ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Variability in and Agreement between Modeled and Personal Continuously Measured Black Carbon Levels Using Novel Smartphone and Sensor Technologies

View Author Information
Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Catalonia, Spain
Pompeu Fabra University, 08002 Barcelona, Catalonia, Spain
§ Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 08036 Barcelona, Catalonia, Spain
Parc Salut Mar, Institut Hospital del Mar de Investigaciones Médicas (IMIM), 08003 Barcelona, Catalonia, Spain
Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Catalonia, Spain
# Institute for Risk Assessment Sciences (IRAS), NL-3508 TD Utrecht, Netherlands
Department of Environmental and Occupational Health Services, University of Washington, Seattle, Washington 98195, United States
Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, Berkeley, California 94720-7360, United States
Department of Environmental Health, Fielding School of Public Health, University of California, Los Angeles, 650 Charles E. Young Drive South, 56-070 CHS, MC 177220, Los Angeles, California 90095, United States
*Telephone: ++34-93-2147337. Fax: ++34-93-2147302. E-mail: [email protected]
Cite this: Environ. Sci. Technol. 2015, 49, 5, 2977–2982
Publication Date (Web):January 26, 2015
https://doi.org/10.1021/es505362x
Copyright © 2015 American Chemical Society

    Article Views

    1971

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)

    Abstract

    Abstract Image

    Novel technologies, such as smartphones and small personal continuous air pollution sensors, can now facilitate better personal estimates of air pollution in relation to location. Such information can provide us with a better understanding about whether and how personal exposures relate to residential air pollution estimates, which are normally used in epidemiological studies. The aims of this study were to examine (1) the variability in personal air pollution levels during the day and (2) the relationship between modeled home and school estimates and continuously measured personal air pollution exposure levels in different microenvironments (e.g., home, school, and commute). We focused on black carbon as an indicator of traffic-related air pollution. We recruited 54 school children (aged 7–11) from 29 different schools around Barcelona as part of the BREATHE study, an epidemiological study of the relation between air pollution and brain development. For 2 typical week days during 2012–2013, the children were given a smartphone with CalFit software to obtain information on their location and physical activity level and a small sensor, the micro-aethalometer model AE51, to measure their black carbon levels simultaneously and continuously. We estimated their home and school exposure to PM2.5 filter absorbance, which is well-correlated with black carbon, using a temporally adjusted PM2.5 absorbance land use regression (LUR) model. We found considerable variation in the black carbon levels during the day, with the highest levels measured during commuting periods (geometric mean = 2.8 μg/m3) and the lowest levels at home (geometric mean = 1.3 μg/m3). Hourly temporally adjusted LUR model estimates for the home and school showed moderate to good correlation with measured personal black carbon levels at home and school (r = 0.59 and 0.68, respectively) and lower correlation with commuting trips (r = 0.32 and 0.21, respectively). The correlation between modeled home estimates and overall personal black carbon levels was 0.62. Personal black carbon levels vary substantially during the day. The correlation between modeled and measured black carbon levels was generally good, with the exception of commuting times. In conclusion, novel technologies, such as smartphones and sensors, provide insights in personal exposure to air pollution.

    Cited By

    This article is cited by 92 publications.

