ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Uptake of Gaseous Hydrogen Peroxide by Submicrometer Titanium Dioxide Aerosol as a Function of Relative Humidity

View Author Information
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom and Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, United Kingdom
* Corresponding author phone: + 44 1223 33 6467; fax: + 44 1223 33 6362; e-mail: [email protected]
†University of Cambridge.
‡Centre for Ecology and Hydrology.
Cite this: Environ. Sci. Technol. 2010, 44, 4, 1360–1365
Publication Date (Web):January 28, 2010
https://doi.org/10.1021/es902916f
Copyright © 2010 American Chemical Society

    Article Views

    981

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Hydrogen peroxide (H2O2) is an important atmospheric oxidant that can serve as a sensitive indicator for HOx (OH + HO2) chemistry. We report the first direct experimental determination of the uptake coefficient for the heterogeneous reaction of gas-phase hydrogen peroxide (H2O2) with titanium dioxide (TiO2), an important component of atmospheric mineral dust aerosol particles. The kinetics of H2O2 uptake on TiO2 surfaces were investigated using an entrained aerosol flow tube (AFT) coupled with a chemical ionization mass spectrometer (CIMS). Uptake coefficients (γH2O2) were measured as a function of relative humidity (RH) and ranged from 1.53 × 10−3 at 15% RH to 5.04 × 10−4 at 70% RH. The observed negative correlation of RH with γH2O2 suggests that gaseous water competes with gaseous H2O2 for adsorption sites on the TiO2 surface. These results imply that water vapor plays a major role in the heterogeneous loss of H2O2 to submicrometer TiO2 aerosol. The results are compared with related experimental observations and assessed in terms of their potential impact on atmospheric modeling studies of mineral dust and its effect on the heterogeneous chemistry in the atmosphere.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information includes a detailed description of aerosol generation and characterization. The generation of gas-phase H2O2 and the associated delivery system are also described here. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 41 publications.

    1. Riccardo Iannarelli, Christian Ludwig, Michel J. Rossi. The Kinetics of Adsorption and Desorption of Selected Semivolatile Hydrocarbons and H2O Vapor on Two Mineral Dust Materials: A Molecular View. The Journal of Physical Chemistry A 2022, 126 (46) , 8711-8726. https://doi.org/10.1021/acs.jpca.2c04903
    2. Xuan Qin, Zhongming Chen, Yiwei Gong, Ping Dong, Zhijiong Cao, Jingcheng Hu, Jiayun Xu. Persistent Uptake of H2O2 onto Ambient PM2.5 via Dark-Fenton Chemistry. Environmental Science & Technology 2022, 56 (14) , 9978-9987. https://doi.org/10.1021/acs.est.2c03630
    3. Shan Zhou, Zhenlei Liu, Zixu Wang, Cora J. Young, Trevor C. VandenBoer, B. Beverly Guo, Jianshun Zhang, Nicola Carslaw, Tara F. Kahan. Hydrogen Peroxide Emission and Fate Indoors during Non-bleach Cleaning: A Chamber and Modeling Study. Environmental Science & Technology 2020, 54 (24) , 15643-15651. https://doi.org/10.1021/acs.est.0c04702
    4. Hao Li, Jian Shang, Zhiping Yang, Wenjuan Shen, Zhihui Ai, and Lizhi Zhang . Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity. Environmental Science & Technology 2017, 51 (10) , 5685-5694. https://doi.org/10.1021/acs.est.7b00040
