ACS Publications. Most Trusted. Most Cited. Most Read
CONTENT TYPES

Figure 1Loading Img

Life Cycle Greenhouse Gas Emissions of Sugar Cane Renewable Jet Fuel

View Author Information
Agroicone, Av. General Furtado do Nascimento, 740 cj. 8, São Paulo, SP Brazil 05465-070
Faculdade de Engenharia Mecânica, UNICAMP (University of Campinas), Cidade Universitária “Zeferino Vaz”, Rua Mendeleyev 200, Campinas, SP Brazil 13083-860
§ São Paulo School of Economics, Fundação Getulio Vargas, Rua Itapeva 474, São Paulo, SP Brazil 01332-000
*E-mail: [email protected]; [email protected]; tel.: +55 19 3521 3284.
Cite this: Environ. Sci. Technol. 2014, 48, 24, 14756–14763
Publication Date (Web):November 24, 2014
https://doi.org/10.1021/es503217g
Copyright © 2014 American Chemical Society
Article Views
956
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)

Abstract

Abstract Image

This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland–pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

Cited By


This article is cited by 27 publications.

  1. Jin Yu, Xiaolong Gou, Jiajia Yu. Comprehensive Chemical Kinetic Model of 2,6,10-Trimethyl Dodecane. Energy & Fuels 2020, 34 (2) , 2366-2375. https://doi.org/10.1021/acs.energyfuels.9b03888
  2. José Antonio Soriano, Reyes García-Contreras, David Leiva-Candia, Felipe Soto. Influence on Performance and Emissions of an Automotive Diesel Engine Fueled with Biodiesel and Paraffinic Fuels: GTL and Biojet Fuel Farnesane. Energy & Fuels 2018, 32 (4) , 5125-5133. https://doi.org/10.1021/acs.energyfuels.7b03779
  3. Rafael S. Capaz, John A. Posada, Patricia Osseweijer, Joaquim E.A. Seabra. The carbon footprint of alternative jet fuels produced in Brazil: exploring different approaches. Resources, Conservation and Recycling 2021, 166 , 105260. https://doi.org/10.1016/j.resconrec.2020.105260
  4. Solange I. Mussatto, Ingrid Lopes Motta, Rubens Maciel Filho, Luuk van der Wielen, Rafael Capaz, Joaquim Seabra, Patricia Osseweijer, John Posada, Marcelo de Freitas Gonçalves, Pedro Rodrigo Scorza, Giuliano Dragone. Sustainable Aviation Fuels: Production, Use and Impact on Decarbonization. 2021,,https://doi.org/10.1016/B978-0-12-819727-1.00057-1
  5. Vassilis Daioglou, Geert Woltjer, Bart Strengers, Berien Elbersen, Goizeder Barberena Ibañez, David Sánchez Gonzalez, Javier Gil Barno, Detlef P. Vuuren. Progress and barriers in understanding and preventing indirect land‐use change. Biofuels, Bioproducts and Biorefining 2020, 14 (5) , 924-934. https://doi.org/10.1002/bbb.2124
  6. B. W. Kolosz, Y. Luo, B. Xu, M. M. Maroto-Valer, J. M. Andresen. Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy & Fuels 2020, 4 (7) , 3229-3263. https://doi.org/10.1039/C9SE00788A
  7. Ana Cristina Guimarães Donke, Renan Milagres Lage Novaes, Ricardo Antonio Almeida Pazianotto, Emilia Moreno-Ruiz, Jürgen Reinhard, Juliana Ferreira Picoli, Marília Ieda da Silveira Folegatti-Matsuura. Integrating regionalized Brazilian land use change datasets into the ecoinvent database: new data, premises and uncertainties have large effects in the results. The International Journal of Life Cycle Assessment 2020, 25 (6) , 1027-1042. https://doi.org/10.1007/s11367-020-01763-3
  8. Rafael S. Capaz, Elisa M. de Medeiros, Daniela G. Falco, Joaquim E.A. Seabra, Patricia Osseweijer, John A. Posada. Environmental trade-offs of renewable jet fuels in Brazil: Beyond the carbon footprint. Science of The Total Environment 2020, 714 , 136696. https://doi.org/10.1016/j.scitotenv.2020.136696
  9. Pedro G. Machado, Marcelo Cunha, Arnaldo Walter, André Faaij, Joaquim J. M. Guilhoto. The potential of a bioeconomy to reduce Brazilian GHG emissions towards 2030: a CGE‐based life cycle analysis. Biofuels, Bioproducts and Biorefining 2020, 14 (2) , 265-285. https://doi.org/10.1002/bbb.2064
  10. Rajat Chakraborty, Ritika Samanta. Renewable Jet-Fuel (RJF): Mitigation of Aviation-Related GHG Emission. 2020,,, 736-742. https://doi.org/10.1016/B978-0-12-803581-8.11049-5
  11. Naveenji Arun, Ajay K. Dalai. Environmental and socioeconomic impact assessment of biofuels from lignocellulosic biomass. 2020,,, 283-299. https://doi.org/10.1016/B978-0-12-815936-1.00009-5
  12. Zakir Hossain, Eric N. Johnson, Li Wang, Robert E. Blackshaw, Herb Cutforth, Yantai Gan. Plant establishment, yield and yield components of Brassicaceae oilseeds as potential biofuel feedstock. Industrial Crops and Products 2019, 141 , 111800. https://doi.org/10.1016/j.indcrop.2019.111800
  13. Zakir Hossain, Eric N. Johnson, Li Wang, Robert E. Blackshaw, Yantai Gan. Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Industrial Crops and Products 2019, 136 , 77-86. https://doi.org/10.1016/j.indcrop.2019.05.001
  14. Yasin Şöhret, Selcuk Ekici, Onder Altuntas, T. Hikmet Karakoc. LCA of the maintenance of a piston-prop engine. Aircraft Engineering and Aerospace Technology 2019, 91 (7) , 987-993. https://doi.org/10.1108/AEAT-05-2017-0116
  15. Jorge A. Moncada, Judith A. Verstegen, John A. Posada, Martin Junginger, Zofia Lukszo, André Faaij, Margot Weijnen. Exploring the emergence of a biojet fuel supply chain in Brazil: An agent‐based modeling approach. GCB Bioenergy 2019, 11 (6) , 773-790. https://doi.org/10.1111/gcbb.12594
  16. Lorena Mendes de Souza, Pietro A.S. Mendes, Donato A.G. Aranda. Assessing the current scenario of the Brazilian biojet market. Renewable and Sustainable Energy Reviews 2018, 98 , 426-438. https://doi.org/10.1016/j.rser.2018.09.039
  17. Denise Zanatta Martini, Luiz Eduardo Oliveira e Cruz de Aragão, Ieda Del'Arco Sanches, Marcelo Valadares Galdos, Cinthia Rubio Urbano da Silva, Eloi Lennon Dalla-Nora. Land availability for sugarcane derived jet-biofuels in São Paulo—Brazil. Land Use Policy 2018, 70 , 256-262. https://doi.org/10.1016/j.landusepol.2017.10.035
  18. José A. Soriano, John R. Agudelo, Andrés F. López, Octavio Armas. Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane. Carbon 2017, 125 , 516-529. https://doi.org/10.1016/j.carbon.2017.09.090
  19. Jeongwoo Han, Ling Tao, Michael Wang. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways. Biotechnology for Biofuels 2017, 10 (1) https://doi.org/10.1186/s13068-017-0698-z
  20. Renan M. L. Novaes, Ricardo A. A. Pazianotto, Miguel Brandão, Bruno J. R. Alves, André May, Marília I. S. Folegatti‐Matsuura. Estimating 20‐year land‐use change and derived CO 2 emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Global Change Biology 2017, 23 (9) , 3716-3728. https://doi.org/10.1111/gcb.13708
  21. Lucas G. Pereira, Heather L. MacLean, Brad A. Saville. Financial analyses of potential biojet fuel production technologies. Biofuels, Bioproducts and Biorefining 2017, 11 (4) , 665-681. https://doi.org/10.1002/bbb.1775
  22. Berien Elbersen, Nicklas Forsell, Sylvain Leduc, Igor Staritsky, Peter Witzke, Jacqueline Ramirez-Almeyda. Existing Modeling Platforms for Biomass Supply in Europe. 2017,,, 25-54. https://doi.org/10.1016/B978-0-12-812303-4.00002-1
  23. Ana Laura Raymundo Pavan, Aldo Roberto Ometto. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil. Environmental Impact Assessment Review 2016, 60 , 148-155. https://doi.org/10.1016/j.eiar.2016.05.001
  24. Lingfeng Cheng, C. Lindsay Anderson. Financial sustainability for a lignocellulosic biorefinery under carbon constraints and price downside risk. Applied Energy 2016, 177 , 98-107. https://doi.org/10.1016/j.apenergy.2016.05.089
  25. Michele De Rosa, Marie Trydeman Knudsen, John Erik Hermansen. A comparison of Land Use Change models: challenges and future developments. Journal of Cleaner Production 2016, 113 , 183-193. https://doi.org/10.1016/j.jclepro.2015.11.097
  26. C.J. Chuck, M. McManus, M.J. Allen, S. Singh. Feedstocks for Aviation Biofuels. 2016,,, 17-34. https://doi.org/10.1016/B978-0-12-804568-8.00002-0
  27. R.S. Capaz, J.E.A. Seabra. Life Cycle Assessment of Biojet Fuels. 2016,,, 279-294. https://doi.org/10.1016/B978-0-12-804568-8.00012-3

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE