ACS Publications. Most Trusted. Most Cited. Most Read
Rhodium(I) and rhodium(III) phosphine complexes with nonbridging benzenethiolato ligands: preparation, structures, and chemical properties
My Activity
    Article

    Rhodium(I) and rhodium(III) phosphine complexes with nonbridging benzenethiolato ligands: preparation, structures, and chemical properties
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 1993, 32, 11, 2360–2365
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic00063a027
    Published May 1, 1993

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 39 publications.

    1. Laura Palacios, Maria Jose Artigas, Victor Polo, Fernando J. Lahoz, Ricardo Castarlenas, Jesús J. Pérez-Torrente, and Luis A. Oro . Hydroxo–Rhodium–N-Heterocyclic Carbene Complexes as Efficient Catalyst Precursors for Alkyne Hydrothiolation. ACS Catalysis 2013, 3 (12) , 2910-2919. https://doi.org/10.1021/cs400739y
    2. Andrea Di Giuseppe, Ricardo Castarlenas, Jesús J. Pérez-Torrente, Marcello Crucianelli, Victor Polo, Rodrigo Sancho, Fernando J. Lahoz, and Luis A. Oro . Ligand-Controlled Regioselectivity in the Hydrothiolation of Alkynes by Rhodium N-Heterocyclic Carbene Catalysts. Journal of the American Chemical Society 2012, 134 (19) , 8171-8183. https://doi.org/10.1021/ja300396h
    3. Laurence Carlton, Lebohang V. Mokoena and Manuel A. Fernandes. Influence of Ligand Polarizability on the Reversible Binding of O2 by trans-[Rh(X)(XNC)(PPh3)2] (X = Cl, Br, SC6F5, C2Ph; XNC = Xylyl Isocyanide). Structures and a Kinetic Study. Inorganic Chemistry 2008, 47 (19) , 8696-8703. https://doi.org/10.1021/ic800478g
    4. Jeremy M. Praetorius,, Daryl P. Allen,, Ruiyao Wang,, Jonathan D. Webb,, Friedrich Grein,, Pierre Kennepohl, and, Cathleen M. Crudden. N-Heterocyclic Carbene Complexes of Rh:  Reaction with Dioxygen without Oxidation. Journal of the American Chemical Society 2008, 130 (12) , 3724-3725. https://doi.org/10.1021/ja7108213
    5. Ulrike Helmstedt,, Peter Lönnecke, and, Evamarie Hey-Hawkins. The Influence of Phosphane Coligands on the Nuclearity of Rhodium(I) 4-Thiolatobenzoic Acid Complexes. Inorganic Chemistry 2006, 45 (25) , 10300-10308. https://doi.org/10.1021/ic0610684
    6. Ofer Blum and, David Milstein. Oxidative Addition of Water and Aliphatic Alcohols by IrCl(trialkylphosphine)3. Journal of the American Chemical Society 2002, 124 (38) , 11456-11467. https://doi.org/10.1021/ja012611c
    7. Kevin A. Bunten,, David H. Farrar,, Anthony J. Poë, and, Alan Lough. Stoichiometric and Catalytic Oxidation of BINAP by Dioxygen in a Rhodium(I) Complex. Organometallics 2002, 21 (16) , 3344-3350. https://doi.org/10.1021/om020241a
    8. Sujay Pattanayak,, Swarup Chattopadhyay,, Kaushik Ghosh,, Sanjib Ganguly,, Prasanta Ghosh, and, Animesh Chakravorty. A New Family of Acylrhodium Organometallics. Organometallics 1999, 18 (8) , 1486-1494. https://doi.org/10.1021/om980748e
    9. Kohtaro Osakada,, Take-aki Koizumi,, Susumu Sarai, and, Takakazu Yamamoto. Isomers of Chloro(triarylsilyl)hydridorhodium(III) Complexes, mer-RhCl(H)(SiAr3)(PMe3)3. Relevance of Their Structures to Reductive Elimination of ClSiAr3. Organometallics 1998, 17 (9) , 1868-1872. https://doi.org/10.1021/om970846k
    10. Eric Deydier,, Marie-Joëlle Menu,, Michèle Dartiguenave,, Yves Dartiguenave,, Michel Simard,, André L. Beauchamp,, John C. Brewer, and, Harry B. Gray. Transition Metal Diazoalkane Complexes. Synthesis, Structure, and Photochemistry of Rh[C(N2)SiMe3](PEt3)3. Organometallics 1996, 15 (4) , 1166-1175. https://doi.org/10.1021/om950490h
    11. Jin Li,, Robert McDonald, and, Ronald G. Cavell. New Heteromultifunctional Fluoroaromatic Bis(phosphinimine) Ligands and Their Complexes. Synthesis and Characterization of New Ligands (Including X-ray Structures of 4,6-(CN)2C6F2-1-(NP(Ph)2CH2PPh2)-3-(NPPh3) and 4,6-(CN)2C6F2-1,3-bis(NP(Ph)2CH2PPh2)) and Their Rhodium(I) Complexes, Including the Structure of the Novel Dimetallic Complex 4,6-(CN)2C6F2-1,3-bis(NP(Ph)2CH2P(Ph)2Rh(CO)Cl). Organometallics 1996, 15 (3) , 1033-1041. https://doi.org/10.1021/om950767d
    12. Sheila G. Curto, Laura A. de las Heras, Miguel A. Esteruelas, Montserrat Oliván, Enrique Oñate, Andrea Vélez. Reactions of POP-pincer rhodium(I)-aryl complexes with small molecules: coordination flexibility of the ether diphosphine. Canadian Journal of Chemistry 2021, 99 (2) , 127-136. https://doi.org/10.1139/cjc-2020-0061
    13. Anikul Islam, Suman Mandal, Samantha J. Carrington, Indranil Chakraborty, Swarup Chattopadhyay. Pyridine-2-carboxylato chelated acylrhodium(III) organometallics: Spectroscopic, structural and theoretical studies. Polyhedron 2019, 172 , 15-21. https://doi.org/10.1016/j.poly.2019.02.033
    14. Theresia Ahrens, Mike Ahrens, Thomas Braun, Beatrice Braun, Roy Herrmann. Synthesis of a rhodium( i ) germyl complex: a useful tool for C–H and C–F bond activation reactions. Dalton Transactions 2016, 45 (11) , 4716-4728. https://doi.org/10.1039/C5DT04845A
    15. Takayuki Nakajima, Miyuki Sakamoto, Sachi Kurai, Bunsho Kure, Tomoaki Tanase. Reversible dioxygen binding on asymmetric dinuclear rhodium centres. Chemical Communications 2013, 49 (46) , 5250. https://doi.org/10.1039/c3cc41815d
    16. Kiran Diwan, Bandana Singh, Santosh K. Singh, Michael G. B. Drew, Nanhai Singh. Facile in situcopper( ii ) mediated C–S bond activation transforming dithiocarbimate to carbamate and thiocarbamate generating Cu( ii ) and Cu( i ) complexes. Dalton Trans. 2012, 41 (2) , 367-369. https://doi.org/10.1039/C1DT11622C
    17. Joseph H. Rivers, Lauren J. DePue Anderson, Cotton M. N. Starr, Richard A. Jones. Rhodium pyrazolate complexes as potential CVD precursors. Dalton Transactions 2012, 41 (17) , 5401. https://doi.org/10.1039/c2dt12450e
    18. Olena V. Zenkina, Eric C. Keske, Ruiyao Wang, Cathleen M. Crudden. Double Single‐Crystal‐to‐Single‐Crystal Transformation and Small‐Molecule Activation in Rhodium NHC Complexes. Angewandte Chemie 2011, 123 (35) , 8250-8254. https://doi.org/10.1002/ange.201103316
    19. Olena V. Zenkina, Eric C. Keske, Ruiyao Wang, Cathleen M. Crudden. Double Single‐Crystal‐to‐Single‐Crystal Transformation and Small‐Molecule Activation in Rhodium NHC Complexes. Angewandte Chemie International Edition 2011, 50 (35) , 8100-8104. https://doi.org/10.1002/anie.201103316
    20. Anna Penner, Thomas Braun. Rhodium and Iridium Complexes with α‐Diketimine Ligands: Oxidative Addition of H 2 and O 2. European Journal of Inorganic Chemistry 2011, 2011 (16) , 2579-2587. https://doi.org/10.1002/ejic.201100135
    21. Gregor Meier, Thomas Braun. A Rhodium Peroxido Complex in Mono‐, Di‐, and Peroxygenation Reactions. Angewandte Chemie 2011, 123 (14) , 3338-3342. https://doi.org/10.1002/ange.201007315
    22. Gregor Meier, Thomas Braun. A Rhodium Peroxido Complex in Mono‐, Di‐, and Peroxygenation Reactions. Angewandte Chemie International Edition 2011, 50 (14) , 3280-3284. https://doi.org/10.1002/anie.201007315
    23. Joseph H. Rivers, Richard A. Jones. Synthesis and structures of the homoleptic cations [M(PMe3)5]+ (M = Rh, Ir). Chemical Communications 2010, 46 (24) , 4300. https://doi.org/10.1039/c0cc00892c
    24. Christian M. Frech, Linda J. W. Shimon, David Milstein. Ligand‐Controlled Formation of a Low‐Valent Pincer Rhodium(I)–Dioxygen Adduct Bearing a Very Short OO Bond. Helvetica Chimica Acta 2006, 89 (8) , 1730-1739. https://doi.org/10.1002/hlca.200690170
    25. Marcel Ahijado, Thomas Braun, Daniel Noveski, Nikolaus Kocher, Beate Neumann, Dietmar Stalke, Hans‐Georg Stammler. Rhodiumvermittelte Bildung von Peroxiden aus Disauerstoff: Isolierung von Hydroperoxo‐, Silylperoxo‐ und Methylperoxo‐Intermediaten. Angewandte Chemie 2005, 117 (42) , 7107-7111. https://doi.org/10.1002/ange.200501615
    26. Marcel Ahijado, Thomas Braun, Daniel Noveski, Nikolaus Kocher, Beate Neumann, Dietmar Stalke, Hans‐Georg Stammler. Rhodium‐Mediated Formation of Peroxides from Dioxygen: Isolation of Hydroperoxo, Silylperoxo, and Methylperoxo Intermediates. Angewandte Chemie International Edition 2005, 44 (42) , 6947-6951. https://doi.org/10.1002/anie.200501615
    27. Yoshiaki Takahashi, Mariko Hashimoto, Shiro Hikichi, Yoshihiko Moro-oka, Munetaka Akita. Oxygenation of a low valent rhodium complex, TpiPr2Rh(dppe): sequential conversion of molecular oxygen into peroxo and hydroperoxo complexes and characterization of the peroxo species. Inorganica Chimica Acta 2004, 357 (6) , 1711-1724. https://doi.org/10.1016/j.ica.2003.12.022
    28. Viorel Cı̂rcu, Manuel A Fernandes, Laurence Carlton. Reactivity of a rhodium(I) complex towards oxygen enhanced by a cyano ligand. Structure of [Rh(CN)(O2)(PPh3)2(XNC)] (XNC=xylyl isocyanide). Polyhedron 2002, 21 (18) , 1775-1778. https://doi.org/10.1016/S0277-5387(02)01056-2
    29. Gregorio Sánchez, Francisco Ruiz, José L. Serrano, M. Carmen Ramírez de Arellano, Gregorio López. Organometallic Nickel(II) Complexes Containing Thiolate and Dithiocarbamate Ligands. European Journal of Inorganic Chemistry 2000, 2000 (10) , 2185-2191. https://doi.org/10.1002/1099-0682(200010)2000:10<2185::AID-EJIC2185>3.0.CO;2-K
    30. Kohtaro Osakada. Structure and chemical properties of mononuclear and dinuclear silylrhodium complexes. Activation of the Si–C bond and formation of Si–Cl and Si–SR bonds promoted by Rh complexes. Journal of Organometallic Chemistry 2000, 611 (1-2) , 323-331. https://doi.org/10.1016/S0022-328X(00)00492-7
    31. Yoshiaki Takahashi, Mariko Hashimoto, Shiro Hikichi, Munetaka Akita, Yoshihiko Moro-oka. Umwandlung von molekularem Sauerstoff in eine Hydroperoxoverbindung über eine Protonierungs-induzierte Ringöffnung eines cyclischen η2-Peroxo-Intermediats: Charakterisierung der η2-Peroxo- und Hydroperoxokomplexe. Angewandte Chemie 1999, 111 (20) , 3259-3262. https://doi.org/10.1002/(SICI)1521-3757(19991018)111:20<3259::AID-ANGE3259>3.0.CO;2-E
    32. A Antiñolo, I Fonseca, A Ortiz, M.J Rosales, J Sanz-Aparicio, P Terreros, H Torrens. Iridium–fluorobenzenethiolato complexes: crystal structures of [Ir(SC6F5)(CO)(PPh3)2], [Ir3(μ-SC6F5)3(μ-CO)(CO)4(PPh3)2] and [Ir(SC6F5)(η-O2)(CO)(PPh3)2]. Polyhedron 1999, 18 (7) , 959-968. https://doi.org/10.1016/S0277-5387(98)00379-9
    33. Kohtaro Osakada, Kouji Hataya, Takakazu Yamamoto. Thermal Isomerization of mer -[RhH(SAr)(SiHAr′2)(PMe3)3] to fac -[RhH2{SiAr′2(SAr)}(PMe3)3] Involving Thiolato Group Transfer from Rh to Si. Bulletin of the Chemical Society of Japan 1998, 71 (12) , 2853-2858. https://doi.org/10.1246/bcsj.71.2853
    34. J.L.G. Fierro, M. Martínez-Ripoll, M.D. Merchán, A. Rodríguez, P. Terreros, H. Torrens, M.A. Vivar-Cerrato. Rhodium(I) fluorothiolate complexes as hydroformylation catalyst precursors. Crystal structure of two polymorphs of trans-[Rh(SC6F5)(CO)(PPh3)2]. Journal of Organometallic Chemistry 1997, 544 (2) , 243-255. https://doi.org/10.1016/S0022-328X(97)00330-6
    35. Kohtaro Osakada, Kouji Hataya, Takakazu Yamamoto. Preparation and structures of hydrido (organosilyl) arenethiolatorhodium(III) complexes with PMe3 ligands. Irreversible and reversible oxidative addition of an SiH bond to thiolatorhodium (I) complexes. Inorganica Chimica Acta 1997, 259 (1-2) , 203-211. https://doi.org/10.1016/S0020-1693(97)05449-2
    36. Wa-Hung Leung, Tom S.M. Hun, Sherman Fung, Ian D. Williams, Kwok-Yin Wong. Syntheses and electrochemistry of metal complexes of a bulky pyridine-thiolate ligand. Polyhedron 1997, 16 (20) , 3641-3648. https://doi.org/10.1016/S0277-5387(97)00098-3
    37. Catherine E. Housecroft. 3. Rhodium 1993. Coordination Chemistry Reviews 1996, 152 , 107-139. https://doi.org/10.1016/0010-8545(96)01270-2
    38. Claudio Bianchini, Robert W. Zoellner. Activation of Dioxygen by Cobalt Group Metal Complexes. 1996, 263-339. https://doi.org/10.1016/S0898-8838(08)60133-6
    39. Kohtaro Osakada, Takakazu Yamamoto. Oxidative Addition of Benzenethiol to [Rh(PMe3)4]Cl Giving Cationic and Neutral Hydrido(benzenethiolato)rhodium(III) Complexes. Bulletin of the Chemical Society of Japan 1994, 67 (12) , 3271-3275. https://doi.org/10.1246/bcsj.67.3271

    Inorganic Chemistry

    Cite this: Inorg. Chem. 1993, 32, 11, 2360–2365
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic00063a027
    Published May 1, 1993

    Article Views

    246

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.