    5. Mingjin Tang, Daniel J. Cziczo, and Vicki H. Grassian . Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chemical Reviews 2016, 116 (7) , 4205-4259. https://doi.org/10.1021/acs.chemrev.5b00529
    6. Manolis N. Romanías, Habib Ourrad, Frédéric Thévenet, and Véronique Riffault . Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts. The Journal of Physical Chemistry A 2016, 120 (8) , 1197-1212. https://doi.org/10.1021/acs.jpca.5b10323
    7. Christian George, Markus Ammann, Barbara D’Anna, D. J. Donaldson, and Sergey A. Nizkorodov . Heterogeneous Photochemistry in the Atmosphere. Chemical Reviews 2015, 115 (10) , 4218-4258. https://doi.org/10.1021/cr500648z
    8. Leah G. Dodson, Linhan Shen, John D. Savee, Nathan C. Eddingsaas, Oliver Welz, Craig A. Taatjes, David L. Osborn, Stanley P. Sander, and Mitchio Okumura . VUV Photoionization Cross Sections of HO2, H2O2, and H2CO. The Journal of Physical Chemistry A 2015, 119 (8) , 1279-1291. https://doi.org/10.1021/jp508942a
    9. Yue Zhao, Dao Huang, Liubin Huang, and Zhongming Chen . Hydrogen Peroxide Enhances the Oxidation of Oxygenated Volatile Organic Compounds on Mineral Dust Particles: A Case Study of Methacrolein. Environmental Science & Technology 2014, 48 (18) , 10614-10623. https://doi.org/10.1021/es5023416
    10. Atallah El Zein, Manolis N. Romanias, and Yuri Bedjanian . Heterogeneous Interaction of H2O2 with Arizona Test Dust. The Journal of Physical Chemistry A 2014, 118 (2) , 441-448. https://doi.org/10.1021/jp409946j
    11. Yuri Bedjanian, Manolis N. Romanias, and Atallah El Zein . Interaction of OH Radicals with Arizona Test Dust: Uptake and Products. The Journal of Physical Chemistry A 2013, 117 (2) , 393-400. https://doi.org/10.1021/jp311235h
    12. Haihan Chen, Charith E. Nanayakkara, and Vicki H. Grassian . Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chemical Reviews 2012, 112 (11) , 5919-5948. https://doi.org/10.1021/cr3002092
    13. Manolis N. Romanias, Atallah El Zein, and Yuri Bedjanian . Heterogeneous Interaction of H2O2 with TiO2 Surface under Dark and UV Light Irradiation Conditions. The Journal of Physical Chemistry A 2012, 116 (31) , 8191-8200. https://doi.org/10.1021/jp305366v
    14. Li Zhou, Wei-Gang Wang, and Mao-Fa Ge . Temperature Dependence of Heterogeneous Uptake of Hydrogen Peroxide on Silicon Dioxide and Calcium Carbonate. The Journal of Physical Chemistry A 2012, 116 (30) , 7959-7964. https://doi.org/10.1021/jp304446y
    15. Jaeseon Yi, Chiheb Bahrini, Coralie Schoemaecker, Christa Fittschen, and Wonyong Choi . Photocatalytic Decomposition of H2O2 on Different TiO2 Surfaces Along with the Concurrent Generation of HO2 Radicals Monitored Using Cavity Ring Down Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (18) , 10090-10097. https://doi.org/10.1021/jp301405e
    16. Yue Zhao, Zhongming Chen, Xiaoli Shen, and Xuan Zhang . Kinetics and Mechanisms of Heterogeneous Reaction of Gaseous Hydrogen Peroxide on Mineral Oxide Particles. Environmental Science & Technology 2011, 45 (8) , 3317-3324. https://doi.org/10.1021/es104107c
    17. Huan Song, Keding Lu, Huabin Dong, Zhaofeng Tan, Shiyi Chen, Zhongming Chen, Limin Zeng, Yuanhang Zhang. Impact of aerosol in-situ peroxide formations induced by metal complexes on atmospheric H2O2 budgets. Science of The Total Environment 2023, 892 , 164455. https://doi.org/10.1016/j.scitotenv.2023.164455
    18. Li Zhou, Ting Lei, Dongjuan Kang, Yucong Guo, Yunhong Zhang, Fumo Yang, Maofa Ge, Weigang Wang. Kinetics of Heterogeneous Reaction of H2O2 and SO2 on Coal Fly Ash: Temperature Effect and Their Synergistic Effects. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.876289
    19. Maria Kanakidou, Stelios Myriokefalitakis, Vassileios C. Papadimitriou, Athanasios Nenes. Aerosol Impacts on Atmospheric and Precipitation Chemistry. 2022, 427-456. https://doi.org/10.1007/978-3-030-82385-6_21
    20. Shideng Yuan, Shasha Liu, Yingzhe Du, Xueyu Wang, Heng Zhang, Shiling Yuan. Atomistic insights into heterogeneous reaction of formic acid on mineral oxide particles. Chemosphere 2022, 287 , 132430. https://doi.org/10.1016/j.chemosphere.2021.132430
    21. Shideng Yuan, Shasha Liu, Xueyu Wang, Heng Zhang, Shiling Yuan. Atomistic insights into uptake of hydrogen peroxide by TiO2 particles as a function of humidity. Journal of Molecular Liquids 2022, 346 , 117097. https://doi.org/10.1016/j.molliq.2021.117097
    22. Shideng Yuan, Hua Zhang, Yuxi Wang, Ying Ma, Shiling Yuan. Atomistic insights into heterogeneous reaction of hydrogen peroxide on alumina particles: Combining DFT calculation and ReaxFF molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 626 , 127064. https://doi.org/10.1016/j.colsurfa.2021.127064
    23. Can Ye, Chaoyang Xue, Chenglong Zhang, Zhuobiao Ma, Pengfei Liu, Yuanyuan Zhang, Chengtang Liu, Xiaoxi Zhao, Wenjin Zhang, Xiaowei He, Yifei Song, Junfeng Liu, Weihao Wang, Benhui Sui, Ran Cui, Xue Yang, Rubo Mei, Jianmin Chen, Yujing Mu. Atmospheric Hydrogen Peroxide (H 2 O 2 ) at the Foot and Summit of Mt. Tai: Variations, Sources and Sinks, and Implications for Ozone Formation Chemistry. Journal of Geophysical Research: Atmospheres 2021, 126 (15) https://doi.org/10.1029/2020JD033975
    24. Shideng Yuan, Shasha Liu, Xueyu Wang, Heng Zhang, Shiling Yuan. Atomistic insights into heterogeneous reaction of hydrogen peroxide on mineral oxide particles. Applied Surface Science 2021, 556 , 149707. https://doi.org/10.1016/j.apsusc.2021.149707
    25. Andriy Pysanenko, Ivo S. Vinklárek, Michal Fárník, Viktoriya Poterya. Generation of (H2O2)N clusters on argon and ice nanoparticles. International Journal of Mass Spectrometry 2021, 461 , 116514. https://doi.org/10.1016/j.ijms.2020.116514
    26. Meng Li, Hang Su, Guo Li, Nan Ma, Ulrich Pöschl, Yafang Cheng. Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients. Atmospheric Chemistry and Physics 2019, 19 (16) , 10981-11011. https://doi.org/10.5194/acp-19-10981-2019
    27. Hao Li, Jie Li, Zhihui Ai, Falong Jia, Lizhi Zhang. Durch Sauerstoff‐Leerstellen vermittelte Photokatalyse mit BiOCl: Reaktivität, Selektivität und Ausblick. Angewandte Chemie 2018, 130 (1) , 128-145. https://doi.org/10.1002/ange.201705628
    28. Hao Li, Jie Li, Zhihui Ai, Falong Jia, Lizhi Zhang. Oxygen Vacancy‐Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives. Angewandte Chemie International Edition 2018, 57 (1) , 122-138. https://doi.org/10.1002/anie.201705628