    1. Ricardo Morales Betancourt, Boris Galvis, Daniela Mendez-Molano, Juan Manuel Rincón-Riveros, Yadert Contreras, Thalia Alejandra Montejo, Diego Roberto Rojas-Neisa, Oscar Casas. Toward Cleaner Transport Alternatives: Reduction in Exposure to Air Pollutants in a Mass Public Transport. Environmental Science & Technology 2022, 56 (11) , 7096-7106. https://doi.org/10.1021/acs.est.1c07004
    2. Sheena E. Martenies, Joshua P. Keller, Sherry WeMott, Grace Kuiper, Zev Ross, William B. Allshouse, John L. Adgate, Anne P. Starling, Dana Dabelea, Sheryl Magzamen. A Spatiotemporal Prediction Model for Black Carbon in the Denver Metropolitan Area, 2009–2020. Environmental Science & Technology 2021, 55 (5) , 3112-3123. https://doi.org/10.1021/acs.est.0c06451
    3. Carles Milà, Maëlle Salmon, Margaux Sanchez, Albert Ambrós, Santhi Bhogadi, V. Sreekanth, Mark Nieuwenhuijsen, Sanjay Kinra, Julian D. Marshall, Cathryn Tonne. When, Where, and What? Characterizing Personal PM2.5 Exposure in Periurban India by Integrating GPS, Wearable Camera, and Ambient and Personal Monitoring Data. Environmental Science & Technology 2018, 52 (22) , 13481-13490. https://doi.org/10.1021/acs.est.8b03075
    4. Marguerite Nyhan, Sebastian Grauwin, Rex Britter, Bruce Misstear, Aonghus McNabola, Francine Laden, Steven R. H. Barrett, and Carlo Ratti . “Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution. Environmental Science & Technology 2016, 50 (17) , 9671-9681. https://doi.org/10.1021/acs.est.6b02385
    5. W. W. Che, H. Christopher Frey, and Alexis K. H. Lau . Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations. Environmental Science & Technology 2016, 50 (16) , 8760-8769. https://doi.org/10.1021/acs.est.6b01594
    6. Oliver Robinson, Xavier Basagaña, Lydiane Agier, Montserrat de Castro, Carles Hernandez-Ferrer, Juan R. Gonzalez, Joan O. Grimalt, Mark Nieuwenhuijsen, Jordi Sunyer, Rémy Slama, and Martine Vrijheid . The Pregnancy Exposome: Multiple Environmental Exposures in the INMA-Sabadell Birth Cohort. Environmental Science & Technology 2015, 49 (17) , 10632-10641. https://doi.org/10.1021/acs.est.5b01782
    7. Qianli Dong, Xin Meng, Jicheng Gong, Tong Zhu. A review of advances in black carbon exposure assessment and health effects. Chinese Science Bulletin 2023, 53 https://doi.org/10.1360/TB-2023-0409
    8. Payal Dubey, Kunwar Raghvendra Singh, Sudhir Kumar Goyal. Traffic related air pollution with particulate matter, sulfur pollutant and carbon monoxide levels near NH-44 in India. Sādhanā 2022, 47 (4) https://doi.org/10.1007/s12046-022-02032-9
    9. Ana Maria Carmen Ilie, Norma McCarthy, Leslie Velasquez, Masoom Moitra, Holger Michael Eisl. Air pollution exposure assessment at schools and playgrounds in Williamsburg Brooklyn NYC, with a view to developing a set of policy solutions. Journal of Environmental Studies and Sciences 2022, 12 (4) , 838-852. https://doi.org/10.1007/s13412-022-00777-7
    10. Léa Maitre, Mariona Bustamante, Carles Hernández-Ferrer, Denise Thiel, Chung-Ho E. Lau, Alexandros P. Siskos, Marta Vives-Usano, Carlos Ruiz-Arenas, Dolors Pelegrí-Sisó, Oliver Robinson, Dan Mason, John Wright, Solène Cadiou, Rémy Slama, Barbara Heude, Maribel Casas, Jordi Sunyer, Eleni Z. Papadopoulou, Kristine B. Gutzkow, Sandra Andrusaityte, Regina Grazuleviciene, Marina Vafeiadi, Leda Chatzi, Amrit K. Sakhi, Cathrine Thomsen, Ibon Tamayo, Mark Nieuwenhuijsen, Jose Urquiza, Eva Borràs, Eduard Sabidó, Inés Quintela, Ángel Carracedo, Xavier Estivill, Muireann Coen, Juan R. González, Hector C. Keun, Martine Vrijheid. Multi-omics signatures of the human early life exposome. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34422-2
    11. Sara Bernasconi, Alessandra Angelucci, Andrea Aliverti. A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness. Sensors 2022, 22 (16) , 5994. https://doi.org/10.3390/s22165994
