ACS Publications. Most Trusted. Most Cited. Most Read
Stabilization of nickel(III) in a classical N2S2 coordination environment containing anionic sulfur
My Activity

    article

    Stabilization of nickel(III) in a classical N2S2 coordination environment containing anionic sulfur
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Inorganic Chemistry

    Cite this: Inorg. Chem. 1987, 26, 22, 3645–3647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic00269a002
    Published November 1, 1987

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Simarjeet Kaur, Moumita Bera, Aakash Santra, Sandip Munshi, George E. Sterbinsky, Tianpin Wu, Dooshaye Moonshiram, Sayantan Paria. Effect of Redox-Inactive Metal Ion–Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Inorganic Chemistry 2022, 61 (36) , 14252-14266. https://doi.org/10.1021/acs.inorgchem.2c01472
    2. Jérémy Domergue, Pawel Guinard, Magali Douillard, Jacques Pécaut, Olivier Proux, Colette Lebrun, Alan Le Goff, Pascale Maldivi, Pascale Delangle, Carole Duboc. A Bioinspired NiII Superoxide Dismutase Catalyst Designed on an ATCUN-like Binding Motif. Inorganic Chemistry 2021, 60 (17) , 12772-12780. https://doi.org/10.1021/acs.inorgchem.1c00899
    3. Norbert Lihi, Dóra Kelemen, Nóra V. May, István Fábián. The Role of the Cysteine Fragments of the Nickel Binding Loop in the Activity of the Ni(II)-Containing SOD Enzyme. Inorganic Chemistry 2020, 59 (7) , 4772-4780. https://doi.org/10.1021/acs.inorgchem.0c00057
    4. Kyle D. Spielvogel, Ezra J. Coughlin, Hayley Petras, Javier A. Luna, Austin Benson, Courtney M. Donahue, Amani Kibasa, Kyounghoon Lee, Ryan Salacinski, Suzanne C. Bart, Scott K. Shaw, James J. Shepherd, Scott R. Daly. The Influence of Redox-Innocent Donor Groups in Tetradentate Ligands Derived from o-Phenylenediamine: Electronic Structure Investigations with Nickel. Inorganic Chemistry 2019, 58 (19) , 12756-12774. https://doi.org/10.1021/acs.inorgchem.9b01675
    5. Minoru Kawai, Takahide Yamaguchi, Shigeyuki Masaoka, Fumito Tani, Takamitsu Kohzuma, Linus Chiang, Tim Storr, Kaoru Mieda, Takashi Ogura, Robert K. Szilagyi, and Yuichi Shimazaki . Influence of Ligand Flexibility on the Electronic Structure of Oxidized NiIII-Phenoxide Complexes. Inorganic Chemistry 2014, 53 (19) , 10195-10202. https://doi.org/10.1021/ic501181k
    6. Daisuke Nakane, Yuko Wasada-Tsutsui, Yasuhiro Funahashi, Tsubasa Hatanaka, Tomohiro Ozawa, and Hideki Masuda . A Novel Square-Planar Ni(II) Complex with an Amino—Carboxamido—Dithiolato-Type Ligand as an Active-Site Model of NiSOD. Inorganic Chemistry 2014, 53 (13) , 6512-6523. https://doi.org/10.1021/ic402574d
    7. Axel Klein, David A. Vicic, Christian Biewer, Iris Kieltsch, Kathrin Stirnat, and Claudia Hamacher . Oxidative Cleavage of CH3 and CF3 Radicals from BOXAM Nickel Complexes. Organometallics 2012, 31 (15) , 5334-5341. https://doi.org/10.1021/om300342r
    8. Tim J. Dunn, Caterina F. Ramogida, Curtis Simmonds, Alisa Paterson, Edwin W. Y. Wong, Linus Chiang, Yuichi Shimazaki, and Tim Storr . Non-Innocent Ligand Behavior of a Bimetallic Ni Schiff-Base Complex Containing a Bridging Catecholate. Inorganic Chemistry 2011, 50 (14) , 6746-6755. https://doi.org/10.1021/ic200785g
    9. Eric M. Gale, Beulah S. Narendrapurapu, Andrew C. Simmonett, Henry F. Schaefer, III and Todd C. Harrop. Exploring the Effects of H-Bonding in Synthetic Analogues of Nickel Superoxide Dismutase (Ni-SOD): Experimental and Theoretical Implications for Protection of the Ni−SCys Bond. Inorganic Chemistry 2010, 49 (15) , 7080-7096. https://doi.org/10.1021/ic1009187
    10. Marcello Gennari, Maylis Orio, Jacques Pécaut, Frank Neese, Marie-Noëlle Collomb and Carole Duboc . Reversible Apical Coordination of Imidazole between the Ni(III) and Ni(II) Oxidation States of a Dithiolate Complex: A Process Related to the Ni Superoxide Dismutase. Inorganic Chemistry 2010, 49 (14) , 6399-6401. https://doi.org/10.1021/ic100945n
    11. Vaidyanathan Mathrubootham, Jason Thomas, Richard Staples, John McCraken, Jason Shearer and Eric L. Hegg . Bisamidate and Mixed Amine/Amidate NiN2S2 Complexes as Models for Nickel-Containing Acetyl Coenzyme A Synthase and Superoxide Dismutase: An Experimental and Computational Study. Inorganic Chemistry 2010, 49 (12) , 5393-5406. https://doi.org/10.1021/ic9023053
    12. Adam T. Fiedler and, Thomas C. Brunold. Spectroscopic and Computational Studies of Ni3+ Complexes with Mixed S/N Ligation:  Implications for the Active Site of Nickel Superoxide Dismutase. Inorganic Chemistry 2007, 46 (21) , 8511-8523. https://doi.org/10.1021/ic061237k
    13. Apurba Kumar Patra and, Rabindranath Mukherjee. Bivalent, Trivalent, and Tetravalent Nickel Complexes with a Common Tridentate Deprotonated Pyridine Bis-Amide Ligand. Molecular Structures of Nickel(II) and Nickel(IV) and Redox Activity. Inorganic Chemistry 1999, 38 (7) , 1388-1393. https://doi.org/10.1021/ic980672e
    14. Minyoung Ju, Jin Kim, Jeongcheol Shin. EPR spectroscopy: A versatile tool for exploring transition metal complexes in organometallic and bioinorganic chemistry. Bulletin of the Korean Chemical Society 2024, 45 (10) , 835-862. https://doi.org/10.1002/bkcs.12899
    15. Akram Ali, Saumitra Bhowmik, Arunava Sengupta, Narottam Mukhopadhyay, Rabindranath Mukherjee. Controlled C–H bond activation leads to orthometalation and ring-hydroxylation in Ni(II) and Pd(II) complexes of a common tridentate azophenyl-salicylaldimine ligand. Inorganica Chimica Acta 2022, 538 , 120960. https://doi.org/10.1016/j.ica.2022.120960
    16. Norbert Lihi, István Fábián. Insight into the thermodynamic and catalytic features of NiSOD related metallopeptides. 2022, 1-22. https://doi.org/10.1016/bs.adioch.2021.12.001
    17. GorDan T. Reeves, Anthony W. Addison, Matthias Zeller. Ruthenium(II) complexes of the tetradentate polypyridyl thioether 1,2-bis[3′-(2″-pyridyl)-1′-thiapropyl]benzene. Polyhedron 2020, 179 , 114367. https://doi.org/10.1016/j.poly.2020.114367
    18. Marcus W. Drover, Jennifer A. Love, Laurel L. Schafer. 1,3-N,O-Complexes of late transition metals. Ligands with flexible bonding modes and reaction profiles. Chemical Society Reviews 2017, 46 (10) , 2913-2940. https://doi.org/10.1039/C6CS00715E
    19. Linus Chiang, Ryan M. Clarke, Khrystyna Herasymchuk, Mathew Sutherland, Kathleen E. Prosser, Yuichi Shimazaki, Tim Storr. Electronic Structure Evaluation of an Oxidized Tris(methoxy)‐Substituted Ni Salen Complex. European Journal of Inorganic Chemistry 2016, 2016 (1) , 49-55. https://doi.org/10.1002/ejic.201501144
    20. Amélie Kochem, Gisèle Gellon, Olivier Jarjayes, Christian Philouze, Amaury du Moulinet d'Hardemare, Maurice van Gastel, Fabrice Thomas. Nickel( ii ) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties. Dalton Transactions 2015, 44 (28) , 12743-12756. https://doi.org/10.1039/C5DT00944H
    21. Sushil Kumar, Megha Munjal, Jyoti Singh, Rajeev Gupta. Nickel and Copper Complexes of Pyrrolecarboxamide Ligands – Stabilization of M 3+ Species and Isolation of Ni 3+ Complexes. European Journal of Inorganic Chemistry 2014, 2014 (29) , 4957-4965. https://doi.org/10.1002/ejic.201402361
    22. Amélie Kochem, Gisèle Gellon, Nicolas Leconte, Benoit Baptiste, Christian Philouze, Olivier Jarjayes, Maylis Orio, Fabrice Thomas. Stable Anilinyl Radicals Coordinated to Nickel: X‐ray Crystal Structure and Characterization. Chemistry – A European Journal 2013, 19 (49) , 16707-16721. https://doi.org/10.1002/chem.201303228
    23. V. Martin-Diaconescu, M.J. Maroney. Nickel Bioinorganic Systems. 2013, 295-322. https://doi.org/10.1016/B978-0-08-097774-4.00319-3
    24. Meital Eckshtain-Levi, Maylis Orio, Ronit Lavi, Laurent Benisvy. Nickel(iii) complexes of di-amidato-di-phenolato ligands: effect of H-bonding. Dalton Transactions 2013, 42 (37) , 13323. https://doi.org/10.1039/c3dt51543e
    25. Linus Chiang, Amélie Kochem, Olivier Jarjayes, Tim J. Dunn, Hervé Vezin, Miyuki Sakaguchi, Takashi Ogura, Maylis Orio, Yuichi Shimazaki, Fabrice Thomas, Tim Storr. Radical Localization in a Series of Symmetric Ni II Complexes with Oxidized Salen Ligands. Chemistry – A European Journal 2012, 18 (44) , 14117-14127. https://doi.org/10.1002/chem.201201410
    26. Megha Munjal, Sushil Kumar, Savita K. Sharma, Rajeev Gupta. Nickel and copper complexes with few amide-based macrocyclic and open-chain ligands. Inorganica Chimica Acta 2011, 377 (1) , 144-154. https://doi.org/10.1016/j.ica.2011.08.017
    27. Savita K. Sharma, Rajeev Gupta. Studies on the structure and properties of nickel complexes in a set of amide-based 13-membered macrocyclic ligands. Inorganica Chimica Acta 2011, 376 (1) , 95-104. https://doi.org/10.1016/j.ica.2011.06.011
    28. Emma Stephen, Deguang Huang, Jennifer L. Shaw, Alexander J. Blake, David Collison, E. Stephen Davies, Ruth Edge, Judith A. K. Howard, Eric J. L. McInnes, Claire Wilson, Joanna Wolowska, Jonathan McMaster, Martin Schröder. Redox Non‐Innocence of Thioether Crowns: Spectroelectrochemistry and Electronic Structure of Formal Nickel(III) Complexes of Aza–Thioether Macrocycles. Chemistry – A European Journal 2011, 17 (37) , 10246-10258. https://doi.org/10.1002/chem.201100812
    29. Akella Sivaramakrishna, Hadley S. Clayton, Upadhyayula Muralikrishna. Synthesis, structure, chemistry, and applications of tetravalent nickel complexes. Journal of Coordination Chemistry 2011, 64 (8) , 1309-1332. https://doi.org/10.1080/00958972.2011.568614
    30. Yuichi Shimazaki, Natsumi Arai, Tim J. Dunn, Tatsuo Yajima, Fumito Tani, Caterina F. Ramogida, Tim Storr. Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes. Dalton Transactions 2011, 40 (11) , 2469. https://doi.org/10.1039/c0dt01574a
    31. Olivia E. Johnson, Kelly C. Ryan, Michael J. Maroney, Thomas C. Brunold. Spectroscopic and computational investigation of three Cys-to-Ser mutants of nickel superoxide dismutase: insight into the roles played by the Cys2 and Cys6 active-site residues. JBIC Journal of Biological Inorganic Chemistry 2010, 15 (5) , 777-793. https://doi.org/10.1007/s00775-010-0641-2
    32. Himanshu Arora, Christian Philouze, Olivier Jarjayes, Fabrice Thomas. CoII, NiII, CuII and ZnII complexes of a bipyridine bis-phenol conjugate: Generation and properties of coordinated radical species. Dalton Transactions 2010, 39 (42) , 10088. https://doi.org/10.1039/c0dt00342e
    33. Philip A. Stenson, Ashley Board, Armando Marin‐Becerra, Alexander J. Blake, E. Stephen Davies, Claire Wilson, Jonathan McMaster, Martin Schröder. Molecular and Electronic Structures of One‐Electron Oxidized Ni II –(Dithiosalicylidenediamine) Complexes: Ni III –Thiolate versus Ni II –Thiyl Radical States. Chemistry – A European Journal 2008, 14 (8) , 2564-2576. https://doi.org/10.1002/chem.200701108
    34. Tim Storr, Erik C. Wasinger, Russell C. Pratt, T. Daniel P. Stack. The Geometric and Electronic Structure of a One‐Electron‐Oxidized Nickel(II) Bis(salicylidene)diamine Complex. Angewandte Chemie 2007, 119 (27) , 5290-5293. https://doi.org/10.1002/ange.200701194
    35. Tim Storr, Erik C. Wasinger, Russell C. Pratt, T. Daniel P. Stack. The Geometric and Electronic Structure of a One‐Electron‐Oxidized Nickel(II) Bis(salicylidene)diamine Complex. Angewandte Chemie International Edition 2007, 46 (27) , 5198-5201. https://doi.org/10.1002/anie.200701194
    36. Laurent Benisvy, Ramu Kannappan, Yu‐Fei Song, Sergey Milikisyants, Martina Huber, Ilpo Mutikainen, Urho Turpeinen, Patrick Gamez, Leonardo Bernasconi, Evert Jan Baerends, František Hartl, Jan Reedijk. A Square‐Planar Nickel(II) Monoradical Complex with a Bis(salicylidene)diamine Ligand. European Journal of Inorganic Chemistry 2007, 2007 (5) , 637-642. https://doi.org/10.1002/ejic.200601015
    37. Olaf Rotthaus, Olivier Jarjayes, Carlos Perez Del Valle, Christian Philouze, Fabrice Thomas. A versatile electronic hole in one-electron oxidized NiIIbis-salicylidene phenylenediamine complexes. Chemical Communications 2007, 190–192 (43) , 4462. https://doi.org/10.1039/b710027b
    38. Olaf Rotthaus, Fabrice Thomas, Olivier Jarjayes, Christian Philouze, Eric Saint‐Aman, Jean‐Louis Pierre. Valence Tautomerism in Octahedral and Square‐Planar Phenoxyl–Nickel( II ) Complexes: Are Imino Nitrogen Atoms Good Friends?. Chemistry – A European Journal 2006, 12 (26) , 6953-6962. https://doi.org/10.1002/chem.200600258
    39. Olaf Rotthaus, Olivier Jarjayes, Fabrice Thomas, Christian Philouze, Carlos Perez Del Valle, Eric Saint‐Aman, Jean‐Louis Pierre. Fine Tuning of the Oxidation Locus, and Electron Transfer, in Nickel Complexes of Pro‐Radical Ligands. Chemistry – A European Journal 2006, 12 (8) , 2293-2302. https://doi.org/10.1002/chem.200500915
    40. Philip A. Stenson, Armando Marin-Becerra, Claire Wilson, Alexander J. Blake, Jonathan McMaster, Martin Schröder. Formation of [(L)Ni(μ 2 -S)x{Fe(CO) 3 }x] adducts (x = 1 or 2): analogues of the active site of [NiFe] hydrogenase. Chem. Commun. 2006, 373 (3) , 317-319. https://doi.org/10.1039/B509798C
    41. Todd C. Harrop, Pradip K. Mascharak. Structural and spectroscopic models of the A-cluster of acetyl coenzyme a synthase/carbon monoxide dehydrogenase: Nature's Monsanto acetic acid catalyst. Coordination Chemistry Reviews 2005, 249 (24) , 3007-3024. https://doi.org/10.1016/j.ccr.2005.04.019
    42. Daisuke Sakaniwa, Takahiro Ohe, Takashi Misumi, Hideaki Monjushiro, Akira Onoda, Takeshi Yamamura. Covalent Immobilization of Metal-binding Motifs of Enzymes on Quartz Surface. [Ni(Cys-X2-Cys)2]2− of Hydrogenases. Chemistry Letters 2005, 34 (12) , 1634-1635. https://doi.org/10.1246/cl.2005.1634
    43. Simon R. Collinson, Martin Schröder. Nickel: Inorganic & Coordination Chemistry. 2005https://doi.org/10.1002/0470862106.ia150
    44. Simon R. Collinson, Martin Schröder. Nickel: Inorganic & Coordination Chemistry. 2005https://doi.org/10.1002/9781119951438.eibc0140
    45. Øyvind Hatlevik, Mary C. Blanksma, Vaidyanathan Mathrubootham, Atta M. Arif, Eric L. Hegg. Modeling carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS): a trinuclear nickel complex employing deprotonated amides and bridging thiolates. JBIC Journal of Biological Inorganic Chemistry 2004, 9 (2) , 238-246. https://doi.org/10.1007/s00775-003-0518-8
    46. Z. Hank,, N. Kichou,, S. Boutamine,, M. Meklati,, O. Vittori,. SYNTHESIS OF A NOVEL FAMILY OF Ni(III)-a- DIOXIMES COMPLEXES BY ELECTROCHEMICAL PROCESS. Reviews in Inorganic Chemistry 2004, 24 (1) , 39-59. https://doi.org/10.1515/REVIC.2004.24.1.39
    47. F. Meyer, H. Kozlowski. Nickel. 2003, 247-554. https://doi.org/10.1016/B0-08-043748-6/05084-2
    48. Z. Hank,, K. Labraouil,, S. Boutamine,, M. Meklati,, O. Vittori,. Reactivity of Hydroxyaryloximes on Nickel (II) Aqueous Solution in the Presence of Pyridine Revisited. Evidence for Formation of Ni (III) Species. Reviews in Inorganic Chemistry 2003, 23 (1) , 75-96. https://doi.org/10.1515/REVIC.2003.23.1.75
    49. Todd C Harrop, Marilyn M Olmstead, Pradip K Mascharak. Novel folding of N,N′-naphthalenebis(o-mercaptobenzamide) in nickel(II) complexes: monomeric and trimeric species with unexpected ‘butterfly’ and ‘slant chair’ structure. Inorganica Chimica Acta 2002, 338 , 189-195. https://doi.org/10.1016/S0020-1693(02)00871-X
    50. E. Şahin, S. İde, N. Ancın, S.G. Öztas, M. Tüzün. Synthesis, structural and spectral studies of bis-[N-(2,4-dimethoxy benzylidene)-2-mercaptoanilinato] Ni(II). Zeitschrift für Kristallographie - Crystalline Materials 2002, 217 (4) , 174-177. https://doi.org/10.1524/zkri.217.4.174.20642
    51. C.Retna Raj, K.Vengatajalabathy Gobi, Takeo Ohsaka. Electrocatalytic oxidation of NADH at the self-assembled monolayer of nickel(II) macrocycle on gold electrode. Bioelectrochemistry 2000, 51 (2) , 181-186. https://doi.org/10.1016/S0302-4598(00)00070-2
    52. Sally Brooker, Paul D. Croucher, Tony C. Davidson, Geoffrey S. Dunbar, Corina U. Beck, S. Subramanian. Controlled Thiolate Coordination and Redox Chemistry: Synthesis, Structure, Axial-Binding, and Electrochemistry of Dinickel(II) Dithiolate Macrocyclic Complexes. European Journal of Inorganic Chemistry 2000, 2000 (1) , 169-179. https://doi.org/10.1002/(SICI)1099-0682(200001)2000:1<169::AID-EJIC169>3.0.CO;2-2
    53. Berthold Kersting. Control of Reactivity of Dinuclear Nickel(II) Amine-Thiolate Complexes. European Journal of Inorganic Chemistry 1999, 1999 (12) , 2157-2166. https://doi.org/10.1002/(SICI)1099-0682(199912)1999:12<2157::AID-EJIC2157>3.0.CO;2-H
    54. Alka Tripathi, R.K Syal, Parimal K Bharadwaj. An air-stable Ni(III) complex with thiolate, phenolate and amide ligation. Polyhedron 1999, 18 (17) , 2229-2232. https://doi.org/10.1016/S0277-5387(99)00054-6
    55. Vitaly V. Pavlishchuk, Sergey V. Kolotilov, Ekkehard Sinn, Michael J. Prushan, Anthony W. Addison. The 1, 8-bis(2′-pyridyl)-3, 6-dithiaoctane complex of nickel(II): X-ray crystal structure and borohydride adduct formation. Inorganica Chimica Acta 1998, 278 (2) , 217-222. https://doi.org/10.1016/S0020-1693(98)00030-9
    56. Shyamal Kumar Chattopadhyay, Debashish Chattopadhyay, Tapati Banerjee, Reiko Kuroda, Saktiprosad Ghosh. Studies of nickel(II) complexes of 3-hydroxyiminobutanone thiosemicarbazone and 3-hydroxyiminobutanone (4-phenyl thiosemicarbazone). Crystal structure of bis(3-hydroxyiminobutanone (4-phenyl thiosemicarbazone) nickel(II) nitrate, monohydrate, [Ni(C11H14N4OS)2](NO3)2·H2O. Polyhedron 1997, 16 (11) , 1925-1930. https://doi.org/10.1016/S0277-5387(96)00446-9
    57. Jan Hanss, Hans‐Jörg Krüger. Der erste stabile Kupfer( III )‐Komplex mit aliphatischen Thiolaten als Liganden: struktureller und spektroskopischer Nachweis von Cu II ‐ und Cu III ‐Ionen in Komplexen mit quadratisch‐planaren CuN 2 S 2 ‐Koordinationssphären. Angewandte Chemie 1996, 108 (23-24) , 2989-2991. https://doi.org/10.1002/ange.19961082323
    58. Jan Hanss, Hans‐Jörg Krüger. The First Stable Copper( III ) Complex Containing Aliphatic Thiolates as Ligands: Structural and Spectroscopic Evidence for Cu II and Cu III Ions in Complexes with Square‐Planar CuN 2 S 2 Coordination Environments. Angewandte Chemie International Edition in English 1996, 35 (23-24) , 2827-2830. https://doi.org/10.1002/anie.199628271
    59. Alexander J. Blake, Francesco Demartin, Francesco A. Devillanova, Alessandra Garau, Francesco Isaia, Vito Lippolis, Martin Schröder, Gaetano Verani. A new class of mixed aza–thioether crown containing a 1,10-phenanthroline sub-unit. J. Chem. Soc., Dalton Trans. 1996, 35 (18) , 3705-3712. https://doi.org/10.1039/DT9960003705
    60. Christine Marganian Goldman, Pradip K. Mascharak. Reactions of H 2 with the Nickel Site(s) of the [FeNi] and [FeNiSe] Hydrogenases: What Do the Model Complexes Suggest?. Comments on Inorganic Chemistry 1995, 18 (1) , 1-25. https://doi.org/10.1080/02603599508033861
    61. Andrew F. Kolodziej. The Chemistry of Nickel‐Containing Enzymes. 1994, 493-597. https://doi.org/10.1002/9780470166420.ch7
    62. Alexander J. Blake, Malcolm A. Halcrow, Martin Schröder. Nickel thioether chemistry: syntheses and crystal structures of [Ni 2 L 2 (µ-Cl) 2 ][BF 4 ] 2 (l = 1,4,7,10-tetrathiacyclododecane, 1,4,8,11-tetrathiacyclotetradecane or 1,5,9,13-tetrathiacyclohexadecane). J. Chem. Soc., Dalton Trans. 1994, 115 (9) , 1463-1470. https://doi.org/10.1039/DT9940001463
    63. Takeshi Yamamura, Makoto Tadokoro, Koji Tanaka, Reiko Kuroda. Syntheses and Structures of NiS2N2 Compounds. [ N,N ′-Bis( o -mercaptobenzyliden)ethylenediaminato]nickel(II), Ni(tsalen), and [ N,N ′-Bis( o -mercaptobenzyl)ethylenediaminato]nickel(II), Ni(ebmba). Bulletin of the Chemical Society of Japan 1993, 66 (7) , 1984-1990. https://doi.org/10.1246/bcsj.66.1984
    64. Maurizio Lenarda, Renzo Ganzerla, Loretta Storaro, Roberto Zanoni. Catalysis by the Rh/B system Part 1. Vapour-phase hydroformylation of ethylene at atmospheric pressure on Rh/B on silica. Journal of Molecular Catalysis 1993, 78 (3) , 339-350. https://doi.org/10.1016/0304-5102(93)87063-E
    65. Robert P. Hausinger. Chemistry of Nickel. 1993, 13-22. https://doi.org/10.1007/978-1-4757-9435-9_2
    66. Robert P. Hausinger. Hydrogenase. 1993, 59-105. https://doi.org/10.1007/978-1-4757-9435-9_4
    67. Alexander J. Blake, Malcolm A. Halcrow, Martin Schröder. Nickel thioether chemistry: syntheses of nickel( II ) complexes of tetra- and penta-thia macrocyclic ligands. The single-crystal structures of [Ni([16]aneS 4 )(OH 2 ) 2 ][BF 4 ] 2 and [Ni([15]aneS 5 )][PF 6 ] 2 ([16]aneS 4 =1,5,9,13-tetrathiacyclohexadecane, [15]aneS 5 =1,4,7,10,13-pentathiacyclopentadecane). J. Chem. Soc., Dalton Trans. 1992, 115 (19) , 2803-2808. https://doi.org/10.1039/DT9920002803
    68. Alexander J. Blake, Robert O. Gould, Malcolm A. Halcrow, Alan J. Holder, Timothy I. Hyde, Martin Schröder. Nickel thioether chemistry: a re-examination of the electrochemistry of [Ni([9]aneS 3 ) 2 ] 2+ . The single-crystal X-ray structure of a nickel( III ) thioether complex, [Ni III ([9]aneS 3 ) 2 ][H 5 O 2 ] 3 [ClO 4 ] 6 ([9]aneS 3 = 1,4,7-trithiacyclononane). J. Chem. Soc., Dalton Trans. 1992, 108 (24) , 3427-3431. https://doi.org/10.1039/DT9920003427
    69. Kim R. Dunbar. New Applications of Weak Donor Atoms to Coordination, Organometallic and Materials Chemistry. Comments on Inorganic Chemistry 1992, 13 (6) , 313-357. https://doi.org/10.1080/02603599208048466
    70. Isabelle Mus-Veteau, David Diaz, Jesus Gracia-Mora, Bruno Guigliarelli, Genevieve Chottard, Mireille Bruschi. Spectroscopic studies of the nickel-substituted Desulfovibrio vulgaris Hildenborough rubredoxin: implication for the nickel site in hydrogenases. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1991, 1060 (2) , 159-165. https://doi.org/10.1016/S0005-2728(09)91003-9
    71. Marc Zimmer, Gayle Schulte, Xiao‐Liang Luo, Robert H. Crabtree. Funktionelle Modelle von Ni, Fe‐Hydrogenasen: Ein Nickelkomplex mit einer N, O, S‐Koordination. Angewandte Chemie 1991, 103 (2) , 205-207. https://doi.org/10.1002/ange.19911030225
    72. Gayle Schulte, Xiao‐Liang Luo, Robert H. Crabtree, Marc Zimmer. Functional Modeling of Ni,Fe Hydrogenases: A Nickel Complex in an N,O,S Environment.. Angewandte Chemie International Edition in English 1991, 30 (2) , 193-194. https://doi.org/10.1002/anie.199101931
    73. Narayan Baidya, Pradip K. Mascharak, Douglas W. Stephan, Charles F. Campagna. Mononuclear nickel(II) thiolates of square-planar geometry: syntheses, spectral and redox properties of [Ni(SCH2CH2S)2]2− and [Ni(SCH(CH3)CH(CH3)S)2]2− and the structure of (Ph4P)2[Ni(SCH2CH2S)2]·4H2O. Inorganica Chimica Acta 1990, 177 (2) , 233-238. https://doi.org/10.1016/S0020-1693(00)85981-2
    74. H.‐J. + KRUEGER, R. H. HOLM. ChemInform Abstract: Stabilization of Nickel(III) in a Classical N2S2 Coordination Environment Containing Anionic Sulfur.. ChemInform 1988, 19 (10) https://doi.org/10.1002/chin.198810337

    Inorganic Chemistry

    Cite this: Inorg. Chem. 1987, 26, 22, 3645–3647
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic00269a002
    Published November 1, 1987

    Article Views

    571

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.