ACS Publications. Most Trusted. Most Cited. Most Read
Flow Relationships in Reverse Osmosis
My Activity

Figure 1Loading Img
    article

    Flow Relationships in Reverse Osmosis
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Industrial & Engineering Chemistry Fundamentals

    Cite this: Ind. Eng. Chem. Fundamen. 1963, 2, 3, 229–232
    Click to copy citationCitation copied!
    https://doi.org/10.1021/i160007a013
    Published August 1, 1963

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 85 publications.

    1. William Mickols . Substantial Changes in the Transport Model of Reverse Osmosis and Nanofiltration by Incorporating Accurate Activity Data of Electrolytes. Industrial & Engineering Chemistry Research 2016, 55 (42) , 11139-11149. https://doi.org/10.1021/acs.iecr.6b03248
    2. Fei Sun, Kun Li, Na Li, Jiulong Yin, Yuxuan Xue, Yutong Gu, Lei Qi, Meng Li, Yujian Yao, Xuan Zhang. Exploring mass transfer mechanisms in reverse osmosis membranes: A comparative study of SDM and DSPM-DE models. Desalination 2024, 586 , 117833. https://doi.org/10.1016/j.desal.2024.117833
    3. Chi Zhang, Guangle Bu, Md Symon Jahan Sajib, Lida Meng, Shiying Xu, Size Zheng, Lin Zhang, Tao Wei. PXLink: A simulation program of polymer crosslinking to study of polyamide membrane. Computer Physics Communications 2023, 291 , 108840. https://doi.org/10.1016/j.cpc.2023.108840
    4. . Membranes. 2023, 51-102. https://doi.org/10.1002/9781119725183.ch3
    5. Behzad H. M. Beigi, Siddharth Gadkari, Jhuma Sadhukhan. Osmotically assisted reverse osmosis, simulated to achieve high solute concentrations, at low energy consumption. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-16974-x
    6. Gohar Shoukat, Hassaan Idrees, Muhammad Sajid, Sara Ali, Yasar Ayaz, Raheel Nawaz, A. R. Ansari. Numerical analysis of permeate flux in reverse osmosis by varying strand geometry. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-20469-0
    7. M.M. Armendáriz-Ontiveros, A. García-García, A. Mai-Prochnow, G.A. Fimbres Weihs. Optimal loading of iron nanoparticles on reverse osmosis membrane surface to reduce biofouling. Desalination 2022, 540 , 115997. https://doi.org/10.1016/j.desal.2022.115997
    8. Nitai Charan Giri, Sushanta Kumar Samal, Bhanja Prasad Patro. Polymers in Water Purification. 2022, 167-209. https://doi.org/10.4018/978-1-7998-7356-3.ch008
    9. Marcello Di Martino, Styliani Avraamidou, Efstratios N. Pistikopoulos. A Neural Network Based Superstructure Optimization Approach to Reverse Osmosis Desalination Plants. Membranes 2022, 12 (2) , 199. https://doi.org/10.3390/membranes12020199
    10. William Mickols, Zhaohuan Mai, Bart van der Bruggen. Effect of pressure and temperature on solvent transport across nanofiltration and reverse osmosis membranes: An activity-derived transport model. Desalination 2021, 501 , 114905. https://doi.org/10.1016/j.desal.2020.114905
    11. Qasim Khan, Munjed A. Maraqa, Abdel-Mohsen O. Mohamed. Inland desalination. 2021, 871-918. https://doi.org/10.1016/B978-0-12-809582-9.00017-7
    12. P. Swapnil, M. Meena. The industrial development of polymeric membranes and membrane modules for reverse osmosis and ultrafiltration. 2021, 1-12. https://doi.org/10.1016/B978-0-12-823804-2.00009-4
    13. M.M. Armendáriz-Ontiveros, J. Álvarez-Sánchez, G.E. Dévora-Isiordia, A. García, G.A. Fimbres Weihs. Effect of seawater variability on endemic bacterial biofouling of a reverse osmosis membrane coated with iron nanoparticles (FeNPs). Chemical Engineering Science 2020, 223 , 115753. https://doi.org/10.1016/j.ces.2020.115753
    14. Shuanglin Gui, Zhaohuan Mai, Jiaqi Fu, Yuansong Wei, Jinbao Wan. Transport Models of Ammonium Nitrogen in Wastewater from Rare Earth Smelteries by Reverse Osmosis Membranes. Sustainability 2020, 12 (15) , 6230. https://doi.org/10.3390/su12156230