    12. Anne Mielnik, Sheena E. Martenies, Judy M. Heiderscheidt, Jason Su, Zev Ross, Michael Jerrett, John R. Balmes, Sheryl Magzamen. Location-weighted traffic-related air pollution and asthma symptoms in urban adolescents. Air Quality, Atmosphere & Health 2022, 15 (5) , 761-772. https://doi.org/10.1007/s11869-022-01181-4
    13. Bo Peng, Yang Guo, Yongjun Ma, Min Zhou, Youquan Zhao, Jingfeng Wang, Yanjun Fang. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchemical Journal 2022, 175 , 107185. https://doi.org/10.1016/j.microc.2022.107185
    14. Jingwen Gao, Zhaowen Qiu, Wen Cheng, H.Oliver Gao. Children’s exposure to BC and PM pollution, and respiratory tract deposits during commuting trips to school. Ecotoxicology and Environmental Safety 2022, 232 , 113253. https://doi.org/10.1016/j.ecoenv.2022.113253
    15. Eliani Ezani, Peter Brimblecombe. Exposure of Malaysian Children to Air Pollutants over the School Day. Urban Science 2022, 6 (1) , 4. https://doi.org/10.3390/urbansci6010004
    16. Sanjeev Bista, Clélie Dureau, Basile Chaix. Personal exposure to concentrations and inhalation of black carbon according to transport mode use: The MobiliSense sensor-based study. Environment International 2022, 158 , 106990. https://doi.org/10.1016/j.envint.2021.106990
    17. Sherrie Xie, Jessica R. Meeker, Luzmercy Perez, Whitney Eriksen, Anna Localio, Hami Park, Alicia Jen, Madison Goldstein, Akua F. Temeng, Sarai M. Morales, Colin Christie, Rebecca E. Greenblatt, Frances K. Barg, Andrea J. Apter, Blanca E. Himes. Feasibility and acceptability of monitoring personal air pollution exposure with sensors for asthma self-management. Asthma Research and Practice 2021, 7 (1) https://doi.org/10.1186/s40733-021-00079-9
    18. Diana Varaden, Einar Leidland, Shanon Lim, Benjamin Barratt. “I am an air quality scientist”– Using citizen science to characterise school children's exposure to air pollution. Environmental Research 2021, 201 , 111536. https://doi.org/10.1016/j.envres.2021.111536
    19. Yougeng Lu. Beyond air pollution at home: Assessment of personal exposure to PM2.5 using activity-based travel demand model and low-cost air sensor network data. Environmental Research 2021, 201 , 111549. https://doi.org/10.1016/j.envres.2021.111549
    20. Carolin Helbig, Maximilian Ueberham, Anna Maria Becker, Heike Marquart, Uwe Schlink. Wearable Sensors for Human Environmental Exposure in Urban Settings. Current Pollution Reports 2021, 7 (3) , 417-433. https://doi.org/10.1007/s40726-021-00186-4
    21. Shanon Lim, Benjamin Barratt, Lois Holliday, Chris J. Griffiths, Ian S. Mudway. Characterising professional drivers’ exposure to traffic-related air pollution: Evidence for reduction strategies from in-vehicle personal exposure monitoring. Environment International 2021, 153 , 106532. https://doi.org/10.1016/j.envint.2021.106532
    22. Age Poom, Elias Willberg, Tuuli Toivonen. Environmental exposure during travel: A research review and suggestions forward. Health & Place 2021, 70 , 102584. https://doi.org/10.1016/j.healthplace.2021.102584
    23. Keith Van Ryswyk, Greg J. Evans, Ryan Kulka, Liu Sun, Kelly Sabaliauskas, Mathieu Rouleau, Angelos T. Anastasopolos, Lance Wallace, Scott Weichenthal. Personal exposures to traffic-related air pollution in three Canadian bus transit systems: the Urban Transportation Exposure Study. Journal of Exposure Science & Environmental Epidemiology 2021, 31 (4) , 628-640. https://doi.org/10.1038/s41370-020-0242-2
    24. Giacomo Fanti, Francesca Borghi, Andrea Spinazzè, Sabrina Rovelli, Davide Campagnolo, Marta Keller, Andrea Cattaneo, Emanuele Cauda, Domenico Maria Cavallo. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors 2021, 21 (13) , 4513. https://doi.org/10.3390/s21134513
    25. Stephanie Osborne, Onyekachi Uche, Christina Mitsakou, Karen Exley, Sani Dimitroulopoulou. Air quality around schools: Part I - A comprehensive literature review across high-income countries. Environmental Research 2021, 196 , 110817. https://doi.org/10.1016/j.envres.2021.110817
    26. Olena Gruzieva, Antonios Georgelis, Niklas Andersson, Tom Bellander, Christer Johansson, Anne-Sophie Merritt. Comparison of measured residential black carbon levels outdoors and indoors with fixed-site monitoring data and with dispersion modelling. Environmental Science and Pollution Research 2021, 28 (13) , 16264-16271. https://doi.org/10.1007/s11356-020-12134-8
    27. Izhak Schnell, Pninit Cohen, Moshe Mandelmilch, Oded Potchter. Portable - trackable methodologies for measuring personal and place exposure to nuisances in urban environments: Towards a people oriented paradigm. Computers, Environment and Urban Systems 2021, 86 , 101589. https://doi.org/10.1016/j.compenvurbsys.2020.101589
    28. Eun-hye Yoo, Qiang Pu, Youngseob Eum, Xiangyu Jiang. The Impact of Individual Mobility on Long-Term Exposure to Ambient PM2.5: Assessing Effect Modification by Travel Patterns and Spatial Variability of PM2.5. International Journal of Environmental Research and Public Health 2021, 18 (4) , 2194. https://doi.org/10.3390/ijerph18042194
    29. Ashok Vaseashta, Gor Gevorgyan, Doga Kavaz, Ognyan Ivanov, Mohammad Jawaid, Dejan Vasović. Exposome, Biomonitoring, Assessment and Data Analytics to Quantify Universal Water Quality. 2021, 67-114. https://doi.org/10.1007/978-3-030-76008-3_4
    30. Ying Zhou, Yijun Shao, Yue Yuan, Jian Liu, Xiaoli Zou, Pinqing Bai, Ming Zhan, Peng Zhang, Jelle Vlaanderen, Roel Vermeulen, George S. Downward. Personal black carbon and ultrafine particles exposures among high school students in urban China. Environmental Pollution 2020, 265 , 114825. https://doi.org/10.1016/j.envpol.2020.114825
    31. Xiaonan Yu, Cesunica Ivey, Zhijiong Huang, Sashikanth Gurram, Vijayaraghavan Sivaraman, Huizhong Shen, Naveen Eluru, Samiul Hasan, Lucas Henneman, Guoliang Shi, Hongliang Zhang, Haofei Yu, Junyu Zheng. Quantifying the impact of daily mobility on errors in air pollution exposure estimation using mobile phone location data. Environment International 2020, 141 , 105772. https://doi.org/10.1016/j.envint.2020.105772
    32. Margaux Sanchez, Carles Milà, V. Sreekanth, Kalpana Balakrishnan, Sankar Sambandam, Mark Nieuwenhuijsen, Sanjay Kinra, Julian D. Marshall, Cathryn Tonne. Personal exposure to particulate matter in peri-urban India: predictors and association with ambient concentration at residence. Journal of Exposure Science & Environmental Epidemiology 2020, 30 (4) , 596-605. https://doi.org/10.1038/s41370-019-0150-5
    33. Martine Vrijheid, Serena Fossati, Léa Maitre, Sandra Márquez, Theano Roumeliotaki, Lydiane Agier, Sandra Andrusaityte, Solène Cadiou, Maribel Casas, Montserrat de Castro, Audrius Dedele, David Donaire-Gonzalez, Regina Grazuleviciene, Line S. Haug, Rosemary McEachan, Helle Margrete Meltzer, Eleni Papadopouplou, Oliver Robinson, Amrit K. Sakhi, Valerie Siroux, Jordi Sunyer, Per E. Schwarze, Ibon Tamayo-Uria, Jose Urquiza, Marina Vafeiadi, Antonia Valentin, Charline Warembourg, John Wright, Mark J. Nieuwenhuijsen, Cathrine Thomsen, Xavier Basagaña, Rémy Slama, Leda Chatzi. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. Environmental Health Perspectives 2020, 128 (6) https://doi.org/10.1289/EHP5975
    34. Jing Ma, Yinhua Tao, Mei-Po Kwan, Yanwei Chai. Assessing Mobility-Based Real-Time Air Pollution Exposure in Space and Time Using Smart Sensors and GPS Trajectories in Beijing. Annals of the American Association of Geographers 2020, 110 (2) , 434-448. https://doi.org/10.1080/24694452.2019.1653752
    35. Mohammad Tayarani, Gregory Rowangould. Estimating exposure to fine particulate matter emissions from vehicle traffic: Exposure misclassification and daily activity patterns in a large, sprawling region. Environmental Research 2020, 182 , 108999. https://doi.org/10.1016/j.envres.2019.108999
    36. Shiraz Ahmed, Muhammad Adnan, Davy Janssens, Geert Wets. A route to school informational intervention for air pollution exposure reduction. Sustainable Cities and Society 2020, 53 , 101965. https://doi.org/10.1016/j.scs.2019.101965
    37. Sherrie Xie, Blanca E. Himes. Personal Environmental Monitoring. 2020, 305-320. https://doi.org/10.1007/978-3-030-31507-8_20
    38. Sean D. Beevers, Martin L. Williams. Traffic-related air pollution and exposure assessment. 2020, 137-162. https://doi.org/10.1016/B978-0-12-818122-5.00006-5
    39. Kang‐Ho Ahn, Handol Lee, Hae Dong Lee, Sang Chul Kim. Extensive evaluation and classification of low‐cost dust sensors in laboratory using a newly developed test method. Indoor Air 2020, 30 (1) , 137-146. https://doi.org/10.1111/ina.12615
    40. Paraskevi Papadopoulou, Anastasia Misseyanni, Christina Marouli. Current Environmental Health Challenges. 2020, 1-37. https://doi.org/10.4018/978-1-7998-1241-8.ch001
    41. Anondo Mukherjee, Steven G. Brown, Michael C. McCarthy, Nathan R. Pavlovic, Levi G. Stanton, Janice Lam Snyder, Stephen D’Andrea, Hilary R. Hafner. Measuring Spatial and Temporal PM2.5 Variations in Sacramento, California, Communities Using a Network of Low-Cost Sensors. Sensors 2019, 19 (21) , 4701. https://doi.org/10.3390/s19214701
    42. Ariadna Curto, David Donaire-Gonzalez, Maria N. Manaca, Raquel González, Charfudin Sacoor, Ioar Rivas, Mireia Gascon, Gregory A. Wellenius, Xavier Querol, Jordi Sunyer, Eusébio Macete, Clara Menéndez, Cathryn Tonne. Predictors of personal exposure to black carbon among women in southern semi-rural Mozambique. Environment International 2019, 131 , 104962. https://doi.org/10.1016/j.envint.2019.104962
    43. Eleftheria Polychronidou, Antonios Lalas, Dimitrios Tzovaras, Konstantinos Votis. A systematic distributing sensor system prototype for respiratory diseases. 2019, 191-196. https://doi.org/10.1109/WiMOB.2019.8923169
    44. Haneen Khreis, Marta Cirach, Natalie Mueller, Kees de Hoogh, Gerard Hoek, Mark J. Nieuwenhuijsen, David Rojas-Rueda. Outdoor air pollution and the burden of childhood asthma across Europe. European Respiratory Journal 2019, 54 (4) , 1802194. https://doi.org/10.1183/13993003.02194-2018
    45. Rachel M. Shaffer, Samuel P. Sellers, Marissa G. Baker, Rebeca de Buen Kalman, Joseph Frostad, Megan K. Suter, Susan C. Anenberg, John Balbus, Niladri Basu, David C. Bellinger, Linda Birnbaum, Michael Brauer, Aaron Cohen, Kristie L. Ebi, Richard Fuller, Philippe Grandjean, Jeremy J. Hess, Manolis Kogevinas, Pushpam Kumar, Philip J. Landrigan, Bruce Lanphear, Stephanie J. London, Andrew A. Rooney, Jeffrey D. Stanaway, Leonardo Trasande, Katherine Walker, Howard Hu. Improving and Expanding Estimates of the Global Burden of Disease Due to Environmental Health Risk Factors. Environmental Health Perspectives 2019, 127 (10) https://doi.org/10.1289/EHP5496
    46. Maryam Rezazadeh, Shahram Seidi, Marthe Lid, Stig Pedersen-Bjergaard, Yadollah Yamini. The modern role of smartphones in analytical chemistry. TrAC Trends in Analytical Chemistry 2019, 118 , 548-555. https://doi.org/10.1016/j.trac.2019.06.019
    47. Longxu Yan, Fábio Duarte, De Wang, Siqi Zheng, Carlo Ratti. Exploring the effect of air pollution on social activity in China using geotagged social media check-in data. Cities 2019, 91 , 116-125. https://doi.org/10.1016/j.cities.2018.11.011
    48. Luca Boniardi, Evi Dons, Laura Campo, Martine Van Poppel, Luc Int Panis, Silvia Fustinoni. Is a Land Use Regression Model Capable of Predicting the Cleanest Route to School?. Environments 2019, 6 (8) , 90. https://doi.org/10.3390/environments6080090
    49. David Donaire-Gonzalez, Ariadna Curto, Antònia Valentín, Sandra Andrusaityte, Xavier Basagaña, Maribel Casas, Leda Chatzi, Jeroen de Bont, Montserrat de Castro, Audrius Dedele, Berit Granum, Regina Grazuleviciene, Mariza Kampouri, Sarah Lyon-Caen, Cyntia B. Manzano-Salgado, Gunn Marit Aasvang, Rosemary McEachan, Carin Helena Meinhard-Kjellstad, Eirini Michalaki, Pau Pañella, Inga Petraviciene, Per E. Schwarze, Rémy Slama, Oliver Robinson, Ibon Tamayo-Uria, Marina Vafeiadi, Dagmar Waiblinger, John Wright, Martine Vrijheid, Mark J. Nieuwenhuijsen. Personal assessment of the external exposome during pregnancy and childhood in Europe.. Environmental Research 2019, 174 , 95-104. https://doi.org/10.1016/j.envres.2019.04.015
    50. Anne-Sophie Merritt, Antonis Georgellis, Niklas Andersson, Getahun Bero Bedada, Tom Bellander, Christer Johansson. Personal exposure to black carbon in Stockholm, using different intra-urban transport modes. Science of The Total Environment 2019, 674 , 279-287. https://doi.org/10.1016/j.scitotenv.2019.04.100
    51. Hanyang Li, Kara D. Lamb, Joshua P. Schwarz, Vanessa Selimovic, Robert J. Yokelson, Gavin R. McMeeking, Andrew A. May. Inter-comparison of black carbon measurement methods for simulated open biomass burning emissions. Atmospheric Environment 2019, 206 , 156-169. https://doi.org/10.1016/j.atmosenv.2019.03.010
    52. Tiffany C. Veinot, Jessica S. Ancker, Heather Cole-Lewis, Elizabeth D. Mynatt, Andrea G. Parker, Katie A. Siek, Lena Mamykina. Leveling Up. Medical Care 2019, 57 (Suppl 2) , S108-S114. https://doi.org/10.1097/MLR.0000000000001032
    53. David Donaire-Gonzalez, Antònia Valentín, Erik van Nunen, Ariadna Curto, Albert Rodriguez, Mario Fernandez-Nieto, Alessio Naccarati, Sonia Tarallo, Ming-Yi Tsai, Nicole Probst-Hensch, Roel Vermeulen, Gerard Hoek, Paolo Vineis, John Gulliver, Mark J. Nieuwenhuijsen. ExpoApp: An integrated system to assess multiple personal environmental exposures. Environment International 2019, 126 , 494-503. https://doi.org/10.1016/j.envint.2019.02.054
    54. Elizabeth Bales, Nima Nikzad, Nichole Quick, Celal Ziftci, Kevin Patrick, William G. Griswold. Personal pollution monitoring: mobile real-time air quality in daily life. Personal and Ubiquitous Computing 2019, 23 (2) , 309-328. https://doi.org/10.1007/s00779-019-01206-3
    55. Ioar Rivas, Xavier Querol, John Wright, Jordi Sunyer. How to protect school children from the neurodevelopmental harms of air pollution by interventions in the school environment in the urban context. Environment International 2018, 121 , 199-206. https://doi.org/10.1016/j.envint.2018.08.063
    56. Judith Su. Portable and sensitive air pollution monitoring. Light: Science & Applications 2018, 7 (1) https://doi.org/10.1038/s41377-018-0017-x
    57. Natasha Constant. Role of Citizen Science in Air Quality Monitoring. 2018, 303-312. https://doi.org/10.1002/9781119260493.ch23
    58. Mandana Mazaheri, Samuel Clifford, Bijan Yeganeh, Mar Viana, Valeria Rizza, Robin Flament, Giorgio Buonanno, Lidia Morawska. Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International 2018, 120 , 496-504. https://doi.org/10.1016/j.envint.2018.08.033
    59. Brett Tunno, Drew Michanowicz, Jessie Shmool, Sheila Tripathy, Ellen Kinnee, Leah Cambal, Lauren Chubb, Courtney Roper, Jane Clougherty. Spatial Patterns in Rush-Hour vs. Work-Week Diesel-Related Pollution across a Downtown Core. International Journal of Environmental Research and Public Health 2018, 15 (9) , 1968. https://doi.org/10.3390/ijerph15091968
    60. Maëlle Salmon, Carles Milà, Santhi Bhogadi, Srivalli Addanki, Pavitra Madhira, Niharika Muddepaka, Amaravathi Mora, Margaux Sanchez, Sanjay Kinra, V. Sreekanth, Aiden Doherty, Julian D. Marshall, Cathryn Tonne. Wearable camera-derived microenvironments in relation to personal exposure to PM2.5. Environment International 2018, 117 , 300-307. https://doi.org/10.1016/j.envint.2018.05.021
    61. Xiaobing Pang, Marvin D. Shaw, Stefan Gillot, Alastair C. Lewis. The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring. Sensors and Actuators B: Chemical 2018, 266 , 674-684. https://doi.org/10.1016/j.snb.2018.03.144
    62. Dimitra Dritsa, Nimish Biloria. Towards a multi-scalar framework for smart healthcare. Smart and Sustainable Built Environment 2018, 7 (1) , 33-52. https://doi.org/10.1108/SASBE-10-2017-0057
    63. Daniela Dias, Oxana Tchepel. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. International Journal of Environmental Research and Public Health 2018, 15 (3) , 558. https://doi.org/10.3390/ijerph15030558
    64. Carli Lessof, Patrick Sturgis. New Kinds of Survey Measurements. 2018, 165-173. https://doi.org/10.1007/978-3-319-54395-6_22
    65. Philipp Schneider, Nuria Castell, Franck R. Dauge, Matthias Vogt, William A. Lahoz, Alena Bartonova. A Network of Low-Cost Air Quality Sensors and Its Use for Mapping Urban Air Quality. 2018, 93-110. https://doi.org/10.1007/978-3-319-70878-2_5
    66. Keita Ebisu, Brian Malig, Sina Hasheminassab, Constantinos Sioutas, Rupa Basu. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter. Environmental Research 2018, 160 , 358-364. https://doi.org/10.1016/j.envres.2017.10.015
    67. Glen E Duncan, Edmund Seto, Ally R Avery, Mike Oie, Graeme Carvlin, Elena Austin, Jeffry H Shirai, Jiayang He, Byron Ockerman, Igor Novosselov. Usability of a Personal Air Pollution Monitor: Design-Feedback Iterative Cycle Study. JMIR mHealth and uHealth 2018, 6 (12) , e12023. https://doi.org/10.2196/12023
    68. A. Larkin, P. Hystad. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Current Environmental Health Reports 2017, 4 (4) , 463-471. https://doi.org/10.1007/s40572-017-0163-y
    69. Mar Alvarez-Pedrerol, Ioar Rivas, Mònica López-Vicente, Elisabet Suades-González, David Donaire-Gonzalez, Marta Cirach, Montserrat de Castro, Mikel Esnaola, Xavier Basagaña, Payam Dadvand, Mark Nieuwenhuijsen, Jordi Sunyer. Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school. Environmental Pollution 2017, 231 , 837-844. https://doi.org/10.1016/j.envpol.2017.08.075
    70. Michael Jerrett, David Donaire-Gonzalez, Olalekan Popoola, Roderic Jones, Ronald C. Cohen, Estela Almanza, Audrey de Nazelle, Iq Mead, Glòria Carrasco-Turigas, Tom Cole-Hunter, Margarita Triguero-Mas, Edmund Seto, Mark Nieuwenhuijsen. Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science. Environmental Research 2017, 158 , 286-294. https://doi.org/10.1016/j.envres.2017.04.023
    71. Philipp Schneider, Nuria Castell, Matthias Vogt, Franck R. Dauge, William A. Lahoz, Alena Bartonova. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environment International 2017, 106 , 234-247. https://doi.org/10.1016/j.envint.2017.05.005
    72. P. Pañella, M. Casas, D. Donaire-Gonzalez, R. Garcia-Esteban, O. Robinson, A. Valentín, J. Gulliver, I. Momas, M. Nieuwenhuijsen, M. Vrijheid, J. Sunyer. Ultrafine particles and black carbon personal exposures in asthmatic and non-asthmatic children at school age. Indoor Air 2017, 27 (5) , 891-899. https://doi.org/10.1111/ina.12382
    73. Anondo Mukherjee, Levi Stanton, Ashley Graham, Paul Roberts. Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors 2017, 17 (8) , 1805. https://doi.org/10.3390/s17081805
    74. Mark J. Nieuwenhuijsen, Haneen Khreis, Ersilia Verlinghieri, Natalie Mueller, David Rojas-Rueda. Participatory quantitative health impact assessment of urban and transport planning in cities: A review and research needs. Environment International 2017, 103 , 61-72. https://doi.org/10.1016/j.envint.2017.03.022
    75. Atsuto Onoda, Takayasu Kawasaki, Koichi Tsukiyama, Ken Takeda, Masakazu Umezawa. Perivascular Accumulation of β-Sheet-Rich Proteins in Offspring Brain following Maternal Exposure to Carbon Black Nanoparticles. Frontiers in Cellular Neuroscience 2017, 11 https://doi.org/10.3389/fncel.2017.00092
    76. Michelle C. Turner, Mark Nieuwenhuijsen, Kim Anderson, David Balshaw, Yuxia Cui, Genevieve Dunton, Jane A. Hoppin, Petros Koutrakis, Michael Jerrett. Assessing the Exposome with External Measures: Commentary on the State of the Science and Research Recommendations. Annual Review of Public Health 2017, 38 (1) , 215-239. https://doi.org/10.1146/annurev-publhealth-082516-012802
    77. Gali Cohen, Yariv Gerber. Air Pollution and Successful Aging: Recent Evidence and New Perspectives. Current Environmental Health Reports 2017, 4 (1) , 1-11. https://doi.org/10.1007/s40572-017-0127-2
    78. Xiaobing Pang, Marvin D. Shaw, Alastair C. Lewis, Lucy J. Carpenter, Tanya Batchellier. Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring. Sensors and Actuators B: Chemical 2017, 240 , 829-837. https://doi.org/10.1016/j.snb.2016.09.020
    79. Haneen Khreis, Mark Nieuwenhuijsen. Traffic-Related Air Pollution and Childhood Asthma: Recent Advances and Remaining Gaps in the Exposure Assessment Methods. International Journal of Environmental Research and Public Health 2017, 14 (3) , 312. https://doi.org/10.3390/ijerph14030312
    80. Rakefet Shafran-Nathan, Yuval, Ilan Levy, David M. Broday. Exposure estimation errors to nitrogen oxides on a population scale due to daytime activity away from home. Science of The Total Environment 2017, 580 , 1401-1409. https://doi.org/10.1016/j.scitotenv.2016.12.105
    81. Georgia Miskell, Jennifer Salmond, David E. Williams. Low-cost sensors and crowd-sourced data: Observations of siting impacts on a network of air-quality instruments. Science of The Total Environment 2017, 575 , 1119-1129. https://doi.org/10.1016/j.scitotenv.2016.09.177
    82. Florian Matt, Tom Cole-Hunter, David Donaire-Gonzalez, Nadine Kubesch, David Martínez, Glòria Carrasco-Turigas, Mark Nieuwenhuijsen. Acute respiratory response to traffic-related air pollution during physical activity performance. Environment International 2016, 97 , 45-55. https://doi.org/10.1016/j.envint.2016.10.011
    83. Mark J. Nieuwenhuijsen. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environmental Health 2016, 15 (S1) https://doi.org/10.1186/s12940-016-0108-1
    84. Alastair Lewis, Peter Edwards. Validate personal air-pollution sensors. Nature 2016, 535 (7610) , 29-31. https://doi.org/10.1038/535029a
    85. Jonathan E. Thompson. Crowd-sourced air quality studies: A review of the literature & portable sensors. Trends in Environmental Analytical Chemistry 2016, 11 , 23-34. https://doi.org/10.1016/j.teac.2016.06.001
    86. I. Rivas, D. Donaire‐Gonzalez, L. Bouso, M. Esnaola, M. Pandolfi, M. Castro, M. Viana, M. Àlvarez‐Pedrerol, M. Nieuwenhuijsen, A. Alastuey, J. Sunyer, X. Querol. Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in B arcelona. Indoor Air 2016, 26 (3) , 391-402. https://doi.org/10.1111/ina.12214
    87. Eline B. Provost, Tijs Louwies, Bianca Cox, Jos op ‘t Roodt, Francesca Solmi, Evi Dons, Luc Int Panis, Patrick De Boever, Tim S. Nawrot. Short-term fluctuations in personal black carbon exposure are associated with rapid changes in carotid arterial stiffening. Environment International 2016, 88 , 228-234. https://doi.org/10.1016/j.envint.2015.12.023
    88. David Donaire-Gonzalez, Antònia Valentín, Audrey de Nazelle, Albert Ambros, Glòria Carrasco-Turigas, Edmund Seto, Michael Jerrett, Mark J Nieuwenhuijsen. Benefits of Mobile Phone Technology for Personal Environmental Monitoring. JMIR mHealth and uHealth 2016, 4 (4) , e126. https://doi.org/10.2196/mhealth.5771
    89. Kirsten A. Koehler, Thomas M. Peters. New Methods for Personal Exposure Monitoring for Airborne Particles. Current Environmental Health Reports 2015, 2 (4) , 399-411. https://doi.org/10.1007/s40572-015-0070-z
    90. Eric B. Brandt, Jocelyn M. Biagini Myers, Patrick H. Ryan, Gurjit K. Khurana Hershey. Air pollution and allergic diseases. Current Opinion in Pediatrics 2015, 27 (6) , 724-735. https://doi.org/10.1097/MOP.0000000000000286
    91. Giovanni Pau, Simona Segre Reinach, Marcus Im, Ines Tolic, Rita Tse, Gustavo Marfia. Mobile Sensing and Beyond in the Information Age. 2015, 3-6. https://doi.org/10.1145/2757290.2757294
    92. Matthias Budde, Marcel Köpke, Michael Beigl. Robust in-situ data reconstruction from poisson noise for low-cost, mobile, non-expert environmental sensing. 2015, 179-182. https://doi.org/10.1145/2802083.2808406

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect