ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Experimentally Determined Human Respiratory Tract Deposition of Airborne Particles at a Busy Street

View Author Information
Division of Nuclear Physics, Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden, Department of Environmental Health, Institute of Public Health, University of Copenhagen, Denmark, Department of Atmospheric Environment, National Environmental Research Institute, Aarhus University, Roskilde, Denmark, and Division of Ergonomics and Aerosol Technology, Lund University, Lund,Sweden
* Corresponding author phone: +46-46-2228113 or +46-73-5518636; e-mail: [email protected]
†Department of Physics, Lund University.
‡University of Copenhagen.
§Aarhus University.
∥Division of Ergonomics and Aerosol Technology, Lund University.
Cite this: Environ. Sci. Technol. 2009, 43, 13, 4659–4664
Publication Date (Web):March 24, 2009
https://doi.org/10.1021/es803029b
Copyright © 2009 American Chemical Society

    Article Views

    1230

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (431 KB)
    Supporting Info (1)»

    Abstract

    Traffic is one of the major sources of harmful airborne particles worldwide. To relate exposure to adverse health effects it is important to determine the deposition probability of the inhaled particles in the human respiratory tract. The size-dependent deposition of 12−580 nm particles was measured with a novel setup in 9 healthy subjects breathing by mouth on the windward side of a busy street in Copenhagen, Denmark. The aerosol was characterized both at the curbside and, to obtain the background concentration, at rooftop level. Particle hygroscopicity, a key parameter affecting respiratory tract deposition, was also measured at the same time of exposure. The total deposition fraction of the curbside particles in the range 12−580 nm was 0.60 by number, 0.29 by surface area, and 0.23 by mass. The deposition fractions of the “traffic exhaust” contribution, calculated as the hydrophobic fraction of the curbside particles, was 0.68, 0.35, and 0.28 by number, surface area, and mass, respectively. The deposited amount of traffic exhaust particles was 16 times higher by number and 3 times higher by surface area compared to the deposition of residential biofuel combustion particles investigated previously (equal inhaled mass concentrations). This was because the traffic exhaust particles had both a higher deposition probability and a higher number and surface area concentration per unit mass. To validate the results, the respiratory tract deposition was estimated by using the well-established ICRP model. Predictions were in agreement with experimental results when the effects of particle hygroscopicity were considered in the model.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Subject demographics, detailed experimental setup, HTDMA data values, individual deposition fractions, and description of the processing unit. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 80 publications.

    1. Lynn E. Secondo, Jessica A. Sagona, Leonardo Calderón, Zuocheng Wang, Deborah Plotnik, Jennifer Senick, MaryAnn Sorensen-Allacci, Richard Wener, Clinton J. Andrews, Gediminas Mainelis. Estimating Lung Deposition of Fungal Spores Using Actual Airborne Spore Concentrations and Physiological Data. Environmental Science & Technology 2021, 55 (3) , 1852-1863. https://doi.org/10.1021/acs.est.0c05540
    2. Ming-Yeng Lin, Yu-Cheng Chen, Dung-Ying Lin, Bing-Fang Hwang, Hui-Tsung Hsu, Yu-Hsiang Cheng, Yu-Ting Liu, Perng-Jy Tsai. Effect of Implementing Electronic Toll Collection in Reducing Highway Particulate Matter Pollution. Environmental Science & Technology 2020, 54 (15) , 9210-9216. https://doi.org/10.1021/acs.est.0c00900
    3. Evi Dons, Michelle Laeremans, Juan Pablo Orjuela, Ione Avila-Palencia, Glòria Carrasco-Turigas, Tom Cole-Hunter, Esther Anaya-Boig, Arnout Standaert, Patrick De Boever, Tim Nawrot, Thomas Götschi, Audrey de Nazelle, Mark Nieuwenhuijsen, and Luc Int Panis . Wearable Sensors for Personal Monitoring and Estimation of Inhaled Traffic-Related Air Pollution: Evaluation of Methods. Environmental Science & Technology 2017, 51 (3) , 1859-1867. https://doi.org/10.1021/acs.est.6b05782
    4. Jong-sang Youn, Janae Csavina, Kyle P. Rine, Taylor Shingler, Mark Patrick Taylor, A. Eduardo Sáez, Eric A. Betterton, and Armin Sorooshian . Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environmental Science & Technology 2016, 50 (21) , 11706-11713. https://doi.org/10.1021/acs.est.6b03621
    5. N. Hudda and S. A. Fruin . International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations. Environmental Science & Technology 2016, 50 (7) , 3362-3370. https://doi.org/10.1021/acs.est.5b05313
    6. Allen E. Haddrell, James F. Davies, and Jonathan P. Reid . Dynamics of Particle Size on Inhalation of Environmental Aerosol and Impact on Deposition Fraction. Environmental Science & Technology 2015, 49 (24) , 14512-14521. https://doi.org/10.1021/acs.est.5b01930
    7. Jenny Rissler, Erik Z. Nordin, Axel C. Eriksson, Patrik T. Nilsson, Mia Frosch, Moa K. Sporre, Aneta Wierzbicka, Birgitta Svenningsson, Jakob Löndahl, Maria E. Messing, Staffan Sjogren, Jette G. Hemmingsen, Steffen Loft, Joakim H. Pagels, and Erik Swietlicki . Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment. Environmental Science & Technology 2014, 48 (11) , 6300-6308. https://doi.org/10.1021/es5000353
    8. Yan Yang, Zijian Ma, Yijie Zhuang, Xiaoao Long, Yingxin Yu. Development of multi-generation lower respiratory tract model and insights into the transport and deposition characteristics of inhalable particles. Science of The Total Environment 2023, 904 , 166725. https://doi.org/10.1016/j.scitotenv.2023.166725
    9. Mihalis Lazaridis. Modelling approaches to particle deposition and clearance in the human respiratory tract. Air Quality, Atmosphere & Health 2023, 6 https://doi.org/10.1007/s11869-023-01386-1
    10. Ta-Chih Hsiao, Chia-Li Han, Tzu-Ting Yang, Yueh-Lun Lee, Yu-Fang Shen, Yu-Teng Jheng, Chii-Hong Lee, Jer-Hwa Chang, Kian Fan Chung, Han-Pin Kuo, Hsiao-Chi Chuang. Importance of surface charge of soot nanoparticles in determining inhalation toxicity in mice. Environmental Science and Pollution Research 2023, 30 (7) , 18985-18997. https://doi.org/10.1007/s11356-022-23444-4
    11. Janica N. D. Gordon, Kelsey R. Bilsback, Marc N. Fiddler, Rudra P. Pokhrel, Emily V. Fischer, Jeffrey R. Pierce, Solomon Bililign. The Effects of Trash, Residential Biofuel, and Open Biomass Burning Emissions on Local and Transported PM 2.5 and Its Attributed Mortality in Africa. GeoHealth 2023, 7 (2) https://doi.org/10.1029/2022GH000673