    29. Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, Xinming Wang. Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity. Atmospheric Chemistry and Physics 2017, 17 (19) , 11727-11777. https://doi.org/10.5194/acp-17-11727-2017
    30. Afshan Mohajeri, Fatemeh Haghshenas. Global reactivity and site selectivity of (TiO2) nanoclusters (n = 5–10) toward hydrogen peroxide. Materials Chemistry and Physics 2016, 183 , 326-333. https://doi.org/10.1016/j.matchemphys.2016.08.035
    31. Li Zhou, Weigang Wang, Maofa Ge, Shengrui Tong. Heterogeneous uptake of gaseous hydrogen peroxide on mineral dust. Journal of Environmental Sciences 2016, 40 , 44-50. https://doi.org/10.1016/j.jes.2015.08.018
    32. Q. Q. Wu, L. B. Huang, H. Liang, Y. Zhao, D. Huang, Z. M. Chen. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications. Atmospheric Chemistry and Physics 2015, 15 (12) , 6851-6866. https://doi.org/10.5194/acp-15-6851-2015
    33. L. Rkiouak, M. J. Tang, J. C. J. Camp, J. McGregor, I. M. Watson, R. A. Cox, M. Kalberer, A. D. Ward, F. D. Pope. Optical trapping and Raman spectroscopy of solid particles. Phys. Chem. Chem. Phys. 2014, 16 (23) , 11426-11434. https://doi.org/10.1039/C4CP00994K
    34. M. J. Tang, G. Schuster, J. N. Crowley. Heterogeneous reaction of N2O5 with illite and Arizona test dust particles. Atmospheric Chemistry and Physics 2014, 14 (1) , 245-254. https://doi.org/10.5194/acp-14-245-2014
    35. M. J. Tang, P. J. Telford, F. D. Pope, L. Rkiouak, N. L. Abraham, A. T. Archibald, P. Braesicke, J. A. Pyle, J. McGregor, I. M. Watson, R. A. Cox, M. Kalberer. Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection. Atmospheric Chemistry and Physics 2014, 14 (12) , 6035-6048. https://doi.org/10.5194/acp-14-6035-2014
    36. Manolis N. Romanias, Atallah El Zein, Yuri Bedjanian. Uptake of hydrogen peroxide on the surface of Al2O3 and Fe2O3. Atmospheric Environment 2013, 77 , 1-8. https://doi.org/10.1016/j.atmosenv.2013.04.065
    37. Yue Zhao, Zhongming Chen, Xiaoli Shen, Dao Huang. Heterogeneous reactions of gaseous hydrogen peroxide on pristine and acidic gas-processed calcium carbonate particles: Effects of relative humidity and surface coverage of coating. Atmospheric Environment 2013, 67 , 63-72. https://doi.org/10.1016/j.atmosenv.2012.10.055
    38. H. Liang, Z. M. Chen, D. Huang, Y. Zhao, Z. Y. Li. Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO2 radicals. Atmospheric Chemistry and Physics 2013, 13 (22) , 11259-11276. https://doi.org/10.5194/acp-13-11259-2013
    39. Y. Bedjanian, M. N. Romanias, A. El Zein. Uptake of HO2 radicals on Arizona Test Dust. Atmospheric Chemistry and Physics 2013, 13 (13) , 6461-6471. https://doi.org/10.5194/acp-13-6461-2013
    40. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, W. M. M. Kessels. Conformality of Plasma-Assisted ALD: Physical Processes and Modeling. Journal of The Electrochemical Society 2010, 157 (12) , G241. https://doi.org/10.1149/1.3491381
    41. M. Pradhan, G. Kyriakou, A. T. Archibald, A. C. Papageorgiou, M. Kalberer, R. M. Lambert. Heterogeneous uptake of gaseous hydrogen peroxide by Gobi and Saharan dust aerosols: a potential missing sink for H2O2 in the troposphere. Atmospheric Chemistry and Physics 2010, 10 (15) , 7127-7136. https://doi.org/10.5194/acp-10-7127-2010

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect