ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Multimodal Action and Selective Toxicity of Zerovalent Iron Nanoparticles against Cyanobacteria

View Author Information
Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, 657 20 Brno, Czech Republic
‡ § Centre for Nanomaterial Research, Faculty of Science, and §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic
*Phone: +420585634947; fax: +420585634958; e-mail: [email protected]
Cite this: Environ. Sci. Technol. 2012, 46, 4, 2316–2323
Publication Date (Web):January 11, 2012
https://doi.org/10.1021/es2031483
Copyright © 2012 American Chemical Society

    Article Views

    2181

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Cyanobacteria pose a serious threat to water resources around the world. This is compounded by the fact that they are extremely resilient, having evolved numerous protective mechanisms to ensure their dominant position in their ecosystem. We show that treatment with nanoparticles of zerovalent iron (nZVI) is an effective and environmentally benign method for destroying and preventing the formation of cyanobacterial water blooms. The nanoparticles have multiple modes of action, including the removal of bioavailable phosphorus, the destruction of cyanobacterial cells, and the immobilization of microcystins, preventing their release into the water column. Ecotoxicological experiments showed that nZVI is a highly selective agent, having an EC50 of 50 mg/L against cyanobacteria; this is 20–100 times lower than its EC50 for algae, daphnids, water plants, and fishes. The primary product of nZVI treatment is nontoxic and highly aggregated Fe(OH)3, which promotes flocculation and gradual settling of the decomposed cyanobacterial biomass.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional material on the physicochemical characterization of the used nZVI sample (X-ray powder diffraction pattern, particle size distribution, room-temperature Mössbauer spectrum, nitrogen adsorption/desorption isotherms) and X-ray powder diffraction pattern of the nZVI sample after the reaction with KH2PO4 as an evidence for formation of iron(III) phosphate. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 108 publications.

    1. Srivatsan Mohana Rangan, Shefali Rao, Aide Robles, Aatikah Mouti, Laurie LaPat-Polasko, Gregory V. Lowry, Rosa Krajmalnik-Brown, Anca G. Delgado. Decoupling Fe0 Application and Bioaugmentation in Space and Time Enables Microbial Reductive Dechlorination of Trichloroethene to Ethene: Evidence from Soil Columns. Environmental Science & Technology 2023, 57 (10) , 4167-4179. https://doi.org/10.1021/acs.est.2c06433
    2. Arivarasan Vishnu Kirthi, Gaurav Kumar, Gaurav Pant, Manu Pant, Kaizar Hossain, Akil Ahmad, Mohammed B. Alshammari. Toxicity of Nanoscaled Zero-Valent Iron Particles on Tilapia, Oreochromis mossambicus. ACS Omega 2022, 7 (51) , 47869-47879. https://doi.org/10.1021/acsomega.2c05696
    3. Walter K. Dodds. Release of Novel Chemicals into the Environment: Responsibilities of Authors, Reviewers, and Editors. Environmental Science & Technology 2019, 53 (24) , 14095-14096. https://doi.org/10.1021/acs.est.9b06734
    4. Giji Sadhasivam, Chen Gelber, Varda Zakin, Shlomo Margel, Orr H. Shapiro. N-Halamine Derivatized Nanoparticles with Selective Cyanocidal Activity: Potential for Targeted Elimination of Harmful Cyanobacterial Blooms. Environmental Science & Technology 2019, 53 (15) , 9160-9170. https://doi.org/10.1021/acs.est.9b01368
    5. Jiajia Fan, Yi-bo Hu, Xiao-yan Li. Nanoscale Zero-Valent Iron Coated with Magnesium Hydroxide for Effective Removal of Cyanobacteria from Water. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 15135-15142. https://doi.org/10.1021/acssuschemeng.8b03593
