In situ impacts of a flooding event on contaminant deposition and fate in a riparian ecosystem. Journal of Soils and Sediments 2015, 15 (11) , 2244-2256. https://doi.org/10.1007/s11368-015-1145-z
    95. Li Gao, Tao Yuan, Peng Cheng, Qifeng Bai, Chuanqi Zhou, Junjie Ao, Wenhua Wang, Haimou Zhang. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila. Chemosphere 2015, 139 , 434-440. https://doi.org/10.1016/j.chemosphere.2015.07.059
    96. Hui Zhang, Stéphane Bayen, Barry C. Kelly. Co-extraction and simultaneous determination of multi-class hydrophobic organic contaminants in marine sediments and biota using GC-EI-MS/MS and LC-ESI-MS/MS. Talanta 2015, 143 , 7-18. https://doi.org/10.1016/j.talanta.2015.04.084
    97. S. Austin Hammond, Nik Veldhoen, Caren C. Helbing. Influence of temperature on thyroid hormone signaling and endocrine disruptor action in Rana (Lithobates) catesbeiana tadpoles. General and Comparative Endocrinology 2015, 219 , 6-15. https://doi.org/10.1016/j.ygcen.2014.12.001
    98. Reynaldo Patiño, Matthew M. VanLandeghem, Steven L. Goodbred, Erik Orsak, Jill A. Jenkins, Kathy Echols, Michael R. Rosen, Leticia Torres. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA. General and Comparative Endocrinology 2015, 219 , 112-124. https://doi.org/10.1016/j.ygcen.2014.12.013
    99. P. Li, X. Liu, X. Wang. Improved SPE-UPLC-UV-based method for the simultaneous determination of triclocarban and triclosan in wastewater. Acta Chromatographica 2015, 27 (2) , 255-266. https://doi.org/10.1556/AChrom.27.2015.2.4
    100. Shi-Ling Ding, Xi-Kui Wang, Wen-Qiang Jiang, Ru-Song Zhao, Ting-Ting Shen, Chen Wang, Xia Wang. Influence of pH, inorganic anions, and dissolved organic matter on the photolysis of antimicrobial triclocarban in aqueous systems under simulated sunlight irradiation. Environmental Science and Pollution Research 2015, 22 (7) , 5204-5211. https://doi.org/10.1007/s11356-014-3686-x
    Load all citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2011, 45, 12, 5395–5402
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es1041942
    Published May 16, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2477

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.