    12. Shakil A. Saghir, Mylene G. Cayetano, Rais A. Ansari. Dose: Nominal versus actual. 2023https://doi.org/10.1016/B978-0-12-824315-2.00763-6
    13. Leizel Madueño, Simonas Kecorius, Jakob Löndahl, Jürgen Schnelle-Kreis, Alfred Wiedensohler, Mira Pöhlker. A novel in-situ method to determine the respiratory tract deposition of carbonaceous particles reveals dangers of public commuting in highly polluted megacity. Particle and Fibre Toxicology 2022, 19 (1) https://doi.org/10.1186/s12989-022-00501-x
    14. Xuan-Huy Ninh, Jing-Wen Su, Hong-Yiou Lin, Yung-Chung Chen, Sheng-He Wang, How-Ran Guo, Yao-Lung Kuo, Ming-Yeng Lin. Applying negative ions to reduce surgical smoke in operation room. Atmospheric Environment: X 2022, 15 , 100184. https://doi.org/10.1016/j.aeaoa.2022.100184
    15. Salman Khan, Bhola Ram Gurjar, Veerendra Sahu. Deposition modeling of ambient particulate matter in the human respiratory tract. Atmospheric Pollution Research 2022, 13 (10) , 101565. https://doi.org/10.1016/j.apr.2022.101565
    16. E. Haffner‐Staton, L. Avanzini, A. La Rocca, S. A. Pfau, A. Cairns. Automated particle recognition for engine soot nanoparticles. Journal of Microscopy 2022, 288 (1) , 28-39. https://doi.org/10.1111/jmi.13140
    17. Po-Kai Chang, Stephen M. Griffith, Hsiao-Chi Chuang, Kai-Jen Chuang, Yu-Hui Wang, Kuo-En Chang, Ta-Chih Hsiao. Particulate matter in a motorcycle-dominated urban area: Source apportionment and cancer risk of lung deposited surface area (LDSA) concentrations. Journal of Hazardous Materials 2022, 427 , 128188. https://doi.org/10.1016/j.jhazmat.2021.128188
    18. Ruiqi Man, Zhijun Wu, Taomou Zong, Aristeidis Voliotis, Yanting Qiu, Johannes Größ, Dominik van Pinxteren, Limin Zeng, Hartmut Herrmann, Alfred Wiedensohler, Min Hu. Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions. Atmospheric Chemistry and Physics 2022, 22 (18) , 12387-12399. https://doi.org/10.5194/acp-22-12387-2022
    19. Tuan V. Vu, Zongbo Shi, Roy M. Harrison. Estimation of hygroscopic growth properties of source-related sub-micrometre particle types in a mixed urban aerosol. npj Climate and Atmospheric Science 2021, 4 (1) https://doi.org/10.1038/s41612-021-00175-w
    20. Jiwei Li, Zhisheng Zhang, Yunfei Wu, Jun Tao, Yunjie Xia, Chaoying Wang, Renjian Zhang. Effects of chemical compositions in fine particles and their identified sources on hygroscopic growth factor during dry season in urban Guangzhou of South China. Science of The Total Environment 2021, 801 , 149749. https://doi.org/10.1016/j.scitotenv.2021.149749
    21. Bojiang Su, Guohua Zhang, Zeming Zhuo, Qinhui Xie, Xubing Du, YuZhen Fu, Si Wu, Fugui Huang, Xinhui Bi, Xue Li, Lei Li, Zhen Zhou. Different characteristics of individual particles from light-duty diesel vehicle at the launching and idling state by AAC-SPAMS. Journal of Hazardous Materials 2021, 418 , 126304. https://doi.org/10.1016/j.jhazmat.2021.126304
    22. Lingli Guo, Fahard Salimi, Hao Wang, Werner Hofmann, Graham R. Johnson, Brett G. Toelle, Guy B. Marks, Lidia Morawska. Experimentally determined deposition of ambient urban ultrafine particles in the respiratory tract of children. Environment International 2020, 145 , 106094. https://doi.org/10.1016/j.envint.2020.106094