    15. Lubna Muzamil Rehman, Anupam Mukherjee, Zhiping Lai, Anirban Roy. Membrane Technology. 2020, 327-373. https://doi.org/10.1002/9781119536260.ch10
    16. Gohar Shoukat, Farhan Ellahi, Muhammad Sajid, Emad Uddin, , , , , . Computational Study of Zigzag Spacer Design with Elliptical Cross-Section Filaments. MATEC Web of Conferences 2020, 307 , 01047. https://doi.org/10.1051/matecconf/202030701047
    17. Zhaohuan Mai, Shuanglin Gui, Jiaqi Fu, Cheng Jiang, Emily Ortega, Yan Zhao, Wenqing Tu, William Mickols, Bart Van der Bruggen. Activity-derived model for water and salt transport in reverse osmosis membranes: A combination of film theory and electrolyte theory. Desalination 2019, 469 , 114094. https://doi.org/10.1016/j.desal.2019.114094
    18. Eui-Soung Jang, William Mickols, Rahul Sujanani, Alysha Helenic, Theodore J. Dilenschneider, Jovan Kamcev, Donald R. Paul, Benny D. Freeman. Influence of concentration polarization and thermodynamic non-ideality on salt transport in reverse osmosis membranes. Journal of Membrane Science 2019, 572 , 668-675. https://doi.org/10.1016/j.memsci.2018.11.006
    19. Ahmad Fauzi Ismail, Kailash Chandra Khulbe, Takeshi Matsuura. Introduction—Do RO Membranes Have Pores?. 2019, 1-24. https://doi.org/10.1016/B978-0-12-811468-1.00001-3
    20. Ahmad Fauzi Ismail, Takeshi Matsuura. Progress in transport theory and characterization method of Reverse Osmosis (RO) membrane in past fifty years. Desalination 2018, 434 , 2-11. https://doi.org/10.1016/j.desal.2017.09.028
    21. Amira Abdelrasoul, Huu Doan, Ali Lohi, Chil-Hung Cheng. Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges. 2018https://doi.org/10.5772/intechopen.72644
    22. I. Sreedhar, Sneha Khaitan, Rajat Gupta, Benjaram M. Reddy, A. Venugopal. An odyssey of process and engineering trends in forward osmosis. Environmental Science: Water Research & Technology 2018, 4 (2) , 129-168. https://doi.org/10.1039/C7EW00507E
    23. Daniel J. Miller, Daniel R. Dreyer, Christopher W. Bielawski, Donald R. Paul, Benny D. Freeman. Oberflächenmodifizierung von Wasseraufbereitungsmembranen. Angewandte Chemie 2017, 129 (17) , 4734-4788. https://doi.org/10.1002/ange.201601509
    24. Daniel J. Miller, Daniel R. Dreyer, Christopher W. Bielawski, Donald R. Paul, Benny D. Freeman. Surface Modification of Water Purification Membranes. Angewandte Chemie International Edition 2017, 56 (17) , 4662-4711. https://doi.org/10.1002/anie.201601509
    25. Harry F. Ridgway, John Orbell, Stephen Gray. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: Recent developments and future prospects. Journal of Membrane Science 2017, 524 , 436-448. https://doi.org/10.1016/j.memsci.2016.11.061
    26. S.M.Javaid. Zaidi, F. Fadhillah, Z. Khan, A.F. Ismail. Salt and water transport in reverse osmosis thin film composite seawater desalination membranes. Desalination 2015, 368 , 202-213. https://doi.org/10.1016/j.desal.2015.02.026
    27. Geoffrey M. Geise, Donald R. Paul, Benny D. Freeman. Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science 2014, 39 (1) , 1-42. https://doi.org/10.1016/j.progpolymsci.2013.07.001
    28. Andriy Yaroshchuk, Merlin L. Bruening, Edxon Eduardo Licón Bernal. Solution-Diffusion–Electro-Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions. Journal of Membrane Science 2013, 447 , 463-476. https://doi.org/10.1016/j.memsci.2013.07.047
    29. Arne R. D. Verliefde, Paul Van der Meeren, Bart Van der Bruggen. Solution‐Diffusion Processes. 2013, 1-26. https://doi.org/10.1002/9781118522318.emst017
    30. T.Y. Qiu, O.N. Igobo, P.A. Davies. DesaLink: solar powered desalination of brackish groundwater giving high output and high recovery. Desalination and Water Treatment 2013, 51 (4-6) , 1279-1289. https://doi.org/10.1080/19443994.2012.714604
    31. Geoffrey M. Geise, Linda P. Falcon, Benny D. Freeman, Donald R. Paul. Sodium chloride sorption in sulfonated polymers for membrane applications. Journal of Membrane Science 2012, 423-424 , 195-208. https://doi.org/10.1016/j.memsci.2012.08.014
    32. Shuaifei Zhao, Linda Zou, Chuyang Y. Tang, Dennis Mulcahy. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science 2012, 396 , 1-21. https://doi.org/10.1016/j.memsci.2011.12.023
    33. T.Y. Qiu, P.A. Davies. The scope to improve the efficiency of solar-powered reverse osmosis. Desalination and Water Treatment 2011, 35 (1-3) , 14-32. https://doi.org/10.5004/dwt.2011.3126
    34. Weiyi Li, Yiben Gao, Chuyang Y. Tang. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM. Journal of Membrane Science 2011, 379 (1-2) , 307-321. https://doi.org/10.1016/j.memsci.2011.05.074
    35. Andriy Yaroshchuk, Xavier Martínez-Lladó, Laia Llenas, Miquel Rovira, Joan de Pablo. Solution-diffusion-film model for the description of pressure-driven trans-membrane transfer of electrolyte mixtures: One dominant salt and trace ions. Journal of Membrane Science 2011, 368 (1-2) , 192-201. https://doi.org/10.1016/j.memsci.2010.11.037
    36. Sun-Tak Hwang. Fundamentals of membrane transport. Korean Journal of Chemical Engineering 2011, 28 (1) , 1-15. https://doi.org/10.1007/s11814-010-0493-z
    37. Geoffrey M. Geise, Hae‐Seung Lee, Daniel J. Miller, Benny D. Freeman, James E. McGrath, Donald R. Paul. Water purification by membranes: The role of polymer science. Journal of Polymer Science Part B: Polymer Physics 2010, 48 (15) , 1685-1718. https://doi.org/10.1002/polb.22037
    38. G.A. Fimbres-Weihs, D.E. Wiley. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chemical Engineering and Processing: Process Intensification 2010, 49 (7) , 759-781. https://doi.org/10.1016/j.cep.2010.01.007
    39. Lauren F. Greenlee, Desmond F. Lawler, Benny D. Freeman, Benoit Marrot, Philippe Moulin. Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research 2009, 43 (9) , 2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
    40. S. S. L. Peppin, J. A. W. Elliott, M. G. Worster. Pressure and relative motion in colloidal suspensions. Physics of Fluids 2005, 17 (5) https://doi.org/10.1063/1.1915027
    41. Stephen S.L. Peppin, Janet A.W. Elliott. Non-equilibrium thermodynamics of concentration polarization. Advances in Colloid and Interface Science 2001, 92 (1-3) , 1-72. https://doi.org/10.1016/S0001-8686(00)00029-4
    42. W. Richard Bowen, Paul M. Williams. Prediction of the rate of cross-flow ultrafiltration of colloids with concentration-dependent diffusion coefficient and viscosity — theory and experiment. Chemical Engineering Science 2001, 56 (10) , 3083-3099. https://doi.org/10.1016/S0009-2509(00)00552-2
    43. W. Richard Bowen, Paul M. Williams. Obtaining the Osmotic Pressure of Electrostatically Stabilized Colloidal Dispersions from Frontal Ultrafiltration Experiments. Journal of Colloid and Interface Science 2001, 233 (1) , 159-163. https://doi.org/10.1006/jcis.2000.7268
    44. G. A. Budnitskii, L. P. Perepechkin. Hollow fibres for pressure membrane separation of liquids. Fibre Chemistry 1997, 29 (5) , 307-316. https://doi.org/10.1007/BF02408154
    45. Shamsuddin Ilias, Keith A. Schimmel, Gervas E.J.M. Assey. Effect of Viscosity on Membrane Fluxes in Cross-Flow Ultrafiltration. Separation Science and Technology 1995, 30 (7-9) , 1669-1687. https://doi.org/10.1080/01496399508010369
    46. Tzvetan Kotzev. Numerical study of the fluid dynamics and mass transfer of an ultrafiltration performance in a tube membrane module. International Journal of Engineering Science 1994, 32 (2) , 359-368. https://doi.org/10.1016/0020-7225(94)90015-9
    47. S. Ilias, R. Govind. A Study on Concentration Polarization in Ultrafiltration. Separation Science and Technology 1993, 28 (1-3) , 361-381. https://doi.org/10.1080/01496399308019495
    48. Scott B. McCray, V.L. Vilker, K. Nobe. Reverse osmosis cellulose acetate membranes II. Dependence of transport properties on acetyl content. Journal of Membrane Science 1991, 59 (3) , 317-330. https://doi.org/10.1016/S0376-7388(00)80820-0
    49. Shamsuddin Ilias, Rakesh Govind. Potential Applications of Pulsed Flow for Minimizing Concentration Polarization in Ultrafiltration. Separation Science and Technology 1990, 25 (13-15) , 1307-1324. https://doi.org/10.1080/01496399008050393
    50. CLEMENT KLEINSTREUER, GEORGES BELFORT. Mathematical Modeling of Fluid Flow and Solute Distribution in Pressure-Driven Membrane Modules. 1984, 131-190. https://doi.org/10.1016/B978-0-12-085480-6.50011-6
    51. Clement Kleinstreuer, M. S. Paller. Laminar dilute suspension flows in plate‐and‐frame ultrafiltration units. AIChE Journal 1983, 29 (4) , 529-533. https://doi.org/10.1002/aic.690290402
    52. J. Glater, S. McCray. Changes in water and salt transport during hydrolysis of cellulose acetate reverse osmosis membranes. Desalination 1983, 46 (1-3) , 389-397. https://doi.org/10.1016/0011-9164(83)87181-1
    53. J. D. Jeffers, R. P. Carnahan. Optimal Reverse Osmosis System Design. International Journal of Modelling and Simulation 1983, 3 (4) , 199-204. https://doi.org/10.1080/02286203.1983.11759847
    54. H.A. Massaldi, C.H. Borzi. Non-ideal phenomena in osmotic flow through selective membranes. Journal of Membrane Science 1982, 12 (1) , 87-99. https://doi.org/10.1016/0376-7388(82)80005-7
    55. H.K. Lonsdale. The growth of membrane technology. Journal of Membrane Science 1982, 10 (2-3) , 81-181. https://doi.org/10.1016/S0376-7388(00)81408-8
    56. D.E. Potts, R.C. Ahlert, S.S. Wang. A critical review of fouling of reverse osmosis membranes. Desalination 1981, 36 (3) , 235-264. https://doi.org/10.1016/S0011-9164(00)88642-7
    57. LAWRENCE DRESNER, JAMES S. JOHNSON. Hyperfiltration (Reverse Osmosis). 1980, 401-560. https://doi.org/10.1016/B978-0-12-658702-9.50007-4
    58. F. Bellucci, N. Esposito. Efficiency, recovery and productivity of continuous reverse osmosis systems: new closed expressions. Desalination 1979, 28 (3) , 181-191. https://doi.org/10.1016/S0011-9164(00)82228-6
    59. J.J. Hermans. Physical aspects governing the design of hollow fiber modules. Desalination 1978, 26 (1) , 45-62. https://doi.org/10.1016/S0011-9164(00)84127-2
    60. Wolfgang Pusch. Grenzschichtphänomene beim Stofftransport durch synthetische Membranen. Chemie Ingenieur Technik 1976, 48 (4) , 349-349. https://doi.org/10.1002/cite.330480426
    61. H.-D. Saier, H. Strathmann. Asymmetrisch strukturierte Membranen - Herstellung und Bedeutung. Angewandte Chemie 1975, 87 (13) , 476-483. https://doi.org/10.1002/ange.19750871303
    62. H.‐D. Saier, H. Strathmann. Asymmetric Membranes: Preparation and Applications. Angewandte Chemie International Edition in English 1975, 14 (7) , 452-459. https://doi.org/10.1002/anie.197504521
    63. David G. Thomas. Engineering development of hyperfiltration with dynamic membranes Part IV. Economic analysis. Desalination 1974, 15 (3) , 343-369. https://doi.org/10.1016/S0011-9164(00)82037-8
    64. W. Pusch, H.-J. Wolff. High pressure dialysis cell. Review of Scientific Instruments 1974, 45 (11) , 1403-1407. https://doi.org/10.1063/1.1686513
    65. A. R. Johnson. Experimental investigation of polarization effects in reverse osmosis. AIChE Journal 1974, 20 (5) , 966-974. https://doi.org/10.1002/aic.690200518
    66. T.J. Kennedy, R.L. Merson, B.J. McCoy. Improving permeation flux by pulsed reverse osmosis. Chemical Engineering Science 1974, 29 (9) , 1927-1931. https://doi.org/10.1016/0009-2509(74)85010-4
    67. J. P. K. PEELER, O. SITNAI. REVERSE OSMOSIS CONCENTRATION OF CARBOHYDRATE SOLUTIONS: PROCESS MODELLING AND COSTING. Journal of Food Science 1974, 39 (4) , 745-750. https://doi.org/10.1111/j.1365-2621.1974.tb17970.x
