ACS Publications. Most Trusted. Most Cited. Most Read
Photophysical properties of covalently attached tris(bipyridine)ruthenium(2+) and Mcyclam2+ (M = nickel, H2) complexes
My Activity
    Article

    Photophysical properties of covalently attached tris(bipyridine)ruthenium(2+) and Mcyclam2+ (M = nickel, H2) complexes
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Inorganic Chemistry

    Cite this: Inorg. Chem. 1992, 31, 11, 2079–2085
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic00037a019
    Published May 1, 1992

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 34 publications.

    1. Katie Eastham, Paul A. Scattergood, Danny Chu, Rayhaan Z. Boota, Adrien Soupart, Fabienne Alary, Isabelle M. Dixon, Craig R. Rice, Samantha J. O. Hardman, Paul I. P. Elliott. Not All 3MC States Are the Same: The Role of 3MCcis States in the Photochemical N∧N Ligand Release from [Ru(bpy)2(N∧N)]2+ Complexes. Inorganic Chemistry 2022, 61 (49) , 19907-19924. https://doi.org/10.1021/acs.inorgchem.2c03146
    2. Bilal Masood Pirzada, Arif Hassan Dar, M. Nasiruzzaman Shaikh, Ahsanulhaq Qurashi. Reticular-Chemistry-Inspired Supramolecule Design as a Tool to Achieve Efficient Photocatalysts for CO2 Reduction. ACS Omega 2021, 6 (44) , 29291-29324. https://doi.org/10.1021/acsomega.1c04018
    3. Yasuomi Yamazaki, Kei Ohkubo, Daiki Saito, Taiki Yatsu, Yusuke Tamaki, Sei’ichi Tanaka, Kazuhide Koike, Ken Onda, Osamu Ishitani. Kinetics and Mechanism of Intramolecular Electron Transfer in Ru(II)–Re(I) Supramolecular CO2–Reduction Photocatalysts: Effects of Bridging Ligands. Inorganic Chemistry 2019, 58 (17) , 11480-11492. https://doi.org/10.1021/acs.inorgchem.9b01256
    4. Yasuomi Yamazaki, Akinari Umemoto, and Osamu Ishitani . Photochemical Hydrogenation of π-Conjugated Bridging Ligands in Photofunctional Multinuclear Complexes. Inorganic Chemistry 2016, 55 (21) , 11110-11124. https://doi.org/10.1021/acs.inorgchem.6b01736
    5. Amanda J. Morris, Gerald J. Meyer and Etsuko Fujita . Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research 2009, 42 (12) , 1983-1994. https://doi.org/10.1021/ar9001679
    6. Silvia E. Ronco,, David W. Thompson,, Sean L. Gahan, and, John D. Petersen. Synthesis of, Characterization of, and Photoinduced Processes in Polymetallic Triad Complexes Containing Fe(II), Ru(II), and Rh(III) Metal Centers. Inorganic Chemistry 1998, 37 (8) , 2020-2027. https://doi.org/10.1021/ic970270r
    7. A. Prasanna de Silva,, H. Q. Nimal Gunaratne,, Thorfinnur Gunnlaugsson,, Allen J. M. Huxley,, Colin P. McCoy,, Jude T. Rademacher, and, Terence E. Rice. Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews 1997, 97 (5) , 1515-1566. https://doi.org/10.1021/cr960386p
    8. Yasuomi Yamazaki, Osamu Ishitani. Synthesis of Os( ii )–Re( i )–Ru( ii ) hetero-trinuclear complexes and their photophysical properties and photocatalytic abilities. Chemical Science 2018, 9 (4) , 1031-1041. https://doi.org/10.1039/C7SC04162D
    9. Yasuomi Yamazaki, Hiroyuki Takeda, Osamu Ishitani. Photocatalytic reduction of CO2 using metal complexes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25 , 106-137. https://doi.org/10.1016/j.jphotochemrev.2015.09.001
    10. Danilo Dini, Mary T. Pryce, Martin Schulz, Johannes G. Vos. Metallosupramolecular Assemblies for Application as Photocatalysts for the Production of Solar Fuels. 2015, 345-396. https://doi.org/10.1039/9781782622673-00345
    11. Amar Hens, Amit Maity, Kajal Krishna Rajak. N , N coordinating schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorganica Chimica Acta 2014, 423 , 408-420. https://doi.org/10.1016/j.ica.2014.08.024
    12. Martin Schulz, Michael Karnahl, Matthias Schwalbe, Johannes G. Vos. The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coordination Chemistry Reviews 2012, 256 (15-16) , 1682-1705. https://doi.org/10.1016/j.ccr.2012.02.016
    13. Phong D. Tran, Lydia H. Wong, James Barber, Joachim S. C. Loo. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science 2012, 5 (3) , 5902. https://doi.org/10.1039/c2ee02849b
    14. Simon R. Collinson, Martin Schröder. Nickel: Inorganic & Coordination Chemistry. 2005https://doi.org/10.1002/0470862106.ia150
    15. Simon R. Collinson, Martin Schröder. Nickel: Inorganic & Coordination Chemistry. 2005https://doi.org/10.1002/9781119951438.eibc0140
    16. Yann Pellegrin, Katja E. Berg, Geneviève Blondin, Elodie Anxolabéhère‐Mallart, Winfried Leibl, Ally Aukauloo. A Rigid Molecular Scaffold Affixing a (Polypyridine)ruthenium( II )‐ and a Nickel( II )‐Containing Complex: Spectroscopic Evidence for a Weakly Coupled Bichromophoric System. European Journal of Inorganic Chemistry 2003, 2003 (10) , 1900-1910. https://doi.org/10.1002/ejic.200200561
    17. Heather M. Rowe, Wenying Xu, J. N. Demas, B. A. DeGraff. Metal Ion Sensors Based on a Luminescent Ruthenium(II) Complex: The Role of Polymer Support in Sensing Properties. Applied Spectroscopy 2002, 56 (2) , 167-173. https://doi.org/10.1366/0003702021954629
    18. Etsuko Fujita, Bruce S. Brunschwig. Homogeneous Redox Catalysis in CO 2 Fixation. 2001, 88-126. https://doi.org/10.1002/9783527618248.ch49
    19. Etsuko Fujita. Photochemical carbon dioxide reduction with metal complexes. Coordination Chemistry Reviews 1999, 185-186 , 373-384. https://doi.org/10.1016/S0010-8545(99)00023-5
    20. Nobuko Komatsuzaki, Yuichiro Himeda, Takuji Hirose, Hideki Sugihara, Kazuyuki Kasuga. Synthesis and Photochemical Properties of Ruthenium–Cobalt and Ruthenium–Nickel Dinuclear Complexes. Bulletin of the Chemical Society of Japan 1999, 72 (4) , 725-731. https://doi.org/10.1246/bcsj.72.725
    21. Joseph R. Lakowicz. Long-Lifetime Metal—Ligand Complexes. 1999, 573-594. https://doi.org/10.1007/978-1-4757-3061-6_20
    22. Horst Hennig, Roland Billing, Klaus Ritter. Sensibilisierte Photolyse von Bis(dimethylglyoximato)cobalt(III)-Komplexen mit axial koordiniertem Azid bzw. Thiophenolat als photochemischen Opferliganden. Journal für Praktische Chemie/Chemiker-Zeitung 1997, 339 (1) , 272-276. https://doi.org/10.1002/prac.19973390148
    23. A. Prasana de Silva, H.Q. Nimal Gunaratne, Thorfinnur Gunnlaugsson, Allen J.M. Huxley, Colin P. McCoy, Jude T. Rademacher, Terence E. Rice. Supramolecular photoionic devices. 1997, 1-53. https://doi.org/10.1016/S1068-7459(97)80013-6
    24. J. Costamagna, G. Ferraudi, J. Canales, J. Vargas. Carbon dioxide activation by aza-macrocyclic complexes. Coordination Chemistry Reviews 1996, 148 , 221-248. https://doi.org/10.1016/0010-8545(95)01231-1
    25. Gary A. Foulds. 1. Nickel 1992. Coordination Chemistry Reviews 1995, 146 , A1-A90. https://doi.org/10.1016/0010-8545(95)01195-1
    26. G. Ruiz, E. Wolcan, A.L. Capparelli, M.R. Féliz. Carbon dioxide activation by ClRe(CO)3(4-phenylpyridine)2: steady state and flash photolysis study. Journal of Photochemistry and Photobiology A: Chemistry 1995, 89 (1) , 61-66. https://doi.org/10.1016/1010-6030(95)04041-D
    27. Suzanna Chan, Wing-Tak Wong. 10. Ruthenium 1992. Coordination Chemistry Reviews 1995, 138 , 219-296. https://doi.org/10.1016/0010-8545(95)90581-R
    28. Angelo J. Amoroso, Amitava Das, Jon A. McCleverty, Michael D. Ward, Francesco Barigelletti, Lucia Flamigni. Quenching of a polypyridyl-ruthenium(II) chromophore by covalently attached {ML(NO)Cl} fragments (M=Mo, W; L=tris(3,5-dimethylpyrazolyl)hydroborate). Inorganica Chimica Acta 1994, 226 (1-2) , 171-177. https://doi.org/10.1016/0020-1693(94)04084-2
    29. Michael G. Richmond. Annual survey of ruthenium and osmium for the year 1992. Journal of Organometallic Chemistry 1994, 477 (1-2) , 219-268. https://doi.org/10.1016/0022-328X(94)88093-X
    30. Etsuko Fujita, Bruce S. Brunschwig, Tomoyuki Ogata, Shozo Yanagida. Toward photochemical carbon dioxide activation by transition metal complexes. Coordination Chemistry Reviews 1994, 132 , 195-200. https://doi.org/10.1016/0010-8545(94)80040-5
    31. F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E.C. Constable, A.M.W. Cargill Thompson. Intramolecular energy transfer through phenyl bridges in rod-like dinuclear Ru(II)/Os(II) terpyridine-type complexes. Coordination Chemistry Reviews 1994, 132 , 209-214. https://doi.org/10.1016/0010-8545(94)80042-1
    32. Richard A. Bissell, A. Prasanna de Silva, H. Q. Nimal Gunaratne, P. L. Mark Lynch, Glenn E. M. Maguire, Colin P. McCoy, K. R. A. Samankumara Sandanayake. Fluorescent PET (photoinduced electron transfer) sensors. 1993, 223-264. https://doi.org/10.1007/3-540-56746-1_12
    33. F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable, A. M. W. Cargill Thompson. Luminescence properties of rigid rod-like binuclear ruthenium( II )–osmium( II ) terpyridine complexes; electronic interaction through phenyl bridges. J. Chem. Soc., Chem. Commun. 1993, 58 (11) , 942-944. https://doi.org/10.1039/C39930000942
    34. Ronald Grigg, W. D. J. Amilaprasadh Norbert. Luminescent pH sensors based on di(2,2′-bipyridyl)(5,5′-diaminomethyl-2,2′-bipyridyl)-ruthenium( II ) complexes. J. Chem. Soc., Chem. Commun. 1992, 86 (18) , 1300-1302. https://doi.org/10.1039/C39920001300

    Inorganic Chemistry

    Cite this: Inorg. Chem. 1992, 31, 11, 2079–2085
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic00037a019
    Published May 1, 1992

    Article Views

    313

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.