    23. Carley Schwartz, Anette Kocbach Bølling, Christopher Carlsten. Controlled human exposures to wood smoke: a synthesis of the evidence. Particle and Fibre Toxicology 2020, 17 (1) https://doi.org/10.1186/s12989-020-00375-x
    24. Joseph Ching, Mizuo Kajino, Hitoshi Matsui. Resolving aerosol mixing state increases accuracy of black carbon respiratory deposition estimates. One Earth 2020, 3 (6) , 763-776. https://doi.org/10.1016/j.oneear.2020.11.004
    25. Stavros Cheristanidis, Georgios Grivas, Archontoula Chaloulakou. Determination of total and lung-deposited particle surface area concentrations, in central Athens, Greece. Environmental Monitoring and Assessment 2020, 192 (10) https://doi.org/10.1007/s10661-020-08569-8
    26. Tianren Wu, Brandon E. Boor. Characterization of a thermal aerosol generator for HVAC filtration experiments (RP-1734). Science and Technology for the Built Environment 2020, 26 (6) , 816-834. https://doi.org/10.1080/23744731.2020.1730661
    27. Yue Lin, Roya Bahreini, Seung-Bok Lee, Gwi-Nam Bae, Heejung Jung. Correlations of PM metrics with human respiratory system deposited PM mass determined from ambient particle size distributions and effective densities. Aerosol Science and Technology 2020, 54 (3) , 262-276. https://doi.org/10.1080/02786826.2019.1690630
    28. Wenjuan Wei, Olivier Ramalho, Corinne Mandin. Modeling the bioaccessibility of inhaled semivolatile organic compounds in the human respiratory tract. International Journal of Hygiene and Environmental Health 2020, 224 , 113436. https://doi.org/10.1016/j.ijheh.2019.113436
    29. Lingli Guo, Graham R. Johnson, Werner Hofmann, Hao Wang, Lidia Morawska. Deposition of ambient ultrafine particles in the respiratory tract of children: A novel experimental method and its application. Journal of Aerosol Science 2020, 139 , 105465. https://doi.org/10.1016/j.jaerosci.2019.105465
    30. Tareq Hussein, Shatha Saleh, Vanessa dos Santos, Brandon Boor, Antti Koivisto, Jakob Löndahl. Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern Mediterranean City. Atmosphere 2019, 10 (9) , 530. https://doi.org/10.3390/atmos10090530
    31. Jong-Sang Youn, Jeong-Won Seo, Sehyun Han, Ki-Joon Jeon. Characteristics of nanoparticle formation and hazardous air pollutants emitted by 3D printer operations: from emission to inhalation. RSC Advances 2019, 9 (34) , 19606-19612. https://doi.org/10.1039/C9RA03248G
    32. Juana Maria Delgado-Saborit. Indoor Air as a Contributor to Air Pollution Exposure. 2019, 158-195. https://doi.org/10.1039/9781788016179-00158
    33. A. L. Hodshire, Q. Bian, E. Ramnarine, C. R. Lonsdale, M. J. Alvarado, S. M. Kreidenweis, S. H. Jathar, J. R. Pierce. More Than Emissions and Chemistry: Fire Size, Dilution, and Background Aerosol Also Greatly Influence Near‐Field Biomass Burning Aerosol Aging. Journal of Geophysical Research: Atmospheres 2019, 124 (10) , 5589-5611. https://doi.org/10.1029/2018JD029674
    34. Simonas Kecorius, Leizel Madueño, Jakob Löndahl, Edgar Vallar, Maria Cecilia Galvez, Luisito F. Idolor, Mylene Gonzaga-Cayetano, Thomas Müller, Wolfram Birmili, Alfred Wiedensohler. Respiratory tract deposition of inhaled roadside ultrafine refractory particles in a polluted megacity of South-East Asia. Science of The Total Environment 2019, 663 , 265-274. https://doi.org/10.1016/j.scitotenv.2019.01.338