    68. Anthony A. Delyannis, Eurydike A. Delyannis. Ionic Processes. 1974, 186-313. https://doi.org/10.1007/978-3-662-13336-1_3
    69. L. E. MONGE, B. J. McCOY, R. L. MERSON. IMPROVED REVERSE OSMOSIS PERMEATION BY HEATING. Journal of Food Science 1973, 38 (4) , 633-636. https://doi.org/10.1111/j.1365-2621.1973.tb02830.x
    70. John D. Sheppard, David G. Thomas, K.C. Channabasappa. Membrane Fouling Part IV. Parallel operation of four tubular hyperfiltration modules at different velocities with feeds of high fouling potential. Desalination 1972, 11 (3) , 385-398. https://doi.org/10.1016/S0011-9164(00)80139-3
    71. W. Pusch. Concentration Polarization in Hyperfiltration Systems. 1972, 43-58. https://doi.org/10.1007/978-1-4684-2004-3_3
    72. Y.T Shah. Mass transport in reverse osmosis in case of variable diffusivity. International Journal of Heat and Mass Transfer 1971, 14 (7) , 921-930. https://doi.org/10.1016/0017-9310(71)90118-9
    73. T.J. Hendricks, F.A. Williams. Diffusion-layer structure in reverse osmosis channel flow. Desalination 1971, 9 (2) , 155-180. https://doi.org/10.1016/S0011-9164(00)80027-2
    74. R. Gröpl, W. Pusch. Asymmetric behaviour of cellulose acetate membranes in hyperfiltration experiments as a result of concentration polarisation. Desalination 1970, 8 (3) , 277-292. https://doi.org/10.1016/S0011-9164(00)80234-9
    75. H. Strathmann. Stofftrennung durch Druckfiltration mit semipermeablen Membranen. Chemie Ingenieur Technik 1970, 42 (17) , 1095-1102. https://doi.org/10.1002/cite.330421705
    76. Shlomo Rosenbaum. Effect of pressure on solvent permeation through semipermeable membranes. Journal of Polymer Science Part B: Polymer Letters 1968, 6 (4) , 307-311. https://doi.org/10.1002/pol.1968.110060408
    77. Karel Popper, Richard L. Merson, Wayne M. Camirand. Desalination by Osmosis-Reverse Osmosis Couple. Science 1968, 159 (3821) , 1364-1365. https://doi.org/10.1126/science.159.3821.1364
    78. L.T. Fan, C.Y. Cheng, L.Y.S. Ho, C.L. Hwang, L.E. Erickson. Analysis and optimization of a reverse osmosis water purification system Part I. Process analysis and simulation. Desalination 1968, 5 (3) , 237-265. https://doi.org/10.1016/S0011-9164(00)80103-4
    79. K.D. Vos, I. Nusbaum, A.P. Hatcher, F.O. Burris. Storage, disinfection, and life of cellulose acetate reverse osmosis membranes. Desalination 1968, 5 (2) , 157-166. https://doi.org/10.1016/S0011-9164(00)80210-6
    80. Yoshisuke Nakano, Chi Tien, William N. Gill. Nonlinear convective diffusion: A hyperfiltration application. AIChE Journal 1967, 13 (6) , 1092-1098. https://doi.org/10.1002/aic.690130611
    81. W.S. Gillam, W.H. McCoy. Desalination research. Desalination 1967, 2 (1) , 14-19. https://doi.org/10.1016/S0011-9164(00)80142-3
    82. P. Meares. On the mechanism of desalination by reversed osmotic flow through cellulose acetate membranes. European Polymer Journal 1966, 2 (3) , 241-254. https://doi.org/10.1016/0014-3057(66)90045-0
    83. Gilbert S. Banker. Film Coating Theory and Practice. Journal of Pharmaceutical Sciences 1966, 55 (1) , 81-89. https://doi.org/10.1002/jps.2600550118
    84. JAMES S. JOHNSON, LAWRENCE DRESNER, KURT A. KRAUS. Hyperfiltration (Reverse Osmosis). 1966, 345-439. https://doi.org/10.1016/B978-0-12-395660-6.50013-6
    85. H. K. Lonsdale, U. Merten, R. L. Riley. Transport properties of cellulose acetate osmotic membranes. Journal of Applied Polymer Science 1965, 9 (4) , 1341-1362. https://doi.org/10.1002/app.1965.070090413

    Industrial & Engineering Chemistry Fundamentals

    Cite this: Ind. Eng. Chem. Fundamen. 1963, 2, 3, 229–232
    Click to copy citationCitation copied!
    https://doi.org/10.1021/i160007a013
    Published August 1, 1963

    Article Views

    779

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.