    6. Pavla Plachtová, Zdenka Medříková, Radek Zbořil, Jiří Tuček, Rajender S. Varma, Blahoslav Maršálek. Iron and Iron Oxide Nanoparticles Synthesized with Green Tea Extract: Differences in Ecotoxicological Profile and Ability To Degrade Malachite Green. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 8679-8687. https://doi.org/10.1021/acssuschemeng.8b00986
    7. Wei Xiong, Yiming Tang, Changyu Shao, Yueqi Zhao, Biao Jin, Tingting Huang, Ya’nan Miao, Lei Shu, Weimin Ma, Xurong Xu, and Ruikang Tang . Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy. Environmental Science & Technology 2017, 51 (21) , 12717-12726. https://doi.org/10.1021/acs.est.7b02985
    8. Jiří Tuček, Robert Prucek, Jan Kolařík, Giorgio Zoppellaro, Martin Petr, Jan Filip, Virender K. Sharma, and Radek Zbořil . Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry & Engineering 2017, 5 (4) , 3027-3038. https://doi.org/10.1021/acssuschemeng.6b02698
    9. Chris M. D. Kocur, Line Lomheim, Olivia Molenda, Kela P. Weber, Leanne M. Austrins, Brent E. Sleep, Hardiljeet K. Boparai, Elizabeth A. Edwards, and Denis M. O’Carroll . Long-Term Field Study of Microbial Community and Dechlorinating Activity Following Carboxymethyl Cellulose-Stabilized Nanoscale Zero-Valent Iron Injection. Environmental Science & Technology 2016, 50 (14) , 7658-7670. https://doi.org/10.1021/acs.est.6b01745
    10. Petr Slovák, Ondřej Malina, Josef Kašlík, Ondřej Tomanec, Jiří Tuček, Martin Petr, Jan Filip, Giorgio Zoppellaro, and Radek Zbořil . Zero-Valent Iron Nanoparticles with Unique Spherical 3D Architectures Encode Superior Efficiency in Copper Entrapment. ACS Sustainable Chemistry & Engineering 2016, 4 (5) , 2748-2753. https://doi.org/10.1021/acssuschemeng.6b00242
    11. Valeria V. Kleandrova, Feng Luan, Humberto González-Díaz, Juan M. Ruso, Alejandro Speck-Planche, and M. Natália D. S. Cordeiro . Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation Model for Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated Nanoparticles under Multiple Experimental Conditions. Environmental Science & Technology 2014, 48 (24) , 14686-14694. https://doi.org/10.1021/es503861x
    12. Zdenka Markova, Petr Novak, Josef Kaslik, Pavla Plachtova, Marketa Brazdova, Daniel Jancula, Karolina Machalova Siskova, Libor Machala, Blahos Marsalek, Radek Zboril, and Rajender Varma . Iron(II,III)–Polyphenol Complex Nanoparticles Derived from Green Tea with Remarkable Ecotoxicological Impact. ACS Sustainable Chemistry & Engineering 2014, 2 (7) , 1674-1680. https://doi.org/10.1021/sc5001435
    13. Jan Filip, František Karlický, Zdeněk Marušák, Petr Lazar, Miroslav Černík, Michal Otyepka, and Radek Zbořil . Anaerobic Reaction of Nanoscale Zerovalent Iron with Water: Mechanism and Kinetics. The Journal of Physical Chemistry C 2014, 118 (25) , 13817-13825. https://doi.org/10.1021/jp501846f
    14. Zdenka Marková, Karolı́na Machalová Šišková, Jan Filip, Jan Čuda, Milan Kolář, Klára Šafářová, Ivo Medřík, and Radek Zbořil . Air Stable Magnetic Bimetallic Fe–Ag Nanoparticles for Advanced Antimicrobial Treatment and Phosphorus Removal. Environmental Science & Technology 2013, 47 (10) , 5285-5293. https://doi.org/10.1021/es304693g
    15. Virender K. Sharma Karolina M. Siskova Radek Zboril . Magnetic Bimetallic Fe/Ag Nanoparticles: Decontamination and Antimicrobial Agents. 2013, 193-209. https://doi.org/10.1021/bk-2013-1150.ch011
    16. A. D'ors, A. Sánchez-Fortún, A.A. Cortés-Téllez, C. Fajardo, G. Mengs, M. Nande, C. Martín, G. Costa, M. Martín, M.C. Bartolomé, S. Sánchez-Fortún. Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. Chemosphere 2023, 339 , 139710. https://doi.org/10.1016/j.chemosphere.2023.139710
    17. Cheryl S.Y. Yeap, Nhung H.A. Nguyen, Roman Spanek, Chin Chin Too, Vladimir Benes, Jan Provaznik, Miroslav Cernik, Alena Sevcu. Dissolved iron released from nanoscale zero-valent iron (nZVI) activates the defense system in bacterium Pseudomonas putida, leading to high tolerance to oxidative stress. Journal of Hazardous Materials 2022, 439 , 129627. https://doi.org/10.1016/j.jhazmat.2022.129627
    18. Suzana Ivandic, Sergio I.P. Bakovic, Wen Zhang, Lauren F. Greenlee. An in-situ approach to cyanobacterial harmful algal blooms degradation of microcystin-LR cyanotoxins using TiO2 photocatalysts coated on nylon mesh supports. Journal of Environmental Chemical Engineering 2022, 10 (5) , 108301. https://doi.org/10.1016/j.jece.2022.108301
    19. Sohaib Z. Khan, Asad A. Zaidi, Muhammad Nihal Naseer, Hamad AlMohamadi. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.868454
    20. Yun Kong, Lipeng Ji, Yue Wang, Jiake Li, Hao Lu, Shuhong Mo, Xianxun Wang, Liang Zhu, Xiangyang Xu, Xing Zheng. Combined Effect of NZVI and H2O2 on the Cyanobacterium Microcystis aeruginosa: Performance and Mechanism. Nanomaterials 2022, 12 (17) , 3017. https://doi.org/10.3390/nano12173017
    21. Shijing Zhang, Kexin Yi, Anwei Chen, Jihai Shao, Liang Peng, Si Luo. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. Ecotoxicology 2022, 31 (6) , 873-883. https://doi.org/10.1007/s10646-022-02565-z
    22. Hany M. Abdel-Lateef, Mai M. Khalaf, Alaa El-Dien Al-Fengary, Mahmoud Elrouby. Enhanced Nitrate Ions Remediation Using Fe0 Nanoparticles from Underground Water: Synthesis, Characterizations, and Performance under Optimizing Conditions. Materials 2022, 15 (14) , 5040. https://doi.org/10.3390/ma15145040
    23. Yangyang Yang, Xiulei Fan, Jiankun Zhang, Shuyun Qiao, Xun Wang, Xueyang Zhang, Lingzhan Miao, Jun Hou. A critical review on the interaction of iron-based nanoparticles with blue-green algae and their metabolites: From mechanisms to applications. Algal Research 2022, 64 , 102670. https://doi.org/10.1016/j.algal.2022.102670
    24. Yiling Li, Zhengtao Xu, Wen-Xiong Wang. Effective flocculation of harmful algae Microcystis aeruginosa by nanoscale metal–organic framework NH2-MIL-101(Cr). Chemical Engineering Journal 2022, 433 , 134584. https://doi.org/10.1016/j.cej.2022.134584
    25. Jun Wang, Guoming Zeng, Fei Wang, Xin Huang, Yan Li, Dong Liang, Maolan Zhang, Da Sun. Study on the Algae Lysis Method of White Rot Fungi Algae Control System. Water 2022, 14 (6) , 903. https://doi.org/10.3390/w14060903
    26. Ayesha Kanwal, Zeeshan Ahmad Bhutta, Ambreen Ashar, Ashar Mahfooz, Rizwan Ahmed, Muhammad Fakhar-e-Alam Kulyar, Kun Li. Antimicrobial Applications of Nanoparticles. 2022, 269-288. https://doi.org/10.4018/978-1-7998-8936-6.ch012
    27. Puneet Kumar Singh, Slipa Kanungo, Snehasish Mishra, Ritesh Pattnaik. Intrinsic Insights of Nanoparticles via Anaerobic Digestion for Enhanced Biogas Production. 2022, 2481-2506. https://doi.org/10.1007/978-3-030-84205-5_119
    28. Yuanxu Song, Liangfeng Duan, Kaifeng Du, Chao Song, Shan Zhao, Xianzheng Yuan, Shuguang Wang, Zhen Yan. Nano zero-valent iron harms methanogenic archaea by interfering with energy conservation and methanogenesis. Environmental Science: Nano 2021, 8 (12) , 3643-3654. https://doi.org/10.1039/D1EN00621E
    29. Pauline Lanet, Véronique Deluchat, Michel Baudu. Relevant design parameters for a reactor used in P removal with ZVI-based materials. Journal of Industrial and Engineering Chemistry 2021, 104 , 8-21. https://doi.org/10.1016/j.jiec.2021.08.005
    30. Ana S. Moura, M. Natália D. S. Cordeiro. Aiming High versus Aiming All. 2021, 167-179. https://doi.org/10.1002/9781119681397.ch9
    31. Rong Cheng, Ya-ping Liu, Yi-hui Chen, Liang-jie Shen, Jiao-jiao Wu, Lei Shi, Xiang Zheng. Combined effect of nanoscale zero-valent iron and linear alkylbenzene sulfonate (LAS) to the freshwater algae Scenedesmus obliquus. Ecotoxicology 2021, 30 (7) , 1366-1375. https://doi.org/10.1007/s10646-020-02294-1
    32. Chengxin Niu, Teng Cai, Xueqin Lu, Guangyin Zhen, Yang Pan, Xuan Ren, Xi Qin, Wanjiang Li, Yingxiang Tang, Zhongxiang Zhi. Nano zero-valent iron regulates the enrichment of organics-degrading and hydrogenotrophic microbes to stimulate methane bioconversion of waste activated sludge. Chemical Engineering Journal 2021, 418 , 129511. https://doi.org/10.1016/j.cej.2021.129511
    33. E. Borràs, M. Aliaguilla, N. Bossa, S. Martinez-Crespiera, L. Huidobro, R. Schweiss, A. Schwenke, P. Bosch-Jimenez. Nanomaterials-based air-cathodes use in microbial desalination cells for drinking water production: Synthesis, performance and release assessment. Journal of Environmental Chemical Engineering 2021, 9 (4) , 105779. https://doi.org/10.1016/j.jece.2021.105779
    34. Xiaowen Zhu, Edgar Blanco, Manni Bhatti, Aiduan Borrion. Impact of metallic nanoparticles on anaerobic digestion: A systematic review. Science of The Total Environment 2021, 757 , 143747. https://doi.org/10.1016/j.scitotenv.2020.143747
    35. Puneet Kumar Singh, Slipa Kanungo, Snehasish Mishra, Ritesh Pattnaik. Intrinsic Insights of Nanoparticles Via Anaerobic Digestion for Enhanced Biogas Production. 2021, 1-26. https://doi.org/10.1007/978-3-030-58675-1_119-1
    36. Moumita Majumdar, Shamim Ahmed Khan, Nishithendu Bikash Nandi, Shaktibrata Roy, Anindya Sundar Panja, Dijendra Nath Roy, Tarun Kumar Misra. Green Synthesis of Iron Nanoparticles for Investigation of Biofilm Inhibition Property. ChemistrySelect 2020, 5 (43) , 13575-13583. https://doi.org/10.1002/slct.202003033
    37. Tian Tian, Han-Qing Yu. Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnology Advances 2020, 44 , 107610. https://doi.org/10.1016/j.biotechadv.2020.107610
    38. Minh Kim Nguyen, Ju-Young Moon, Young-Chul Lee. Microalgal ecotoxicity of nanoparticles: An updated review. Ecotoxicology and Environmental Safety 2020, 201 , 110781. https://doi.org/10.1016/j.ecoenv.2020.110781
    39. Geshan Zhang, Xuexiang He, Xiaodi Duan, Ying Huang, Changseok Han, Mallikarjuna N. Nadagouda, Kevin O'Shea, Duk Kyung Kim, Virender K. Sharma, Natalie Johnson, Bangxing Ren, Vasileia Vogiazi, Theodora Fotiou, Christophoros Christophoridis, Anastasia E. Hiskia, Dionysios D. Dionysiou. Advanced Oxidation Processes. 2020, 173-206. https://doi.org/10.1002/9781118928677.ch7
    40. Liliana Cepoi, Inga Zinicovscaia, Ludmila Rudi, Tatiana Chiriac, Ion Rotari, Vitalii Turchenko, Svetlana Djur. Effects of PEG-Coated Silver and Gold Nanoparticles on Spirulina platensis Biomass during Its Growth in a Closed System. Coatings 2020, 10 (8) , 717. https://doi.org/10.3390/coatings10080717
    41. Yukti Monga, Pawan Kumar, Rakesh K. Sharma, Jan Filip, Rajender S. Varma, Radek Zbořil, Manoj B. Gawande. Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. ChemSusChem 2020, 13 (13) , 3288-3305. https://doi.org/10.1002/cssc.202000290
    42. Ilika Ghosh, Abhisek Sadhu, Yuji Moriyasu, Maumita Bandyopadhyay, Anita Mukherjee. Genotoxicity of nanoscale zerovalent iron particles in tobacco BY-2 cells. The Nucleus 2019, 62 (3) , 211-219. https://doi.org/10.1007/s13237-019-00294-z
    43. Yu-Jen Lee, Duu-Jong Lee. Impact of adding metal nanoparticles on anaerobic digestion performance – A review. Bioresource Technology 2019, 292 , 121926. https://doi.org/10.1016/j.biortech.2019.121926
    44. Guilherme Victor Vanzetto, Antonio Thomé. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. Environmental Pollution 2019, 252 , 74-83. https://doi.org/10.1016/j.envpol.2019.05.092
    45. Mohamed Farghali, Fetra J. Andriamanohiarisoamanana, Moustafa M. Ahmed, Saber Kotb, Takaki Yamashiro, Masahiro Iwasaki, Kazutaka Umetsu. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. Journal of Environmental Management 2019, 240 , 160-167. https://doi.org/10.1016/j.jenvman.2019.03.089
    46. Haoran Dong, Long Li, Yue Lu, Yujun Cheng, Yaoyao Wang, Qin Ning, Bin Wang, Lihua Zhang, Guangming Zeng. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environment International 2019, 124 , 265-277. https://doi.org/10.1016/j.envint.2019.01.030
    47. C. Fajardo, G. Costa, M. Nande, C. Martín, M. Martín, S. Sánchez-Fortún. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Science of The Total Environment 2019, 656 , 421-432. https://doi.org/10.1016/j.scitotenv.2018.11.323
    48. Khaled K. Kasem, Manal Mostafa, Kamel A. Abd-Elsalam. Iron-Based Nanomaterials: Effect on Soil Microbes and Soil Health. 2019, 261-285. https://doi.org/10.1007/978-3-030-16439-3_14
    49. Khara Grieger, Rune Hjorth, Alexis Wells Carpenter, Frederick Klaessig, Emilie Lefevre, Claudia Gunsch, Kullapa Soratana, Amy E. Landis, Fern Wickson, Danail Hristozov, Igor Linkov. Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs. 2019, 511-562. https://doi.org/10.1007/978-3-319-95340-3_15
    50. Jan Filip, Jana Soukupova, Josef Kaslfk, Jan Slunsky, Radek Zboril. Nanoscale Zerovalent Iron Particles for Groundwater and Soil Treatment: Monitoring and Control of their Solid- State Synthesis, Stability, and Activity. 2018, 119-147. https://doi.org/10.1201/b22501-6
    51. Janja Vidmar, Primož Oprčkal, Radmila Milačič, Ana Mladenovič, Janez Ščančar. Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS. Science of The Total Environment 2018, 634 , 1259-1268. https://doi.org/10.1016/j.scitotenv.2018.04.081
    52. Yiming Su, Dongxv Qian, Adeyemi S. Adeleye, Jin Zhang, Xuefei Zhou, David Jassby, Yalei Zhang. Impact of ageing on the fate of molybdate-zerovalent iron nanohybrid and its subsequent effect on cyanobacteria (Microcystis aeruginosa) growth in aqueous media. Water Research 2018, 140 , 135-147. https://doi.org/10.1016/j.watres.2018.04.037
    53. Zhen Yang, Riley P. Buley, Edna G. Fernandez-Figueroa, Mario U.G. Barros, Soorya Rajendran, Alan E. Wilson. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environmental Pollution 2018, 240 , 590-598. https://doi.org/10.1016/j.envpol.2018.05.012
    54. Hongbo Liu, Zihua Chen, Yongnian Guan, Suyun Xu. Role and application of iron in water treatment for nitrogen removal: A review. Chemosphere 2018, 204 , 51-62. https://doi.org/10.1016/j.chemosphere.2018.04.019
    55. Mar Gil-Díaz, M. Carmen Lobo. Phytotoxicity of Nanoscale Zerovalent Iron (nZVI) in Remediation Strategies. 2018, 301-333. https://doi.org/10.1007/978-3-319-76708-6_13
    56. David D.J. Antia. Irrigation water desalination using PVP (polyvinylpyrrolidone) coated n-Fe 0 (ZVI, zero valent iron). 2018, 541-600. https://doi.org/10.1016/B978-0-12-811033-1.00022-6
    57. Diego Gardini, Christopher J. Lüscher, Carsten Struve, Karen A. Krogfelt. Tailored nanomaterials for antimicrobial applications. 2018, 71-104. https://doi.org/10.1016/B978-0-323-51255-8.00004-5
    58. Cheng Lei, Yuqing Sun, Daniel C.W. Tsang, Daohui Lin. Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution 2018, 232 , 10-30. https://doi.org/10.1016/j.envpol.2017.09.052
    59. Nhung H. A. Nguyen, Roman Špánek, Vojtěch Kasalický, David Ribas, Denisa Vlková, Hana Řeháková, Pavel Kejzlar, Alena Ševců. Different effects of nano-scale and micro-scale zero-valent iron particles on planktonic microorganisms from natural reservoir water. Environmental Science: Nano 2018, 5 (5) , 1117-1129. https://doi.org/10.1039/C7EN01120B
    60. Xia Sun, Yubo Yan, Mingyan Wang, Zhaoxiang Han. Effect of nanoscale zero-valent iron confined in mesostructure on Escherichia coli. Environmental Science and Pollution Research 2017, 24 (30) , 24038-24045. https://doi.org/10.1007/s11356-017-0101-4
    61. Jungsu Park, Jared Church, Younggyu Son, Keug-Tae Kim, Woo Hyoung Lee. Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics Sonochemistry 2017, 38 , 326-334. https://doi.org/10.1016/j.ultsonch.2017.03.003
    62. Rune Hjorth, Claire Coutris, Nhung H.A. Nguyen, Alena Sevcu, Juliàn Alberto Gallego-Urrea, Anders Baun, Erik J. Joner. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation – Recommendations from the FP7 project NanoRem. Chemosphere 2017, 182 , 525-531. https://doi.org/10.1016/j.chemosphere.2017.05.060
    63. Riccardo Concu, Valeria V. Kleandrova, Alejandro Speck-Planche, M. Natália D. S. Cordeiro. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology 2017, 11 (7) , 891-906. https://doi.org/10.1080/17435390.2017.1379567
    64. Deepak Kumar, Abhinav Parashar, Natarajan Chandrasekaran, Amitava Mukherjee. The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system. 3 Biotech 2017, 7 (3) https://doi.org/10.1007/s13205-017-0869-4
    65. Ilika Ghosh, Amitava Mukherjee, Anita Mukherjee. In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 2017, 32 (3) , 371-387. https://doi.org/10.1093/mutage/gex006
    66. M. Bhuvaneshwari, Deepak Kumar, Rajdeep Roy, Susiddharthak Chakraborty, Abhinav Parashar, Anita Mukherjee, N. Chandrasekaran, Amitava Mukherjee. Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. Aquatic Toxicology 2017, 183 , 63-75. https://doi.org/10.1016/j.aquatox.2016.12.013
    67. G. Libralato, A. Costa Devoti, A. Volpi Ghirardini, D. A. L. Vignati. Environmental Effects of nZVI for Land and Groundwater Remediation. 2017, 269-286. https://doi.org/10.1007/978-3-319-53162-5_10
    68. Jun Liang, Xiaoqian Xia, Wei Zhang, Waqas Qamar Zaman, Kuangfei Lin, Shuangqing Hu, Zhifen Lin. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system. Environmental Science and Pollution Research 2017, 24 (3) , 2507-2514. https://doi.org/10.1007/s11356-016-8001-6
    69. Valeria V. Kleandrova, Feng Luan, Alejandro Speck-Planche, M. Natália D. S. Cordeiro. QSAR-Based Studies of Nanomaterials in the Environment. 2017, 1339-1366. https://doi.org/10.4018/978-1-5225-1762-7.ch051
    70. Valeria V. Kleandrova, Feng Luan, Alejandro Speck-Planche, M. Natália D. S. Cordeiro. QSAR-Based Studies of Nanomaterials in the Environment. 2017, 1504-1532. https://doi.org/10.4018/978-1-5225-1798-6.ch061
    71. Lars Michael Skjolding, Sara Nørgaard Sørensen, Nanna Bloch Hartmann, Rune Hjorth, Steffen Foss Hansen, Anders Baun. Aquatische Ökotoxizität von Nanopartikeln - Versuche zur Aufklärung von Nanopartikeleffekten. Angewandte Chemie 2016, 128 (49) , 15448-15464. https://doi.org/10.1002/ange.201604964
    72. Lars Michael Skjolding, Sara Nørgaard Sørensen, Nanna Bloch Hartmann, Rune Hjorth, Steffen Foss Hansen, Anders Baun. Aquatic Ecotoxicity Testing of Nanoparticles-The Quest To Disclose Nanoparticle Effects. Angewandte Chemie International Edition 2016, 55 (49) , 15224-15239. https://doi.org/10.1002/anie.201604964
    73. Barbara Casentini, Fabiano Teo Falcione, Stefano Amalfitano, Stefano Fazi, Simona Rossetti. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Water Research 2016, 106 , 135-145. https://doi.org/10.1016/j.watres.2016.09.057
    74. Cheng Lei, Luqing Zhang, Kun Yang, Lizhong Zhu, Daohui Lin. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution 2016, 218 , 505-512. https://doi.org/10.1016/j.envpol.2016.07.030
    75. Hans C. P. Matthijs, Daniel Jančula, Petra M. Visser, Blahoslav Maršálek. Existing and emerging cyanocidal compounds: new perspectives for cyanobacterial bloom mitigation. Aquatic Ecology 2016, 50 (3) , 443-460. https://doi.org/10.1007/s10452-016-9577-0
    76. Andreas Schiwy, Hanna M. Maes, Daniel Koske, Mirkko Flecken, Kathrin R. Schmidt, Heico Schell, Andreas Tiehm, Andre Kamptner, Silke Thümmler, Helge Stanjek, Marc Heggen, Rafal E. Dunin-Borkowski, Jürgen Braun, Andreas Schäffer, Henner Hollert. The ecotoxic potential of a new zero-valent iron nanomaterial, designed for the elimination of halogenated pollutants, and its effect on reductive dechlorinating microbial communities. Environmental Pollution 2016, 216 , 419-427. https://doi.org/10.1016/j.envpol.2016.05.051
    77. Hye-Min Ji, Hyun Uk Lee, Eui Jin Kim, Soonjoo Seo, Bohwa Kim, Go-Woon Lee, You-Kwan Oh, Jun Yeong Kim, Yun Suk Huh, Hyun A. Song, Young-Chul Lee. Efficient harvesting of wet blue-green microalgal biomass by two-aminoclay [AC]-mixture systems. Bioresource Technology 2016, 211 , 313-318. https://doi.org/10.1016/j.biortech.2016.03.111
    78. Diane M. Orihel, David W. Schindler, Nathaniel C. Ballard, Lindsey R. Wilson, Rolf D. Vinebrooke. Experimental iron amendment suppresses toxic cyanobacteria in a hypereutrophic lake. Ecological Applications 2016, 26 (5) , 1517-1534. https://doi.org/10.1890/15-1928
    79. Andrea Rónavári, Margit Balázs, Péter Tolmacsov, Csaba Molnár, István Kiss, Ákos Kukovecz, Zoltán Kónya. Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Research 2016, 95 , 165-173. https://doi.org/10.1016/j.watres.2016.03.019
    80. Qingxiang Zhou, Jing Li, Mengyun Wang, Danchen Zhao. Iron-based magnetic nanomaterials and their environmental applications. Critical Reviews in Environmental Science and Technology 2016, 46 (8) , 783-826. https://doi.org/10.1080/10643389.2016.1160815
    81. Xuexiang He, Yen-Ling Liu, Amanda Conklin, Judy Westrick, Linda K. Weavers, Dionysios D. Dionysiou, John J. Lenhart, Paula J. Mouser, David Szlag, Harold W. Walker. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae 2016, 54 , 174-193. https://doi.org/10.1016/j.hal.2016.01.001
    82. Jie Wang, Zhanqiang Fang, Wen Cheng, Xiaomin Yan, Pokeung Eric Tsang, Dongye Zhao. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environmental Pollution 2016, 210 , 338-345. https://doi.org/10.1016/j.envpol.2016.01.028
    83. Yehia S. El-Temsah, Alena Sevcu, Katerina Bobcikova, Miroslav Cernik, Erik J. Joner. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 2016, 144 , 2221-2228. https://doi.org/10.1016/j.chemosphere.2015.10.122
    84. Inga Zinicovscaia, Liliana Cepoi. Nanoparticle Biosynthesis Based on the Protective Mechanism of Cyanobacteria. 2016, 113-121. https://doi.org/10.1007/978-3-319-26751-7_7
    85. Ashok K. Singh. Nanoparticle Ecotoxicology. 2016, 343-450. https://doi.org/10.1016/B978-0-12-801406-6.00008-X
    86. Yu-Xi Huang, Jialiang Guo, Chunyang Zhang, Zhiqiang Hu. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion. Water Research 2016, 88 , 475-480. https://doi.org/10.1016/j.watres.2015.10.028
    87. Yuan-kai Zhang, Xiu-hong Liu, Xiao-wei Liu, Yi-fei Zha, Xiang-long Xu, Zheng-guang Ren, Hang-cheng Jiang, Hong-chen Wang. Research advances in deriving renewable energy from biomass in wastewater treatment plants. RSC Advances 2016, 6 (61) , 55903-55918. https://doi.org/10.1039/C6RA06868E
    88. Milica Velimirovic, Queenie Simons, Leen Bastiaens. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment. Chemosphere 2015, 134 , 338-345. https://doi.org/10.1016/j.chemosphere.2015.04.068
    89. Shengnan Xu, Zhiqiang Hu. Kinetics of Nutrient Removal by Nano Zero‐Valent Iron under Different Biochemical Environments. Water Environment Research 2015, 87 (6) , 483-490. https://doi.org/10.2175/106143014X13975035525582
    90. Barbora Jarošová, Jan Filip, Klára Hilscherová, Jiří Tuček, Zdeněk Šimek, John P. Giesy, Radek Zbořil, Luděk Bláha. Can zero-valent iron nanoparticles remove waterborne estrogens?. Journal of Environmental Management 2015, 150 , 387-392. https://doi.org/10.1016/j.jenvman.2014.12.007
    91. Jana Soukupova, Radek Zboril, Ivo Medrik, Jan Filip, Klara Safarova, Radim Ledl, Miroslav Mashlan, Jaroslav Nosek, Miroslav Cernik. Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chemical Engineering Journal 2015, 262 , 813-822. https://doi.org/10.1016/j.cej.2014.10.024
    92. V. A. Rumyantsev, L. N. Kryukov, Sh. R. Pozdnyakov, A. V. Zhukovskii, A. S. Mityukov. Influence of old sapropel on water bloom. Doklady Earth Sciences 2015, 460 (1) , 100-102. https://doi.org/10.1134/S1028334X15010237
    93. Valeria V. Kleandrova, Feng Luan, Alejandro Speck-Planche, M. Natália D. S. Cordeiro. QSAR-Based Studies of Nanomaterials in the Environment. 2015, 506-534. https://doi.org/10.4018/978-1-4666-8136-1.ch013
    94. Valeria V. Kleandrova, Feng Luan, Humberto González-Díaz, Juan M. Ruso, André Melo, Alejandro Speck-Planche, M. Natália D.S. Cordeiro. Computational ecotoxicology: Simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions. Environment International 2014, 73 , 288-294. https://doi.org/10.1016/j.envint.2014.08.009
    95. R. Köber, H. Hollert, G. Hornbruch, M. Jekel, A. Kamptner, N. Klaas, H. Maes, K.-M. Mangold, E. Martac, A. Matheis, H. Paar, A. Schäffer, H. Schell, A. Schiwy, K. R. Schmidt, T. J. Strutz, S. Thümmler, A. Tiehm, J. Braun. Nanoscale zero-valent iron flakes for groundwater treatment. Environmental Earth Sciences 2014, 72 (9) , 3339-3352. https://doi.org/10.1007/s12665-014-3239-0
    96. Daniel Jančula, Přemysl Mikula, Blahoslav Maršálek, Pavel Rudolf, František Pochylý. Selective method for cyanobacterial bloom removal: hydraulic jet cavitation experience. Aquaculture International 2014, 22 (2) , 509-521. https://doi.org/10.1007/s10499-013-9660-7
    97. Young-Chul Lee, Kyubock Lee, Yuhoon Hwang, Henrik Rasmus Andersen, Bohwa Kim, So Yeun Lee, Moon-Hee Choi, Ji-Yeon Park, Young-Kyu Han, You-Kwan Oh, Yun Suk Huh. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1. RSC Adv. 2014, 4 (8) , 4122-4127. https://doi.org/10.1039/C3RA46602G
    98. K. K. R. Datta, E. Petala, K. J. Datta, J. A. Perman, J. Tucek, P. Bartak, M. Otyepka, G. Zoppellaro, R. Zboril. NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chem. Commun. 2014, 50 (99) , 15673-15676. https://doi.org/10.1039/C4CC06241H
    99. Shengnan Xu, Minghao Sun, Chiqian Zhang, Rao Surampalli, Zhiqiang Hu. Filamentous sludge bulking control by nano zero-valent iron in activated sludge treatment systems. Environ. Sci.: Processes Impacts 2014, 16 (12) , 2721-2728. https://doi.org/10.1039/C4EM00333K
    100. Nadia von Moos, Paul Bowen, Vera I. Slaveykova. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environmental Science: Nano 2014, 1 (3) , 214. https://doi.org/10.1039/c3en00054k
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect