Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Donor−Acceptor Heteroleptic Open Sandwiches

View Author Information
Facultad de Química, Universidad de Guanajuato, Noria Alta s/n CP 36050, Guanajuato, Guanajuato, México, Instituto de Química, UNAM, Circuito Exterior, Universidad Nacional Autónoma de México, Coyoacán, CP 04510 México, D.F. México, and Departamento de Química, Centro de Investigación y de Estudios Avanzados, AP 14−740, México 07000, D.F. México
Cite this: Inorg. Chem. 2006, 45, 3, 1091–1095
Publication Date (Web):January 4, 2006
https://doi.org/10.1021/ic051391r
Copyright © 2006 American Chemical Society

    Article Views

    489

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A series of donor−acceptor heteroleptic open sandwiches with formula CpM−M‘Pyl (M = B, Al, Ga; M‘ = Li, Na; Cp = cyclopentadienyl; Pyl = pentadienyl) has been designed in silico using density functional theory. The most stable complexes are those containing boron as a donor atom. A molecular orbital analysis shows that the s character of the lone pair located at the group 13 element is mainly responsible for the complex stabilization. It is also found that the surrounding medium has a similar effect on these sandwiches such as in the “classical” donor−acceptor complexes, showing a decrement in the group 13 element−alkaline metal bond lengths.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. E-mail:  gmerino@ quijote.ugto.mx.

     Universidad de Guanajuato.

     Universidad Nacional Autónoma de México.

    §

     Centro de Investigación y de Estudios Avanzados.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    The xyz coordinates for donor−acceptor heteroleptic open sandwiches and the MO of CpM fragments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 36 publications.

    1. Jorge Barroso, Sukanta Mondal, José Luis Cabellos, Edison Osorio, Sudip Pan, and Gabriel Merino . Structure and Bonding of Alkali-Metal Pentalenides. Organometallics 2017, 36 (2) , 310-317. https://doi.org/10.1021/acs.organomet.6b00768
    2. Sandra González-Gallardo, Timo Bollermann, Roland A. Fischer, and Ramaswamy Murugavel . Cyclopentadiene Based Low-Valent Group 13 Metal Compounds: Ligands in Coordination Chemistry and Link between Metal Rich Molecules and Intermetallic Materials. Chemical Reviews 2012, 112 (6) , 3136-3170. https://doi.org/10.1021/cr2001146
    3. Zeferino Gomez-Sandoval, Eduardo Peña, Célia Fonseca Guerra, F. Matthias Bickelhaupt, Miguel Angel Mendez-Rojas and Gabriel Merino. A Helicoid Ferrocene. Inorganic Chemistry 2009, 48 (7) , 2714-2716. https://doi.org/10.1021/ic8024638
    4. Ning He, Hong-bin Xie and Yi-hong Ding. One-Electron Metal−Metal Bond Stabilized in Dinuclear Metallocenes: Theoretical Prediction of DBe-LiCp (D = C5H5 or C5Me5). The Journal of Physical Chemistry A 2008, 112 (48) , 12463-12468. https://doi.org/10.1021/jp804801w
    5. Li-Ming Yang, Hai-Peng He, Yi-Hong Ding and Chia-Chung Sun. Achieving Stable Hypercarbon CB62−-Based Cluster-Assembled Complexes: A General Strategy. Organometallics 2008, 27 (8) , 1727-1735. https://doi.org/10.1021/om7008588
    6. Israel Fernández, Erick Cerpa, Gabriel Merino and Gernot Frenking. Structure and Bonding of [E−Cp−E′]+ Complexes (E and E′ = B−Tl; Cp = Cyclopentadienyl). Organometallics 2008, 27 (6) , 1106-1111. https://doi.org/10.1021/om700994y
    7. Erick Cerpa, Francisco J. Tenorio, Maryel Contreras, Manuel Villanueva, Hiram I. Beltrán, Thomas Heine, Kelling J. Donald and Gabriel Merino. Pentadienyl Complexes of Alkali Metals: Structure and Bonding. Organometallics 2008, 27 (5) , 827-833. https://doi.org/10.1021/om070244t
    8. Ning He, Hong-bin Xie and Yi-hong Ding. Can Donor–Acceptor Bonded Dinuclear Metallocenes Exist? A Computational Study on the Stability of CpM′−MCp (M′ = B, Al, Ga, In, Tl; M = Li, Na, K) and Its Isomers. Organometallics 2007, 26 (27) , 6839-6843. https://doi.org/10.1021/om700847v
    9. Alejandro Velazquez,, Israel Fernández,, Gernot Frenking, and, Gabriel Merino. Multimetallocenes. A Theoretical Study. Organometallics 2007, 26 (19) , 4731-4736. https://doi.org/10.1021/om700477b
    10. Abdessamad Grirrane,, Irene Resa,, Amor Rodriguez,, Ernesto Carmona,, Eleuterio Alvarez,, Enrique Gutierrez-Puebla,, Angeles Monge,, Agustín Galindo,, Diego del Río, and, Richard A. Andersen. Zinc−Zinc Bonded Zincocene Structures. Synthesis and Characterization of Zn2(η5-C5Me5)2 and Zn2(η5-C5Me4Et)2. Journal of the American Chemical Society 2007, 129 (3) , 693-703. https://doi.org/10.1021/ja0668217
    11. Qian Shu Li and, Yu Xu. A DFT Study on Dinuclear Metallocenes RMMR [R= (BCO)5, (BNN)5; M = Be, Mg, Ca, Zn, Cd]. The Journal of Physical Chemistry A 2006, 110 (42) , 11898-11902. https://doi.org/10.1021/jp065010m
    12. Jorge Barroso, Fernando Murillo, Gerardo Martínez‐Guajardo, Filiberto Ortíz‐Chi, Sudip Pan, María A. Fernández‐Herrera, Gabriel Merino. Bonding and Mobility of Alkali Metals in Helicenes. Chemistry – A European Journal 2018, 24 (43) , 11227-11233. https://doi.org/10.1002/chem.201802222
    13. Zhihui Zhang, Xuejun Feng, Qun Chen, Mingyang He, Yaoming Xie, R. Bruce King, Henry F. Schaefer. Metal–metal bonding in biscycloheptatrienyl dimetal compounds of the second‐row transition metals. International Journal of Quantum Chemistry 2017, 117 (12) https://doi.org/10.1002/qua.25374
    14. Sukanta Mondal, Edison Osorio, Sudip Pan, José Luis Cabellos, Saul Martínez, Elizabeth Florez, Gabriel Merino. Why CpAl–Cr(CO)5 is linear while CpIn–Cr(CO)5 is not? Understanding the structure and bonding of the CpE–Cr(CO)5 (E = Group 13 element) complexes. Theoretical Chemistry Accounts 2016, 135 (10) https://doi.org/10.1007/s00214-016-1993-7
    15. Thi Ai Nhung Nguyen, Thi Phuong Loan Huynh, Thai Hoa Tran, Van Tat Pham, Tuan Quang Duong, Tan Hiep Dang. Structures and Bonding Situation of Iron Complexes of Group‐13 Half‐Sandwich E Cp* ( E = B to Tl) Based on DFT Calculations. Zeitschrift für anorganische und allgemeine Chemie 2016, 642 (8) , 609-617. https://doi.org/10.1002/zaac.201600104
    16. Sukanta Mondal, Jose Luis Cabellos, Sudip Pan, Edison Osorio, Juan Jose Torres-Vega, William Tiznado, Albeiro Restrepo, Gabriel Merino. 10-π-Electron arenes à la carte: structure and bonding of the [E–(C n H n )–E] n−6 (E = Ca, Sr, Ba; n = 6–8) complexes. Physical Chemistry Chemical Physics 2016, 18 (17) , 11909-11918. https://doi.org/10.1039/C6CP00671J
    17. Nan-nan Liu, Yi-hong Ding. Theoretical Study on Inverse Sandwich Complexes [E-C5− n H5− n N n -E]+ and [E-C5− n H5− n P n -E]+ ( n =1, 2, 3; E=Al, Ga, In, Tl). Chinese Journal of Chemical Physics 2015, 28 (6) , 703-710. https://doi.org/10.1063/1674-0068/28/cjcp1504061
    18. Mei Zhang, Xueying Zhang, Lingpeng Meng, Qingzhong Li, Xiaoyan Li. Construction of double- and triple-decker sandwich compounds from half-sandwich compounds: a theoretical assessment. Journal of Molecular Modeling 2015, 21 (8) https://doi.org/10.1007/s00894-015-2744-8
    19. Haixiang Hu, Lihong Zang, Weina Zhang, Xiaochun Li. A series of novel sandwich complexes: MQ(η4-E4)2 (M=Be or Mg; Q=C or Si; E=P, As, Sb or Bi) with donor–acceptor bonds. Computational and Theoretical Chemistry 2015, 1058 , 41-49. https://doi.org/10.1016/j.comptc.2015.01.023
    20. Suhong Huo, Decheng Meng, Xiayan Zhang, Lingpeng Meng, Xiaoyan Li. Bonding analysis of the donor–acceptor sandwiches CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η 5-C5H5). Journal of Molecular Modeling 2014, 20 (10) https://doi.org/10.1007/s00894-014-2455-6
    21. Abril C. Castro, Edison Osorio, José Luis Cabellos, Erick Cerpa, Eduard Matito, Miquel Solà, Marcel Swart, Gabriel Merino. Exploring the Potential Energy Surface of E 2 P 4 Clusters (E=Group 13 Element): The Quest for Inverse Carbon‐Free Sandwiches. Chemistry – A European Journal 2014, 20 (16) , 4583-4590. https://doi.org/10.1002/chem.201304685
    22. Yan‐Chun Liu, Shui‐Xing Wu, Yu‐He Kan, Hou‐Yu Zhang, Zhong‐Min Su. Structural and Bonding Analyses on a Homologous Metal–Metal Bond Guest–Host Series M 2 @C 50 X 10 (M = Zn, Cd, Hg; X = CH, N, B). European Journal of Inorganic Chemistry 2013, 2013 (12) , 2220-2230. https://doi.org/10.1002/ejic.201201416
    23. Nan‐Nan Liu, Jing Xu, Yi‐Hong Ding. Inverse sandwich complexes based on low‐valent group 13 elements and cyclobutadiene: A theoretical investigation on E‐C 4 H 4 ‐E (E = Al, Ga, In, Tl). International Journal of Quantum Chemistry 2013, 113 (7) , 1018-1025. https://doi.org/10.1002/qua.24114
    24. P. Ravinder, V. Subramanian. Fullerene based endohedral metallocenes. Computational and Theoretical Chemistry 2012, 998 , 106-112. https://doi.org/10.1016/j.comptc.2012.07.003
    25. Lihong Zang, Xiuhui Zhang, Nan Li, Qianshu Li. The all non-metal homodinuclear and heterodinuclear sandwich-like compounds C2(η3-L3)2 and BN(η3-L3)2 (L = BCO, BNN and CBO). Dalton Transactions 2012, 41 (19) , 5869. https://doi.org/10.1039/c2dt12149b
    26. Jeng-Horng Sheu, Ming-Der Su. A new target for synthesis of sandwiched beryllium, magnesium, and calcium dimers: C5H7–M–M–C5H7 and C4H4P–M–M–C4H4P. Journal of Organometallic Chemistry 2011, 696 (6) , 1221-1227. https://doi.org/10.1016/j.jorganchem.2010.11.027
    27. Xiuhui Zhang, Se Li, Qian-Shu Li. Characterizations of novel binuclear alkaline-earth metallocenes: M 2 (η 5 -E 5 ) 2 (M = Be, Mg and Ca; E = P and As). Molecular Physics 2009, 107 (8-12) , 855-861. https://doi.org/10.1080/00268970802665647
    28. Li-ming Yang, Xiao-ping Li, Yi-hong Ding, Chia-chung Sun. CSi2Ga2: a neutral planar tetracoordinate carbon (ptC) building block. Journal of Molecular Modeling 2009, 15 (1) , 97-104. https://doi.org/10.1007/s00894-008-0362-4
    29. Abdessamad Grirrane, Irene Resa, Amor Rodríguez, Ernesto Carmona. Synthesis and structural characterization of dizincocenes Zn2(η5-C5Me5)2 and Zn2(η5-C5Me4Et)2. Coordination Chemistry Reviews 2008, 252 (15-17) , 1532-1539. https://doi.org/10.1016/j.ccr.2008.01.014
    30. Li‐ming Yang, Xiao‐ping Li, Yi‐hong Ding, Chia‐chung Sun. Theoretical Study on a Class of Organometallic Complexes Based on All‐Metal Aromatic Ga 3 – Through Sandwiching Stabilization. European Journal of Inorganic Chemistry 2008, 2008 (12) , 2099-2106. https://doi.org/10.1002/ejic.200800029
    31. Li-Ming Yang, Yi-Hong Ding, Chia-Chung Sun. The Si-doped planar tetracoordinate carbon (ptC) unit CAl3Si− could be used as a building block or inorganic ligand during cluster-assembly. Theoretical Chemistry Accounts 2008, 119 (4) , 335-342. https://doi.org/10.1007/s00214-007-0389-0
    32. Yuhe Kan. The nature of metal–metal bond of the dimetallocene complexes [M2(η5-C5R5)2] (M=Zn, Cd, Hg; R=H, Me): An energy decomposition analysis. Journal of Molecular Structure: THEOCHEM 2007, 805 (1-3) , 127-132. https://doi.org/10.1016/j.theochem.2006.11.007
    33. Michal Wiecko, Peter W. Roesky, Paola Nava, Reinhart Ahlrichs, Sergey N. Konchenko. Gallium( i )–alkaline earth metal donor–acceptor bonds. Chem. Commun. 2007, 30 (9) , 927-929. https://doi.org/10.1039/B614165J
    34. Yi-Chou Tsai, Duan-Yen Lu, Yang-Miin Lin, Jenn-Kang Hwang, Jen-Shiang K. Yu. Structural transformations in dinuclear zinc complexes involving Zn–Zn bonds. Chemical Communications 2007, 305 (40) , 4125. https://doi.org/10.1039/b707396h
    35. Li-ming Yang, Yi-hong Ding, Wei Quan Tian, Chia-chung Sun. Planar carbon radical’s assembly and stabilization, a way to design spin-based molecular materials. Physical Chemistry Chemical Physics 2007, 9 (39) , 5304. https://doi.org/10.1039/b707898f
    36. Li-ming Yang, Yi-hong Ding, Chia-chung Sun. Design of Sandwichlike Complexes Based on the Planar Tetracoordinate Carbon Unit CAl 4 2-. Journal of the American Chemical Society 2007, 129 (3) , 658-665. https://doi.org/10.1021/ja066217w