Photophysical properties of covalently attached tris(bipyridine)ruthenium(2+) and Mcyclam2+ (M = nickel, H2) complexesClick to copy article linkArticle link copied!

Note: In lieu of an abstract, this is the article's first page.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 34 publications.
- Katie Eastham, Paul A. Scattergood, Danny Chu, Rayhaan Z. Boota, Adrien Soupart, Fabienne Alary, Isabelle M. Dixon, Craig R. Rice, Samantha J. O. Hardman, Paul I. P. Elliott. Not All 3MC States Are the Same: The Role of 3MCcis States in the Photochemical N∧N Ligand Release from [Ru(bpy)2(N∧N)]2+ Complexes. Inorganic Chemistry 2022, 61
(49)
, 19907-19924. https://doi.org/10.1021/acs.inorgchem.2c03146
- Bilal Masood Pirzada, Arif Hassan Dar, M. Nasiruzzaman Shaikh, Ahsanulhaq Qurashi. Reticular-Chemistry-Inspired Supramolecule Design as a Tool to Achieve Efficient Photocatalysts for CO2 Reduction. ACS Omega 2021, 6
(44)
, 29291-29324. https://doi.org/10.1021/acsomega.1c04018
- Yasuomi Yamazaki, Kei Ohkubo, Daiki Saito, Taiki Yatsu, Yusuke Tamaki, Sei’ichi Tanaka, Kazuhide Koike, Ken Onda, Osamu Ishitani. Kinetics and Mechanism of Intramolecular Electron Transfer in Ru(II)–Re(I) Supramolecular CO2–Reduction Photocatalysts: Effects of Bridging Ligands. Inorganic Chemistry 2019, 58
(17)
, 11480-11492. https://doi.org/10.1021/acs.inorgchem.9b01256
- Yasuomi Yamazaki, Akinari Umemoto, and Osamu Ishitani . Photochemical Hydrogenation of π-Conjugated Bridging Ligands in Photofunctional Multinuclear Complexes. Inorganic Chemistry 2016, 55
(21)
, 11110-11124. https://doi.org/10.1021/acs.inorgchem.6b01736
- Amanda J. Morris, Gerald J. Meyer and Etsuko Fujita . Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research 2009, 42
(12)
, 1983-1994. https://doi.org/10.1021/ar9001679
- Silvia E. Ronco,, David W. Thompson,, Sean L. Gahan, and, John D. Petersen. Synthesis of, Characterization of, and Photoinduced Processes in Polymetallic Triad Complexes Containing Fe(II), Ru(II), and Rh(III) Metal Centers. Inorganic Chemistry 1998, 37
(8)
, 2020-2027. https://doi.org/10.1021/ic970270r
- A. Prasanna de Silva,, H. Q. Nimal Gunaratne,, Thorfinnur Gunnlaugsson,, Allen J. M. Huxley,, Colin P. McCoy,, Jude T. Rademacher, and, Terence E. Rice. Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews 1997, 97
(5)
, 1515-1566. https://doi.org/10.1021/cr960386p
- Yasuomi Yamazaki, Osamu Ishitani. Synthesis of Os(
ii
)–Re(
i
)–Ru(
ii
) hetero-trinuclear complexes and their photophysical properties and photocatalytic abilities. Chemical Science 2018, 9
(4)
, 1031-1041. https://doi.org/10.1039/C7SC04162D
- Yasuomi Yamazaki, Hiroyuki Takeda, Osamu Ishitani. Photocatalytic reduction of CO2 using metal complexes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25 , 106-137. https://doi.org/10.1016/j.jphotochemrev.2015.09.001
- Danilo Dini, Mary T. Pryce, Martin Schulz, Johannes G. Vos. Metallosupramolecular Assemblies for Application as Photocatalysts for the Production of Solar Fuels. 2015, 345-396. https://doi.org/10.1039/9781782622673-00345
- Amar Hens, Amit Maity, Kajal Krishna Rajak. N , N coordinating schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorganica Chimica Acta 2014, 423 , 408-420. https://doi.org/10.1016/j.ica.2014.08.024
- Martin Schulz, Michael Karnahl, Matthias Schwalbe, Johannes G. Vos. The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coordination Chemistry Reviews 2012, 256
(15-16)
, 1682-1705. https://doi.org/10.1016/j.ccr.2012.02.016
- Phong D. Tran, Lydia H. Wong, James Barber, Joachim S. C. Loo. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science 2012, 5
(3)
, 5902. https://doi.org/10.1039/c2ee02849b
- Simon R. Collinson, Martin Schröder. Nickel: Inorganic & Coordination Chemistry. 2005https://doi.org/10.1002/0470862106.ia150
- Simon R. Collinson, Martin Schröder. Nickel: Inorganic & Coordination Chemistry. 2005https://doi.org/10.1002/9781119951438.eibc0140
- Yann Pellegrin, Katja E. Berg, Geneviève Blondin, Elodie Anxolabéhère‐Mallart, Winfried Leibl, Ally Aukauloo. A Rigid Molecular Scaffold Affixing a (Polypyridine)ruthenium(
II
)‐ and a Nickel(
II
)‐Containing Complex: Spectroscopic Evidence for a Weakly Coupled Bichromophoric System. European Journal of Inorganic Chemistry 2003, 2003
(10)
, 1900-1910. https://doi.org/10.1002/ejic.200200561
- Heather M. Rowe, Wenying Xu, J. N. Demas, B. A. DeGraff. Metal Ion Sensors Based on a Luminescent Ruthenium(II) Complex: The Role of Polymer Support in Sensing Properties. Applied Spectroscopy 2002, 56
(2)
, 167-173. https://doi.org/10.1366/0003702021954629
- Etsuko Fujita, Bruce S. Brunschwig. Homogeneous Redox Catalysis in CO
2
Fixation. 2001, 88-126. https://doi.org/10.1002/9783527618248.ch49
- Etsuko Fujita. Photochemical carbon dioxide reduction with metal complexes. Coordination Chemistry Reviews 1999, 185-186 , 373-384. https://doi.org/10.1016/S0010-8545(99)00023-5
- Nobuko Komatsuzaki, Yuichiro Himeda, Takuji Hirose, Hideki Sugihara, Kazuyuki Kasuga. Synthesis and Photochemical Properties of Ruthenium–Cobalt and Ruthenium–Nickel Dinuclear Complexes. Bulletin of the Chemical Society of Japan 1999, 72
(4)
, 725-731. https://doi.org/10.1246/bcsj.72.725
- Joseph R. Lakowicz. Long-Lifetime Metal—Ligand Complexes. 1999, 573-594. https://doi.org/10.1007/978-1-4757-3061-6_20
- Horst Hennig, Roland Billing, Klaus Ritter. Sensibilisierte Photolyse von Bis(dimethylglyoximato)cobalt(III)-Komplexen mit axial koordiniertem Azid bzw. Thiophenolat als photochemischen Opferliganden. Journal für Praktische Chemie/Chemiker-Zeitung 1997, 339
(1)
, 272-276. https://doi.org/10.1002/prac.19973390148
- A. Prasana de Silva, H.Q. Nimal Gunaratne, Thorfinnur Gunnlaugsson, Allen J.M. Huxley, Colin P. McCoy, Jude T. Rademacher, Terence E. Rice. Supramolecular photoionic devices. 1997, 1-53. https://doi.org/10.1016/S1068-7459(97)80013-6
- J. Costamagna, G. Ferraudi, J. Canales, J. Vargas. Carbon dioxide activation by aza-macrocyclic complexes. Coordination Chemistry Reviews 1996, 148 , 221-248. https://doi.org/10.1016/0010-8545(95)01231-1
- Gary A. Foulds. 1. Nickel 1992. Coordination Chemistry Reviews 1995, 146 , A1-A90. https://doi.org/10.1016/0010-8545(95)01195-1
- G. Ruiz, E. Wolcan, A.L. Capparelli, M.R. Féliz. Carbon dioxide activation by ClRe(CO)3(4-phenylpyridine)2: steady state and flash photolysis study. Journal of Photochemistry and Photobiology A: Chemistry 1995, 89
(1)
, 61-66. https://doi.org/10.1016/1010-6030(95)04041-D
- Suzanna Chan, Wing-Tak Wong. 10. Ruthenium 1992. Coordination Chemistry Reviews 1995, 138 , 219-296. https://doi.org/10.1016/0010-8545(95)90581-R
- Angelo J. Amoroso, Amitava Das, Jon A. McCleverty, Michael D. Ward, Francesco Barigelletti, Lucia Flamigni. Quenching of a polypyridyl-ruthenium(II) chromophore by covalently attached {ML(NO)Cl} fragments (M=Mo, W; L=tris(3,5-dimethylpyrazolyl)hydroborate). Inorganica Chimica Acta 1994, 226
(1-2)
, 171-177. https://doi.org/10.1016/0020-1693(94)04084-2
- Michael G. Richmond. Annual survey of ruthenium and osmium for the year 1992. Journal of Organometallic Chemistry 1994, 477
(1-2)
, 219-268. https://doi.org/10.1016/0022-328X(94)88093-X
- Etsuko Fujita, Bruce S. Brunschwig, Tomoyuki Ogata, Shozo Yanagida. Toward photochemical carbon dioxide activation by transition metal complexes. Coordination Chemistry Reviews 1994, 132 , 195-200. https://doi.org/10.1016/0010-8545(94)80040-5
- F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E.C. Constable, A.M.W. Cargill Thompson. Intramolecular energy transfer through phenyl bridges in rod-like dinuclear Ru(II)/Os(II) terpyridine-type complexes. Coordination Chemistry Reviews 1994, 132 , 209-214. https://doi.org/10.1016/0010-8545(94)80042-1
- Richard A. Bissell, A. Prasanna de Silva, H. Q. Nimal Gunaratne, P. L. Mark Lynch, Glenn E. M. Maguire, Colin P. McCoy, K. R. A. Samankumara Sandanayake. Fluorescent PET (photoinduced electron transfer) sensors. 1993, 223-264. https://doi.org/10.1007/3-540-56746-1_12
- F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable, A. M. W. Cargill Thompson. Luminescence properties of rigid rod-like binuclear ruthenium(
II
)–osmium(
II
) terpyridine complexes; electronic interaction through phenyl bridges. J. Chem. Soc., Chem. Commun. 1993, 58
(11)
, 942-944. https://doi.org/10.1039/C39930000942
- Ronald Grigg, W. D. J. Amilaprasadh Norbert. Luminescent pH sensors based on di(2,2′-bipyridyl)(5,5′-diaminomethyl-2,2′-bipyridyl)-ruthenium(
II
) complexes. J. Chem. Soc., Chem. Commun. 1992, 86
(18)
, 1300-1302. https://doi.org/10.1039/C39920001300
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.