    35. E. R. Jayaratne, X. Ling, B. Pushpawela, L. Morawska. Experimental determination of the dispersion of ions from a point source in the environment. Environmental Technology 2019, 40 (10) , 1213-1222. https://doi.org/10.1080/09593330.2017.1418912
    36. J. K. Kodros, J. Volckens, S. H. Jathar, J. R. Pierce. Ambient Particulate Matter Size Distributions Drive Regional and Global Variability in Particle Deposition in the Respiratory Tract. GeoHealth 2018, 2 (10) , 298-312. https://doi.org/10.1029/2018GH000145
    37. Tuan V. Vu, Stefano Zauli-Sajani, Vanes Poluzzi, Roy M. Harrison. Factors controlling the lung dose of road traffic-generated sub-micrometre aerosols from outdoor to indoor environments. Air Quality, Atmosphere & Health 2018, 11 (6) , 615-625. https://doi.org/10.1007/s11869-018-0568-2
    38. Eleftheria Chalvatzaki, Mihalis Lazaridis. Α dosimetry model of hygroscopic particle growth in the human respiratory tract. Air Quality, Atmosphere & Health 2018, 11 (4) , 471-482. https://doi.org/10.1007/s11869-018-0555-7
    39. Anubha Goel, Saifi Izhar, Tarun Gupta. Study of Environmental Particle Levels, Its Effects on Lung Deposition and Relationship With Human Behaviour. 2018, 77-91. https://doi.org/10.1007/978-981-10-7332-8_4
    40. Allen E Haddrell, David Lewis, Tanya Church, Reinhard Vehring, Darragh Murnane, Jonathan P Reid. Pulmonary aerosol delivery and the importance of growth dynamics. Therapeutic Delivery 2017, 8 (12) , 1051-1061. https://doi.org/10.4155/tde-2017-0093
    41. A. C. Eriksson, C. Wittbom, P. Roldin, M. Sporre, E. Öström, P. Nilsson, J. Martinsson, J. Rissler, E. Z. Nordin, B. Svenningsson, J. Pagels, E. Swietlicki. Diesel soot aging in urban plumes within hours under cold dark and humid conditions. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-12433-0
    42. Robert Sturm. Computer-aided generation and lung deposition modeling of nano-scale particle aggregates. Inhalation Toxicology 2017, 29 (4) , 160-168. https://doi.org/10.1080/08958378.2017.1329362
    43. Renlin Zhang, Yilong Zhang, Sanghoon Kook. Morphological variations of in-flame and exhaust soot particles associated with jet-to-jet variations and jet–jet interactions in a light-duty diesel engine. Combustion and Flame 2017, 176 , 377-390. https://doi.org/10.1016/j.combustflame.2016.11.003
    44. Tuan V. Vu, Jakub Ondracek, Vladimir Zdímal, Jaroslav Schwarz, Juana Maria Delgado-Saborit, Roy M. Harrison. Physical properties and lung deposition of particles emitted from five major indoor sources. Air Quality, Atmosphere & Health 2017, 10 (1) , 1-14. https://doi.org/10.1007/s11869-016-0424-1
    45. M. Bogarra, J.M. Herreros, A. Tsolakis, A.P.E. York, P.J. Millington, F.J. Martos. Impact of exhaust gas fuel reforming and exhaust gas recirculation on particulate matter morphology in Gasoline Direct Injection Engine. Journal of Aerosol Science 2017, 103 , 1-14. https://doi.org/10.1016/j.jaerosci.2016.10.001
    46. Anil Namdeo, Sudheer Ballare, Harry Job, Divya Namdeo. Commuter Exposure to Air Pollution in Newcastle, U.K., and Mumbai, India. Journal of Hazardous, Toxic, and Radioactive Waste 2016, 20 (4) https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000232
    47. Anna Dahlman-Höglund, Åsa Lindgren, Inger Mattsby-Baltzer. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles. Annals of Occupational Hygiene 2016, 60 (7) , 836-844. https://doi.org/10.1093/annhyg/mew036
    48. Jae Young Lee, Sung Hee Ryu, Chang Hyeok Kim, Gwi-Nam Bae. Indoor-to-outdoor pollutant concentration ratio modeling of CO2, NO2, and lung-deposited nanoparticles. Atmospheric Pollution Research 2016, 7 (4) , 664-670. https://doi.org/10.1016/j.apr.2016.02.007
    49. Ta-Chih Hsiao, Li-Hao Young, Yu-Chun Tai, Ke-Ching Chen. Aqueous film formation on irregularly shaped inorganic nanoparticles before deliquescence, as revealed by a hygroscopic differential mobility analyzer–Aerosol particle mass system. Aerosol Science and Technology 2016, 50 (6) , 568-577. https://doi.org/10.1080/02786826.2016.1168512
    50. Vânia Martins, María Cruz Minguillón, Teresa Moreno, Xavier Querol, Eladio de Miguel, Marta Capdevila, Sonia Centelles, Mihalis Lazaridis. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. Journal of Aerosol Science 2015, 90 , 103-113. https://doi.org/10.1016/j.jaerosci.2015.08.008
    51. Torben Sigsgaard, Bertil Forsberg, Isabella Annesi-Maesano, Anders Blomberg, Anette Bølling, Christoffer Boman, Jakob Bønløkke, Michael Brauer, Nigel Bruce, Marie-Eve Héroux, Maija-Riitta Hirvonen, Frank Kelly, Nino Künzli, Bo Lundbäck, Hanns Moshammer, Curtis Noonan, Joachim Pagels, Gerd Sallsten, Jean-Paul Sculier, Bert Brunekreef. Health impacts of anthropogenic biomass burning in the developed world. European Respiratory Journal 2015, 46 (6) , 1577-1588. https://doi.org/10.1183/13993003.01865-2014
    52. Tuan V. Vu, Juana Maria Delgado-Saborit, Roy M. Harrison. A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Quality, Atmosphere & Health 2015, 8 (5) , 429-440. https://doi.org/10.1007/s11869-015-0365-0
    53. Ala Muala, Hanna Nicklasson, Christoffer Boman, Erik Swietlicki, Robin Nyström, Esbjörn Pettersson, Jenny A Bosson, Jenny Rissler, Anders Blomberg, Thomas Sandström, Jakob Löndahl. Respiratory Tract Deposition of Inhaled Wood Smoke Particles in Healthy Volunteers. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2015, 28 (4) , 237-246. https://doi.org/10.1089/jamp.2014.1122
    54. Cristina Reche, Mar Viana, Mariola Brines, Noemí Pérez, David Beddows, Andrés Alastuey, Xavier Querol. Determinants of aerosol lung-deposited surface area variation in an urban environment. Science of The Total Environment 2015, 517 , 38-47. https://doi.org/10.1016/j.scitotenv.2015.02.049
    55. Majid Kajbafzadeh, Michael Brauer, Barbara Karlen, Chris Carlsten, Stephan van Eeden, Ryan W Allen. The impacts of traffic-related and woodsmoke particulate matter on measures of cardiovascular health: a HEPA filter intervention study. Occupational and Environmental Medicine 2015, 72 (6) , 394-400. https://doi.org/10.1136/oemed-2014-102696
    56. Marguerite Nyhan, Aonghus McNabola, Bruce Misstear. Evaluating artificial neural networks for predicting minute ventilation and lung deposited dose in commuting cyclists. Journal of Transport & Health 2014, 1 (4) , 305-315. https://doi.org/10.1016/j.jth.2014.09.014
    57. Annie Jensen, Dorina Gabriela Karottki, Jannie Marie Christensen, Jakob Hjort Bønløkke, Torben Sigsgaard, Marianne Glasius, Steffen Loft, Peter Møller. Biomarkers of oxidative stress and inflammation after wood smoke exposure in a reconstructed Viking Age house. Environmental and Molecular Mutagenesis 2014, 55 (8) , 652-661. https://doi.org/10.1002/em.21877
    58. Jakob Löndahl, Winfried Möller, Joakim H. Pagels, Wolfgang G. Kreyling, Erik Swietlicki, Otmar Schmid. Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2014, 27 (4) , 229-254. https://doi.org/10.1089/jamp.2013.1044
    59. Gregory C Pratt, Kris Parson, Naomi Shinoda, Paula Lindgren, Sara Dunlap, Barbara Yawn, Peter Wollan, Jean Johnson. Quantifying traffic exposure. Journal of Exposure Science & Environmental Epidemiology 2014, 24 (3) , 290-296. https://doi.org/10.1038/jes.2013.51
    60. Marguerite Nyhan, Aonghus McNabola, Bruce Misstear. Comparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Science of The Total Environment 2014, 468-469 , 821-831. https://doi.org/10.1016/j.scitotenv.2013.08.096
    61. C. Wittbom, A. C. Eriksson, J. Rissler, J. E. Carlsson, P. Roldin, E. Z. Nordin, P. T. Nilsson, E. Swietlicki, J. H. Pagels, B. Svenningsson. Cloud droplet activity changes of soot aerosol upon smog chamber ageing. Atmospheric Chemistry and Physics 2014, 14 (18) , 9831-9854. https://doi.org/10.5194/acp-14-9831-2014
    62. L. Morawska, A. Afshari, G. N. Bae, G. Buonanno, C. Y. H. Chao, O. Hänninen, W. Hofmann, C. Isaxon, E. R. Jayaratne, P. Pasanen, T. Salthammer, M. Waring, A. Wierzbicka. Indoor aerosols: from personal exposure to risk assessment. Indoor Air 2013, 23 (6) , 462-487. https://doi.org/10.1111/ina.12044
    63. Agata Penconek, Arkadiusz Moskal. Deposition of diesel exhaust particles from various fuels in a cast of human respiratory system under two breathing patterns. Journal of Aerosol Science 2013, 63 , 48-59. https://doi.org/10.1016/j.jaerosci.2013.04.008
    64. Tareq Hussein, Jakob Löndahl, Pauli Paasonen, Antti Joonas Koivisto, Tuukka Petäjä, Kaarle Hämeri, Markku Kulmala. Modeling regional deposited dose of submicron aerosol particles. Science of The Total Environment 2013, 458-460 , 140-149. https://doi.org/10.1016/j.scitotenv.2013.04.022
    65. Kathleen H. Kozawa, Arthur M. Winer, Scott A. Fruin. Ultrafine particle size distributions near freeways: Effects of differing wind directions on exposure. Atmospheric Environment 2012, 63 , 250-260. https://doi.org/10.1016/j.atmosenv.2012.09.045
    66. Lykke Forchhammer, Peter Møller, Ingunn Skogstad Riddervold, Jakob Bønløkke, Andreas Massling, Torben Sigsgaard, Steffen Loft. Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function. Particle and Fibre Toxicology 2012, 9 (1) https://doi.org/10.1186/1743-8977-9-7
    67. Xiaochen Tang, Zhongqing Zheng, Heejung S. Jung, Akua Asa-Awuku. The Effects of Mainstream and Sidestream Environmental Tobacco Smoke Composition for Enhanced Condensational Droplet Growth by Water Vapor. Aerosol Science and Technology 2012, 46 (7) , 760-766. https://doi.org/10.1080/02786826.2012.663949
    68. Jenny Rissler, Erik Swietlicki, Agneta Bengtsson, Christoffer Boman, Joakim Pagels, Thomas Sandström, Anders Blomberg, Jakob Löndahl. Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science 2012, 48 , 18-33. https://doi.org/10.1016/j.jaerosci.2012.01.005
    69. Lykke Forchhammer, Steffen Loft, Martin Roursgaard, Yi Cao, Ingunn Skogstad Riddervold, Torben Sigsgaard, Peter Møller. Expression of adhesion molecules, monocyte interactions and oxidative stress in human endothelial cells exposed to wood smoke and diesel exhaust particulate matter. Toxicology Letters 2012, 209 (2) , 121-128. https://doi.org/10.1016/j.toxlet.2011.12.003
    70. Hector A. Olvera, Daniel Perez, Juan W. Clague, Yung-Sung Cheng, Wen-Whai Li, Maria A. Amaya, Scott W. Burchiel, Marianne Berwick, Nicholas E. Pingitore. The Effect of Ventilation, Age, and Asthmatic Condition on Ultrafine Particle Deposition in Children. Pulmonary Medicine 2012, 2012 , 1-9. https://doi.org/10.1155/2012/736290
    71. Jakob Löndahl, Erik Swietlicki, Jenny Rissler, Agneta Bengtsson, Christoffer Boman, Anders Blomberg, Thomas Sandström. Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease. Particle and Fibre Toxicology 2012, 9 (1) , 30. https://doi.org/10.1186/1743-8977-9-30
    72. Luc Int Panis, Hanny Willems, Bart Degraeuwe, Nico Bleux, Inge Bos, Lotte Jacobs, Grégory Vandenbulcke, Bas de Geus, Romain Meeusen, Isabelle Thomas, Tim Nawrot. Lung deposited dose of UFP and PM for cyclists and car passengers in Belgium. 2012, 171-180. https://doi.org/10.1007/978-94-007-2540-9_16
    73. Kati Oravisjärvi, Mari Pietikäinen, Juhani Ruuskanen, Arja Rautio, Arto Voutilainen, Riitta L. Keiski. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. Science of The Total Environment 2011, 409 (21) , 4511-4518. https://doi.org/10.1016/j.scitotenv.2011.07.020
    74. Celia Faiola, Anne M. Johansen, Sara Rybka, Annika Nieber, Carin Thomas, Stephanie Bryner, Justin Johnston, Mark Engelhard, Ponnusamy Nachimuthu, Kalyn S. Owens. Ultrafine Particulate Ferrous Iron and Anthracene Associations with Mitochondrial Dysfunction. Aerosol Science and Technology 2011, 45 (9) , 1109-1122. https://doi.org/10.1080/02786826.2011.581255
    75. V. M. Arlt, T. Schwerdtle. UKEMS/Dutch EMS-sponsored workshop on biomarkers of exposure and oxidative DNA damage & 7th GUM-32P-postlabelling workshop, University of Munster, Munster, Germany, 28-29 March 2011. Mutagenesis 2011, 26 (5) , 679-685. https://doi.org/10.1093/mutage/ger036
    76. Sarah B. Henderson, Michael Brauer, Ying C. MacNab, Susan M. Kennedy. Three Measures of Forest Fire Smoke Exposure and Their Associations with Respiratory and Cardiovascular Health Outcomes in a Population-Based Cohort. Environmental Health Perspectives 2011, 119 (9) , 1266-1271. https://doi.org/10.1289/ehp.1002288
    77. David M. Broday, Ravid Rosenzweig. Deposition of fractal-like soot aggregates in the human respiratory tract. Journal of Aerosol Science 2011, 42 (6) , 372-386. https://doi.org/10.1016/j.jaerosci.2011.03.001
    78. Maria Sehlstedt, Rosamund Dove, Christoffer Boman, Joakim Pagels, Erik Swietlicki, Jakob Löndahl, Roger Westerholm, Jenny Bosson, Stefan Barath, Annelie F Behndig, Jamshid Pourazar, Thomas Sandström, Ian S Mudway, Anders Blomberg. Antioxidant airway responses following experimental exposure to wood smoke in man. Particle and Fibre Toxicology 2010, 7 (1) https://doi.org/10.1186/1743-8977-7-21
    79. Zorana Jovanovic Andersen, Tom Skyhøj Olsen, Klaus Kaae Andersen, Steffen Loft, Matthias Ketzel, Ole Raaschou-Nielsen. Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. European Heart Journal 2010, 31 (16) , 2034-2040. https://doi.org/10.1093/eurheartj/ehq188
    80. Armistead G. Russell, Bert Brunekreef. A Focus on Particulate Matter and Health. Environmental Science & Technology 2009, 43 (13) , 4620-4625. https://doi.org/10.1021/es9005459

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect