Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil
- John W. Washington
- ,
- J. Jackson Ellington
- ,
- Thomas M. Jenkins
- ,
- John J. Evans
- ,
- Hoon Yoo
- , and
- Sarah C. Hafner
Abstract
Fluorotelomer polymers are used in a broad array of products in modern societies worldwide and, if they degrade at significant rates, potentially are a significant source of perfluorooctanoic acid (PFOA) and related compounds to the environment. To evaluate this possibility, we incubated an acrylate-linked fluorotelomer polymer in soil microcosms and monitored the microcosms for possible fluorotelomer (FT) and perfluorinated-compound (PFC) degradation products using GC/MS and LC/MS/MS. This polymer scavenged FTs and PFCs aggressively necessitating development of a multistep extraction using two solvents. Aged microcosms accumulated more FTs and PFCs than were present in the fresh polymer indicating polymer degradation with a half-life of about 870−1400 years for our coarse-grained test polymer. Modeling indicates that more-finely grained polymers in soils might have half-lives of about 10−17 years assuming degradation is surface-mediated. In our polymer-soil microcosms, PFOA evidently was lost with a half-life as short as 130 days, possibly by polymer-catalyzed degradation. These results suggest that fluorotelomer-polymer degradation is a significant source of PFOA and other fluorinated compounds to the environment.
Cited By
This article is cited by 115 publications.
- Edmund H. Antell, Shan Yi, Christopher I. Olivares, Bridger J. Ruyle, Jacob T. Kim, Katerina Tsou, Fuhar Dixit, Lisa Alvarez-Cohen, David L. Sedlak. The Total Oxidizable Precursor (TOP) Assay as a Forensic Tool for Per- and Polyfluoroalkyl Substances (PFAS) Source Apportionment. ACS ES&T Water 2023, Article ASAP.
- Ivan A. Titaley, Florentino B. De la Cruz, Morton A. Barlaz, Jennifer A. Field. Neutral Per- and Polyfluoroalkyl Substances in In Situ Landfill Gas by Thermal Desorption–Gas Chromatography–Mass Spectrometry. Environmental Science & Technology Letters 2023, 10
(3)
, 214-221. https://doi.org/10.1021/acs.estlett.3c00037
- Chunjie Xia, Miriam L. Diamond, Graham F. Peaslee, Hui Peng, Arlene Blum, Zhanyun Wang, Anna Shalin, Heather D. Whitehead, Megan Green, Heather Schwartz-Narbonne, Diwen Yang, Marta Venier. Per- and Polyfluoroalkyl Substances in North American School Uniforms. Environmental Science & Technology 2022, 56
(19)
, 13845-13857. https://doi.org/10.1021/acs.est.2c02111
- Jingzhi Yao, Nan Sheng, Yong Guo, Leo W.Y. Yeung, Jiayin Dai, Yitao Pan. Nontargeted Identification and Temporal Trends of Per- and Polyfluoroalkyl Substances in a Fluorochemical Industrial Zone and Adjacent Taihu Lake. Environmental Science & Technology 2022, 56
(12)
, 7986-7996. https://doi.org/10.1021/acs.est.2c00891
- Ioannis Liagkouridis, Raed Awad, Steffen Schellenberger, Merle M. Plassmann, Ian T. Cousins, Jonathan P. Benskin. Combined Use of Total Fluorine and Oxidative Fingerprinting for Quantitative Determination of Side-Chain Fluorinated Polymers in Textiles. Environmental Science & Technology Letters 2022, 9
(1)
, 30-36. https://doi.org/10.1021/acs.estlett.1c00822
- Steffen Schellenberger, Christina Jönsson, Pelle Mellin, Oscar A. Levenstam, Ioannis Liagkouridis, Anton Ribbenstedt, Anne-Charlotte Hanning, Lara Schultes, Merle M. Plassmann, Caiza Persson, Ian T. Cousins, Jonathan P. Benskin. Release of Side-Chain Fluorinated Polymer-Containing Microplastic Fibers from Functional Textiles During Washing and First Estimates of Perfluoroalkyl Acid Emissions. Environmental Science & Technology 2019, 53
(24)
, 14329-14338. https://doi.org/10.1021/acs.est.9b04165
- Yi Wang, Nanyang Yu, Xiaobin Zhu, Huiwei Guo, Jianguo Jiang, Xuebing Wang, Wei Shi, Jichun Wu, Hongxia Yu, Si Wei. Suspect and Nontarget Screening of Per- and Polyfluoroalkyl Substances in Wastewater from a Fluorochemical Manufacturing Park. Environmental Science & Technology 2018, 52
(19)
, 11007-11016. https://doi.org/10.1021/acs.est.8b03030
- Li Li, Jianguo Liu, Jianxin Hu, and Frank Wania . Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis. Environmental Science & Technology 2017, 51
(8)
, 4461-4470. https://doi.org/10.1021/acs.est.6b04021
- Zhanyun Wang, Justin M. Boucher, Martin Scheringer, Ian T. Cousins, and Konrad Hungerbühler . Toward a Comprehensive Global Emission Inventory of C4–C10 Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C8-Based Products and Ongoing Industrial Transition. Environmental Science & Technology 2017, 51
(8)
, 4482-4493. https://doi.org/10.1021/acs.est.6b06191
- Johnsie R. Lang, B. McKay Allred, Graham F. Peaslee, Jennifer A. Field, and Morton A. Barlaz . Release of Per- and Polyfluoroalkyl Substances (PFASs) from Carpet and Clothing in Model Anaerobic Landfill Reactors. Environmental Science & Technology 2016, 50
(10)
, 5024-5032. https://doi.org/10.1021/acs.est.5b06237
- Wen-Che Hou, Chen-Jing He, Yi-Sheng Wang, David K. Wang, and Richard G. Zepp . Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon. Environmental Science & Technology 2016, 50
(7)
, 3494-3502. https://doi.org/10.1021/acs.est.5b04727
- John W. Washington and Thomas M. Jenkins . Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a Source of Perfluorocarboxylates at the Global Scale. Environmental Science & Technology 2015, 49
(24)
, 14129-14135. https://doi.org/10.1021/acs.est.5b03686
- John W. Washington, Thomas M. Jenkins, and Eric J. Weber . Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products. Environmental Science & Technology 2015, 49
(22)
, 13256-13263. https://doi.org/10.1021/acs.est.5b03379
- Keegan Rankin and Scott A. Mabury . Matrix Normalized MALDI-TOF Quantification of a Fluorotelomer-Based Acrylate Polymer. Environmental Science & Technology 2015, 49
(10)
, 6093-6101. https://doi.org/10.1021/es505931v
- Yanna Liu, Alberto Dos Santos Pereira, and Jonathan W. Martin . Discovery of C5–C17 Poly- and Perfluoroalkyl Substances in Water by In-Line SPE-HPLC-Orbitrap with In-Source Fragmentation Flagging. Analytical Chemistry 2015, 87
(8)
, 4260-4268. https://doi.org/10.1021/acs.analchem.5b00039
- John W. Washington, Thomas M. Jenkins, Keegan Rankin, and Jonathan E. Naile . Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water. Environmental Science & Technology 2015, 49
(2)
, 915-923. https://doi.org/10.1021/es504347u
- Keegan Rankin, Holly Lee, Pablo J. Tseng, and Scott A. Mabury . Investigating the Biodegradability of a Fluorotelomer-Based Acrylate Polymer in a Soil–Plant Microcosm by Indirect and Direct Analysis. Environmental Science & Technology 2014, 48
(21)
, 12783-12790. https://doi.org/10.1021/es502986w
- Shaogang Chu and Robert J. Letcher . In Vitro Metabolic Formation of Perfluoroalkyl Sulfonamides from Copolymer Surfactants of Pre- and Post-2002 Scotchgard Fabric Protector Products. Environmental Science & Technology 2014, 48
(11)
, 6184-6191. https://doi.org/10.1021/es500169x
- John W. Washington, Jonathan E. Naile, Thomas M. Jenkins, and David G. Lynch . Characterizing Fluorotelomer and Polyfluoroalkyl Substances in New and Aged Fluorotelomer-Based Polymers for Degradation Studies with GC/MS and LC/MS/MS. Environmental Science & Technology 2014, 48
(10)
, 5762-5769. https://doi.org/10.1021/es500373b
- Holly Lee, Alex G. Tevlin, Scotia A. Mabury, and Scott A. Mabury . Fate of Polyfluoroalkyl Phosphate Diesters and Their Metabolites in Biosolids-Applied Soil: Biodegradation and Plant Uptake in Greenhouse and Field Experiments. Environmental Science & Technology 2014, 48
(1)
, 340-349. https://doi.org/10.1021/es403949z
- Jonathan P. Benskin, Michael G. Ikonomou, Frank A. P. C. Gobas, Timothy H. Begley, Million B. Woudneh, and John R. Cosgrove . Biodegradation of N-Ethyl Perfluorooctane Sulfonamido Ethanol (EtFOSE) and EtFOSE-Based Phosphate Diester (SAmPAP Diester) in Marine Sediments. Environmental Science & Technology 2013, 47
(3)
, 1381-1389. https://doi.org/10.1021/es304336r
- Erika F. Houtz and David L. Sedlak . Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. Environmental Science & Technology 2012, 46
(17)
, 9342-9349. https://doi.org/10.1021/es302274g
- Jonathan P. Benskin, Michael G. Ikonomou, Frank A. P. C. Gobas, Million B. Woudneh, and John R. Cosgrove . Observation of a Novel PFOS-Precursor, the Perfluorooctane Sulfonamido Ethanol-Based Phosphate (SAmPAP) Diester, in Marine Sediments. Environmental Science & Technology 2012, 46
(12)
, 6505-6514. https://doi.org/10.1021/es300823m
- Feng Xiao, Xiangru Zhang, Lee Penn, John S. Gulliver, and Matt F. Simcik . Effects of Monovalent Cations on the Competitive Adsorption of Perfluoroalkyl Acids by Kaolinite: Experimental Studies and Modeling. Environmental Science & Technology 2011, 45
(23)
, 10028-10035. https://doi.org/10.1021/es202524y
- Hoon Yoo, John W. Washington, Thomas M. Jenkins, and J. Jackson Ellington . Quantitative Determination of Perfluorochemicals and Fluorotelomer Alcohols in Plants from Biosolid-Amended Fields using LC/MS/MS and GC/MS. Environmental Science & Technology 2011, 45
(19)
, 7985-7990. https://doi.org/10.1021/es102972m
- Jennifer G. Sepulvado, Andrea C. Blaine, Lakhwinder S. Hundal, and Christopher P. Higgins . Occurrence and Fate of Perfluorochemicals in Soil Following the Land Application of Municipal Biosolids. Environmental Science & Technology 2011, 45
(19)
, 8106-8112. https://doi.org/10.1021/es103903d
- Magali Houde, Amila O. De Silva, Derek C. G. Muir, and Robert J. Letcher . Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review. Environmental Science & Technology 2011, 45
(19)
, 7962-7973. https://doi.org/10.1021/es104326w
- Jessica C. D’eon and Scott A. Mabury . Is Indirect Exposure a Significant Contributor to the Burden of Perfluorinated Acids Observed in Humans?. Environmental Science & Technology 2011, 45
(19)
, 7974-7984. https://doi.org/10.1021/es200171y
- John W. Washington, Hoon Yoo, J. Jackson Ellington, Thomas M. Jenkins, and E. Laurence Libelo . Concentrations, Distribution, and Persistence of Perfluoroalkylates in Sludge-Applied Soils near Decatur, Alabama, USA. Environmental Science & Technology 2010, 44
(22)
, 8390-8396. https://doi.org/10.1021/es1003846
- Hoon Yoo, John W. Washington, J. Jackson Ellington, Thomas M. Jenkins, and Michael P. Neill . Concentrations, Distribution, and Persistence of Fluorotelomer Alcohols in Sludge-Applied Soils near Decatur, Alabama, USA. Environmental Science & Technology 2010, 44
(22)
, 8397-8402. https://doi.org/10.1021/es100390r
- Christian Eschauzier, Joris Haftka, Pieter J. Stuyfzand, and Pim de Voogt . Perfluorinated Compounds in Infiltrated River Rhine Water and Infiltrated Rainwater in Coastal Dunes. Environmental Science & Technology 2010, 44
(19)
, 7450-7455. https://doi.org/10.1021/es100471z
- Susan D. Richardson. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Analytical Chemistry 2010, 82
(12)
, 4742-4774. https://doi.org/10.1021/ac101102d
- Holly Lee, Jessica D’eon and Scott A. Mabury. Biodegradation of Polyfluoroalkyl Phosphates as a Source of Perfluorinated Acids to the Environment. Environmental Science & Technology 2010, 44
(9)
, 3305-3310. https://doi.org/10.1021/es9028183
- Mark H. Russell*, Ning Wang, William R. Berti, Bogdan Szostek and Robert C. Buck. Comment on “Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil”. Environmental Science & Technology 2010, 44
(2)
, 848-848. https://doi.org/10.1021/es902348w
- John W. Washington* and J. Jackson Ellington, Thomas M. Jenkins, Hoon Yoo. Response to Comments on “Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil”. Environmental Science & Technology 2010, 44
(2)
, 849-850. https://doi.org/10.1021/es902672q
- Asa E. Carre-Burritt, Shubham Vyas. Life Cycle Considerations for Per- And Polyfluoroalkyl Substances (PFASs) and the Evolution of Society’s Perspective on Their Usage. 2024, 285-319. https://doi.org/10.1007/978-3-031-39470-6_9
- Sori Mok, Sunggyu Lee, Younghun Choi, Junho Jeon, Young Hee Kim, Hyo-Bang Moon. Target and non-target analyses of neutral per- and polyfluoroalkyl substances from fluorochemical industries using GC-MS/MS and GC-TOF: Insights on their environmental fate. Environment International 2023, 182 , 108311. https://doi.org/10.1016/j.envint.2023.108311
- Jonathan Zweigle, Catharina Capitain, Fabian Simon, Philipp Roesch, Boris Bugsel, Christian Zwiener. Non-extractable PFAS in functional textiles – characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters. Environmental Science: Processes & Impacts 2023, 25
(8)
, 1298-1310. https://doi.org/10.1039/D3EM00131H
- Jessica A. LaFond, Paul B. Hatzinger, Jennifer L. Guelfo, Kayleigh Millerick, W. Andrew Jackson. Bacterial transformation of per- and poly-fluoroalkyl substances: a review for the field of bioremediation. Environmental Science: Advances 2023, 2
(8)
, 1019-1041. https://doi.org/10.1039/D3VA00031A
- Christian Sonne, Bjørn M. Jenssen, Jörg Rinklebe, Su Shiung Lam, Martin Hansen, Rossana Bossi, Kim Gustavson, Rune Dietz. EU need to protect its environment from toxic per- and polyfluoroalkyl substances. Science of The Total Environment 2023, 876 , 162770. https://doi.org/10.1016/j.scitotenv.2023.162770
- Xiaotu Liu, Lei Zhao, Aobo Hong, Lili Zhuang, Qun Lu, Bin Wang, Min Wu, Da Chen. Non-target screening of per- and polyfluoroalkyl substances in follicular fluid and their blood-follicle transfer. Chinese Science Bulletin 2023, 56 https://doi.org/10.1360/TB-2023-0129
- Anna Kreutz, Matthew S. Clifton, W. Matthew Henderson, Marci G. Smeltz, Matthew Phillips, John F. Wambaugh, Barbara A. Wetmore. Category-Based Toxicokinetic Evaluations of Data-Poor Per- and Polyfluoroalkyl Substances (PFAS) using Gas Chromatography Coupled with Mass Spectrometry. Toxics 2023, 11
(5)
, 463. https://doi.org/10.3390/toxics11050463
- Jingrun Hu, Yitao Lyu, Huan Chen, Leilei Cai, Jie Li, Xiaoqiang Cao, Weiling Sun. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. Water Research 2023, 233 , 119735. https://doi.org/10.1016/j.watres.2023.119735
- Debra R. Reinhart, Stephanie C. Bolyard, Jiannan Chen. Fate of Per- and Polyfluoroalkyl Substances in Postconsumer Products during Waste Management. Journal of Environmental Engineering 2023, 149
(4)
https://doi.org/10.1061/JOEEDU.EEENG-7060
- Christian Sonne, Michael S. Bank, Bjørn M. Jenssen, Tomasz M. Cieseielski, Jörg Rinklebe, Su Shiung Lam, Martin Hansen, Rossana Bossi, Kim Gustavson, Rune Dietz. PFAS pollution threatens ecosystems worldwide. Science 2023, 379
(6635)
, 887-888. https://doi.org/10.1126/science.adh0934
- Paul E. Rosenfeld, Kenneth R. Spaeth, Linda L. Remy, Vera Byers, Stuart A. Muerth, Ryan C. Hallman, Jasmine Summers-Evans, Sofia Barker. Perfluoroalkyl substances exposure in firefighters: Sources and implications. Environmental Research 2023, 220 , 115164. https://doi.org/10.1016/j.envres.2022.115164
- Ashenafi Berhanu, Ishmael Mutanda, Ji Taolin, Majjid A. Qaria, Bin Yang, Daochen Zhu. A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. Science of The Total Environment 2023, 859 , 160010. https://doi.org/10.1016/j.scitotenv.2022.160010
- Lulin Jiang, Jingzhi Yao, Ge Ren, Nan Sheng, Yong Guo, Jiayin Dai, Yitao Pan. Comprehensive profiles of per- and polyfluoroalkyl substances in Chinese and African municipal wastewater treatment plants: New implications for removal efficiency. Science of The Total Environment 2023, 857 , 159638. https://doi.org/10.1016/j.scitotenv.2022.159638
- Silvia Berkner, Kathrin Schwirn, Doris Voelker. Too advanced for assessment? Advanced materials, nanomedicine and the environment. Environmental Sciences Europe 2022, 34
(1)
https://doi.org/10.1186/s12302-022-00647-7
- Felicia Fredriksson, Ulrika Eriksson, Anna Kärrman, Leo W.Y. Yeung. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden — First findings of novel fluorinated copolymers in Europe including temporal analysis. Science of The Total Environment 2022, 846 , 157406. https://doi.org/10.1016/j.scitotenv.2022.157406
- Ting Liu, Li-Xin Hu, Yu Han, Liang-Li Dong, Yu-Qing Wang, Jia-Hui Zhao, You-Sheng Liu, Jian-Liang Zhao, Guang-Guo Ying. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Science of The Total Environment 2022, 844 , 157021. https://doi.org/10.1016/j.scitotenv.2022.157021
- Wenting Li, Heather N. Bischel. Are resource recovery insects safe for feed and food? A screening approach for bioaccumulative trace organic contaminants. Science of The Total Environment 2022, 837 , 155850. https://doi.org/10.1016/j.scitotenv.2022.155850
- Yanhui Sun, Lin Liu, Ming Li, Fei Xu, Wanni Yu. Theoretical evidence for the formation of perfluorocarboxylic acids form atmospheric oxidation degradation of fluorotelomer acrylates. Environmental Science and Pollution Research 2022, 29
(36)
, 55092-55104. https://doi.org/10.1007/s11356-022-19788-6
- Wenting Li, Heather N. Bischel. Bioaccumulation of Pesticides and Poly- or Perfluoroalkyl Substances in Black Soldier Fly Larvae (Bsfl). SSRN Electronic Journal 2022, 9 https://doi.org/10.2139/ssrn.4046794
- Yitao Pan, Lulin Jiang, Jingzhi Yao, Ge Ren, Nan Sheng, Yong Guo, Jiayin Dai. Comprehensive Profiles of Per- and Polyfluoroalkyl Substances in Chinese and African Municipal Wastewater Treatment Plants: New Implications for Removal Efficiency. SSRN Electronic Journal 2022, 7 https://doi.org/10.2139/ssrn.4191268
- Jacopo Umberto Verga, Matthew Huff, Diarmuid Owens, Bethany J. Wolf, Gary Hardiman. Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. International Journal of Environmental Research and Public Health 2022, 19
(1)
, 574. https://doi.org/10.3390/ijerph19010574
- Shafali Garg, Jingshi Wang, Pankaj Kumar, Vandana Mishra, Hassan Arafat, Radhey Shyam Sharma, Ludovic F. Dumée. Remediation of water from per-/poly-fluoroalkyl substances (PFAS) – Challenges and perspectives. Journal of Environmental Chemical Engineering 2021, 9
(4)
, 105784. https://doi.org/10.1016/j.jece.2021.105784
- Hamidreza Sharifan, Majid Bagheri, Dan Wang, Joel G. Burken, Christopher P. Higgins, Yanna Liang, Jinxia Liu, Charles E. Schaefer, Jens Blotevogel. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone. Science of The Total Environment 2021, 771 , 145427. https://doi.org/10.1016/j.scitotenv.2021.145427
- Tomohiro Shirai, Hiroki Fukumoto, Yasunori Kanno, Toshio Kubota, Tomohiro Agou. Synthesis, structure, and surface properties of Poly(meth)acrylates bearing a vinylene-bridged fluoroalkyl side chain. Polymer 2021, 217 , 123478. https://doi.org/10.1016/j.polymer.2021.123478
- Yan Wu, Gillian Z. Miller, Jeff Gearhart, Graham Peaslee, Marta Venier. Side-chain fluorotelomer-based polymers in children car seats. Environmental Pollution 2021, 268 , 115477. https://doi.org/10.1016/j.envpol.2020.115477
- Shafali Garg, Pankaj Kumar, Vandana Mishra, Rosanne Guijt, Prabhjot Singh, Ludovic F. Dumée, Radhey Shyam Sharma. A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. Journal of Water Process Engineering 2020, 38 , 101683. https://doi.org/10.1016/j.jwpe.2020.101683
- Xuebing Wang, Nanyang Yu, Yuli Qian, Wei Shi, Xiaowei Zhang, Jinju Geng, Hongxia Yu, Si Wei. Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. Water Research 2020, 183 , 115989. https://doi.org/10.1016/j.watres.2020.115989
- R. Naidu, P. Nadebaum, C. Fang, I. Cousins, K. Pennell, J. Conder, C.J. Newell, D. Longpré, S. Warner, N.D. Crosbie, A. Surapaneni, D. Bekele, R. Spiese, T. Bradshaw, D. Slee, Y. Liu, F. Qi, M. Mallavarapu, L. Duan, L. McLeod, M. Bowman, B. Richmond, P. Srivastava, S. Chadalavada, A. Umeh, B. Biswas, A. Barclay, J. Simon, P. Nathanail. Per- and poly-fluoroalkyl substances (PFAS): Current status and research needs. Environmental Technology & Innovation 2020, 19 , 100915. https://doi.org/10.1016/j.eti.2020.100915
- Cuyler K. Borrowman, Mark Bücking, Bernd Göckener, Raju Adhikari, Kei Saito, Antonio F. Patti. LC-MS analysis of the degradation products of a sprayable, biodegradable poly(ester-urethane-urea). Polymer Degradation and Stability 2020, 178 , 109218. https://doi.org/10.1016/j.polymdegradstab.2020.109218
- Penelope A. Rice, Jason Aungst, Jessica Cooper, Omari Bandele, Shruti V. Kabadi. Comparative analysis of the toxicological databases for 6:2 fluorotelomer alcohol (6:2 FTOH) and perfluorohexanoic acid (PFHxA). Food and Chemical Toxicology 2020, 138 , 111210. https://doi.org/10.1016/j.fct.2020.111210
- Robert J. Letcher, Shaogang Chu, Shirley-Anne Smyth. Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants. Journal of Hazardous Materials 2020, 388 , 122044. https://doi.org/10.1016/j.jhazmat.2020.122044
- Shira Joudan, Runzeng Liu, Jessica C. D'eon, Scott A. Mabury. Unique analytical considerations for laboratory studies identifying metabolic products of per- and polyfluoroalkyl substances (PFASs). TrAC Trends in Analytical Chemistry 2020, 124 , 115431. https://doi.org/10.1016/j.trac.2019.02.032
- Shruti V. Kabadi, Jeffrey W. Fisher, Daniel R. Doerge, Darshan Mehta, Jason Aungst, Penelope Rice. Characterizing biopersistence potential of the metabolite 5:3 fluorotelomer carboxylic acid after repeated oral exposure to the 6:2 fluorotelomer alcohol. Toxicology and Applied Pharmacology 2020, 388 , 114878. https://doi.org/10.1016/j.taap.2020.114878
- Li Li. The Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohols and Perfluoroalkyl Carboxylates. 2020, 63-77. https://doi.org/10.1007/978-981-15-0579-9_4
- Cheng Fang, Zahra Sobhani, Junfeng Niu, Ravi Naidu. Removal of PFAS from aqueous solution using PbO2 from lead-acid battery. Chemosphere 2019, 219 , 36-44. https://doi.org/10.1016/j.chemosphere.2018.11.206
- John W. Washington, Keegan Rankin, E. Laurence Libelo, David G. Lynch, Mike Cyterski. Determining global background soil PFAS loads and the fluorotelomer-based polymer degradation rates that can account for these loads. Science of The Total Environment 2019, 651 , 2444-2449. https://doi.org/10.1016/j.scitotenv.2018.10.071
- Yun Huang, Yonghao Pan, Weiwei Wang, Long Jiang, Yi Dan. Synthesis and properties of partially biodegradable fluorinated polyacrylate: Poly( ‑lactide)‑co‑poly(hexafluorobutyl acrylate) copolymer. Materials & Design 2019, 162 , 285-292. https://doi.org/10.1016/j.matdes.2018.11.055
- Frederic Gallo, Cristina Fossi, Roland Weber, David Santillo, Joao Sousa, Imogen Ingram, Angel Nadal, Dolores Romano. Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe 2018, 30
(1)
https://doi.org/10.1186/s12302-018-0139-z
- Margaret H. Whittaker, Lauren Heine. Toxicological and environmental issues associated with waterproofing and water repellent formulations. 2018, 89-120. https://doi.org/10.1016/B978-0-08-101212-3.00004-6
- Shaogang Chu, Robert J. Letcher. Side-chain fluorinated polymer surfactants in aquatic sediment and biosolid-augmented agricultural soil from the Great Lakes basin of North America. Science of The Total Environment 2017, 607-608 , 262-270. https://doi.org/10.1016/j.scitotenv.2017.06.252
- Kerstin Winkens, Jani Koponen, Jasmin Schuster, Mahiba Shoeib, Robin Vestergren, Urs Berger, Anne M. Karvonen, Juha Pekkanen, Hannu Kiviranta, Ian T. Cousins. Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms. Environmental Pollution 2017, 222 , 423-432. https://doi.org/10.1016/j.envpol.2016.12.010
- Christoph Gremmel, Tobias Frömel, Thomas P. Knepper. Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere 2016, 160 , 173-180. https://doi.org/10.1016/j.chemosphere.2016.06.043
- Keegan Rankin, Scott A. Mabury, Thomas M. Jenkins, John W. Washington. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere 2016, 161 , 333-341. https://doi.org/10.1016/j.chemosphere.2016.06.109
- H. Holmquist, S. Schellenberger, I. van der Veen, G.M. Peters, P.E.G. Leonards, I.T. Cousins. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment International 2016, 91 , 251-264. https://doi.org/10.1016/j.envint.2016.02.035
- Kavitha Dasu, Linda S. Lee. Aerobic biodegradation of toluene-2,4-di(8:2 fluorotelomer urethane) and hexamethylene-1,6-di(8:2 fluorotelomer urethane) monomers in soils. Chemosphere 2016, 144 , 2482-2488. https://doi.org/10.1016/j.chemosphere.2015.11.021
- Xiaoyu Liu, Zhishi Guo, Edgar E. Folk, Nancy F. Roache. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment. Chemosphere 2015, 129 , 81-86. https://doi.org/10.1016/j.chemosphere.2014.06.012
- Laurel A. Royer, Linda S. Lee, Mark H. Russell, Loring F. Nies, Ronald F. Turco. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils. Chemosphere 2015, 129 , 54-61. https://doi.org/10.1016/j.chemosphere.2014.09.077
- Marie Pierre Krafft, Jean G. Riess. Per- and polyfluorinated substances (PFASs): Environmental challenges. Current Opinion in Colloid & Interface Science 2015, 20
(3)
, 192-212. https://doi.org/10.1016/j.cocis.2015.07.004
- Yanna Liu, Alberto S. Pereira, Sanjay Beesoon, Robin Vestergren, Urs Berger, Geary W. Olsen, Anders Glynn, Jonathan W. Martin. Temporal trends of perfluorooctanesulfonate isomer and enantiomer patterns in archived Swedish and American serum samples. Environment International 2015, 75 , 215-222. https://doi.org/10.1016/j.envint.2014.11.014
- D. De Smet, D. Weydts, M. Vanneste. Environmentally friendly fabric finishes. 2015, 3-33. https://doi.org/10.1016/B978-1-78242-339-3.00001-7
- P.H. Taylor, T. Yamada, R.C. Striebich, J.L. Graham, R.J. Giraud. Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment. Chemosphere 2014, 110 , 17-22. https://doi.org/10.1016/j.chemosphere.2014.02.037
- Zhanyun Wang, Ian T. Cousins, Martin Scheringer, Robert C. Buck, Konrad Hungerbühler. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International 2014, 70 , 62-75. https://doi.org/10.1016/j.envint.2014.04.013
- Zhanyun Wang, Ian T. Cousins, Martin Scheringer, Robert C. Buck, Konrad Hungerbühler. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environment International 2014, 69 , 166-176. https://doi.org/10.1016/j.envint.2014.04.006
- Atsushi Yamamoto, Hirotaka Hisatomi, Tomoshige Ando, Shusuke Takemine, Tomoko Terao, Toshiki Tojo, Masahiro Yagi, Daisuke Ono, Hideya Kawasaki, Ryuichi Arakawa. Use of high-resolution mass spectrometry to identify precursors and biodegradation products of perfluorinated and polyfluorinated compounds in end-user products. Analytical and Bioanalytical Chemistry 2014, 406
(19)
, 4745-4755. https://doi.org/10.1007/s00216-014-7862-0
- Holly Lee, Scott A. Mabury. Global Distribution of Polyfluoroalkyl and Perfluoroalkyl Substances and their Transformation Products in Environmental Solids. 2014, 797-826. https://doi.org/10.1002/9781118339558.ch27
- Craig M. Butt, Derek C.G. Muir, Scott A. Mabury. Biotransformation pathways of fluorotelomer‐based polyfluoroalkyl substances: A review. Environmental Toxicology and Chemistry 2014, 33
(2)
, 243-267. https://doi.org/10.1002/etc.2407
- Keegan Rankin, Scott A. Mabury. Influence of fluorination on the characterization of fluorotelomer-based acrylate polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytica Chimica Acta 2014, 808 , 115-123. https://doi.org/10.1016/j.aca.2013.07.039
- Jinxia Liu, Sandra Mejia Avendaño. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environment International 2013, 61 , 98-114. https://doi.org/10.1016/j.envint.2013.08.022
- R. Vestergren, I.T. Cousins. Human dietary exposure to per- and poly-fluoroalkyl substances (PFASs). 2013, 279-307. https://doi.org/10.1533/9780857098917.2.279
- Mark L. Ferrey, John T. Wilson, Cherri Adair, Chunming Su, Dennis D. Fine, Xuyang Liu, John W. Washington. Behavior and Fate of
PFOA
and
PFOS
in Sandy Aquifer Sediment. Groundwater Monitoring & Remediation 2012, 32
(4)
, 63-71. https://doi.org/10.1111/j.1745-6592.2012.01395.x
- Xavier Dauchy, Virginie Boiteux, Christophe Rosin, Jean-François Munoz. Relationship Between Industrial Discharges and Contamination of Raw Water Resources by Perfluorinated Compounds. Part I: Case Study of a Fluoropolymer Manufacturing Plant. Bulletin of Environmental Contamination and Toxicology 2012, 89
(3)
, 525-530. https://doi.org/10.1007/s00128-012-0704-x
- Xavier Dauchy, Virginie Boiteux, Christophe Rosin, Jean-François Munoz. Relationship Between Industrial Discharges and Contamination of Raw Water Resources by Perfluorinated Compounds: Part II: Case Study of a Fluorotelomer Polymer Manufacturing Plant. Bulletin of Environmental Contamination and Toxicology 2012, 89
(3)
, 531-536. https://doi.org/10.1007/s00128-012-0705-9
- Virginie Boiteux, Xavier Dauchy, Christophe Rosin, Jean-François Munoz. National Screening Study on 10 Perfluorinated Compounds in Raw and Treated Tap Water in France. Archives of Environmental Contamination and Toxicology 2012, 63
(1)
, 1-12. https://doi.org/10.1007/s00244-012-9754-7
- Gloria B. Post, Perry D. Cohn, Keith R. Cooper. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research 2012, 116 , 93-117. https://doi.org/10.1016/j.envres.2012.03.007
- Wen-Lin Liu, Yen-Chen Ko, Bao-Huey Hwang, Zu-Guang Li, Thomas Ching-Cherng Yang, Maw-Rong Lee. Determination of perfluorocarboxylic acids in water by ion-pair dispersive liquid–liquid microextraction and gas chromatography–tandem mass spectrometry with injection port derivatization. Analytica Chimica Acta 2012, 726 , 28-34. https://doi.org/10.1016/j.aca.2012.03.019