ACS Publications. Most Trusted. Most Cited. Most Read
Pressure-Responsive Curvature Change of a “Rigid” Geodesic Ligand in a (3,24)-Connected Mesoporous Metal–Organic Framework
My Activity

Figure 1Loading Img
    Communication

    Pressure-Responsive Curvature Change of a “Rigid” Geodesic Ligand in a (3,24)-Connected Mesoporous Metal–Organic Framework
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
    Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
    Other Access OptionsSupporting Information (2)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2011, 50, 21, 10528–10530
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic201744n
    Published September 26, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A (3,24)-connected mesoporous metal–organic framework, PCN-69, was synthesized by linking a hexatopic ligand btti with dicopper paddlewheel clusters. This material has rigid connectivity but a flexible framework, which has been attributed to a curvature change of the ligand.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystallographic data for PCN-69 and experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Shiye Li, Zewei Liu, Huan Ouyang, Jun Pang, Chengzhang Deng, Zhisheng Xiao, Rong Tan. Photoswitchable Metal–Organic Framework as a Smart Nanoreactor for Ultraviolet Light-Enhanced Confined Catalysis. Inorganic Chemistry 2024, 63 (39) , 18110-18119. https://doi.org/10.1021/acs.inorgchem.4c02883
    2. Zhijie Chen, Hao Jiang, Mian Li, Michael O’Keeffe, Mohamed Eddaoudi. Reticular Chemistry 3.2: Typical Minimal Edge-Transitive Derived and Related Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews 2020, 120 (16) , 8039-8065. https://doi.org/10.1021/acs.chemrev.9b00648
    3. Shanelle Suepaul, Katherine A. Forrest, Tony Pham, Brian Space. Investigating the Effects of Linker Extension on H2 Sorption in the rht-Metal–Organic Framework NU-111 by Molecular Simulations. Crystal Growth & Design 2018, 18 (12) , 7599-7610. https://doi.org/10.1021/acs.cgd.8b01398
    4. Yong Yan, Alice E. O’Connor, Gopikkaa Kanthasamy, George Atkinson, David R. Allan, Alexander J. Blake, Martin Schröder. Unusual and Tunable Negative Linear Compressibility in the Metal–Organic Framework MFM-133(M) (M = Zr, Hf). Journal of the American Chemical Society 2018, 140 (11) , 3952-3958. https://doi.org/10.1021/jacs.7b11747
    5. Gregory R. Lorzing, Benjamin A. Trump, Craig M. Brown, and Eric D. Bloch . Selective Gas Adsorption in Highly Porous Chromium(II)-Based Metal–Organic Polyhedra. Chemistry of Materials 2017, 29 (20) , 8583-8587. https://doi.org/10.1021/acs.chemmater.7b03361
    6. Guohai Xu, Bin Li, Hui Wu, Wei Zhou, and Banglin Chen . Construction of ntt-Type Metal–Organic Framework from C2-Symmetry Hexacarboxylate Linker for Enhanced Methane Storage. Crystal Growth & Design 2017, 17 (9) , 4795-4800. https://doi.org/10.1021/acs.cgd.7b00737
    7. Xiangyang Guo, Zhen Zhou, Cong Chen, Junfeng Bai, Cheng He, and Chunying Duan . New rht-Type Metal–Organic Frameworks Decorated with Acylamide Groups for Efficient Carbon Dioxide Capture and Chemical Fixation from Raw Power Plant Flue Gas. ACS Applied Materials & Interfaces 2016, 8 (46) , 31746-31756. https://doi.org/10.1021/acsami.6b13928
    8. Zhanfeng Ju, Shichen Yan, and Daqiang Yuan . De Novo Tailoring Pore Morphologies and Sizes for Different Substrates in a Urea-Containing MOFs Catalytic Platform. Chemistry of Materials 2016, 28 (7) , 2000-2010. https://doi.org/10.1021/acs.chemmater.5b03999
    9. Phuong T. K. Nguyen, Huong T. D. Nguyen, Hung Q. Pham, Jaheon Kim, Kyle E. Cordova, and Hiroyasu Furukawa . Synthesis and Selective CO2 Capture Properties of a Series of Hexatopic Linker-Based Metal–Organic Frameworks. Inorganic Chemistry 2015, 54 (20) , 10065-10072. https://doi.org/10.1021/acs.inorgchem.5b01900
    10. Wen-Yang Gao, Rong Cai, Tony Pham, Katherine A. Forrest, Adam Hogan, Patrick Nugent, Kia Williams, Lukasz Wojtas, Ryan Luebke, Łukasz J. Weseliński, Michael J. Zaworotko, Brian Space, Yu-Sheng Chen, Mohamed Eddaoudi, Xiaodong Shi, and Shengqian Ma . Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials 2015, 27 (6) , 2144-2151. https://doi.org/10.1021/acs.chemmater.5b00084
    11. Elena Bichoutskaia, Mikhail Suyetin, Michelle Bound, Yong Yan, and Martin Schröder . Methane Adsorption in Metal–Organic Frameworks Containing Nanographene Linkers: A Computational Study. The Journal of Physical Chemistry C 2014, 118 (29) , 15573-15580. https://doi.org/10.1021/jp503210h
    12. Lu Liu, Jie Ding, Chao Huang, Ming Li, Hongwei Hou, and Yaoting Fan . Polynuclear CdII Polymers: Crystal Structures, Topologies, and the Photodegradation for Organic Dye Contaminants. Crystal Growth & Design 2014, 14 (6) , 3035-3043. https://doi.org/10.1021/cg500295r
    13. Mian Li, Dan Li, Michael O’Keeffe, and Omar M. Yaghi . Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews 2014, 114 (2) , 1343-1370. https://doi.org/10.1021/cr400392k
    14. Wei Wei, Wanlong Li, Xingzhu Wang, and Jieya He . A Designed Three-Dimensional Porous Hydrogen-Bonding Network Based on a Metal–Organic Polyhedron. Crystal Growth & Design 2013, 13 (9) , 3843-3846. https://doi.org/10.1021/cg4009152
    15. Atanu Santra, Irena Senkovska, Stefan Kaskel, and Parimal K. Bharadwaj . Gas Storage in a Partially Fluorinated Highly Stable Three-Dimensional Porous Metal–Organic Framework. Inorganic Chemistry 2013, 52 (13) , 7358-7366. https://doi.org/10.1021/ic302645r
    16. Feng Jin, Ying Zhang, Hui-Zhen Wang, Hui-Zhi Zhu, Yan Yan, Jun Zhang, Jie-Ying Wu, Yu-Peng Tian, and Hong-Ping Zhou . Diverse Structural Ag(I) Supramolecular Complexes Constructed from Multidentate Dicyanoisophorone-Based Ligands: Structures and Enhanced Luminescence. Crystal Growth & Design 2013, 13 (5) , 1978-1987. https://doi.org/10.1021/cg400025j
    17. XiaoLiang Zhao, Di Sun, Shuai Yuan, Shengyu Feng, Rong Cao, Daqiang Yuan, Suna Wang, Jianmin Dou, and Daofeng Sun . Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in rht-Type MOFs. Inorganic Chemistry 2012, 51 (19) , 10350-10355. https://doi.org/10.1021/ic3015207
    18. Omar K. Farha, Christopher E. Wilmer, Ibrahim Eryazici, Brad G. Hauser, Philip A. Parilla, Kevin O’Neill, Amy A. Sarjeant, SonBinh T. Nguyen, Randall Q. Snurr, and Joseph T. Hupp . Designing Higher Surface Area Metal–Organic Frameworks: Are Triple Bonds Better Than Phenyls?. Journal of the American Chemical Society 2012, 134 (24) , 9860-9863. https://doi.org/10.1021/ja302623w
    19. Di-Chang Zhong, Ji-Hua Deng, Xu-Zhong Luo, Hui-Jin Liu, Jin-Lian Zhong, Ke-Jun Wang, and Tong-Bu Lu . Two Cadmium-Cluster-Based Metal–Organic Frameworks with Mixed Ligands of 1,2,3-Benzenetriazole (HBTA) and 1,4-Benzenedicarboxylic acid (H2BDC). Crystal Growth & Design 2012, 12 (4) , 1992-1998. https://doi.org/10.1021/cg2016963
    20. Myunghyun Paik Suh, Hye Jeong Park, Thazhe Kootteri Prasad, and Dae-Woon Lim . Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2) , 782-835. https://doi.org/10.1021/cr200274s
    21. Khashayar Salehi, Mohammad Rahmani, Saeid Atashrouz. Hydrogen storage capacity in metal-organic frameworks: Towards elevating predictions through ensemble learning with a comprehensive preprocessed dataset. International Journal of Hydrogen Energy 2025, 118 , 251-267. https://doi.org/10.1016/j.ijhydene.2025.03.042
    22. Sheikh Mohammad Sirajul Islam, Mohammad A. Omary. Metal-Organic Frameworks based on Newly Designed Polycarboxyaryl Linkers: Versatile Cooperative Non-Covalent Interactions and Applications on Small Hydrocarbon Separation and Carbon Capture. 2024https://doi.org/10.12794/metadc2332598
    23. V. Bon, K. Roztocki, P. Iacomi, C. L. Hobday, I. Senkovska, A. Pöppl, E. Brunner, S. Kaskel. The Dynamic View: Multiscale Characterisation Techniques for Flexible Frameworks. 2024, 145-230. https://doi.org/10.1039/9781839166617-00145
    24. Yu Xin, Yue Cao, Jie Yang, Xinrong Guo, Kui Shen, Wen Yao. Mesopore and macropore engineering in metal–organic frameworks for energy environment-related applications. Journal of Materials Chemistry A 2024, 12 (9) , 4931-4970. https://doi.org/10.1039/D3TA07697K
    25. Khashayar Salehi, Mohammad Rahmani, Saeid Atashrouz. Machine learning assisted predictions for hydrogen storage in metal-organic frameworks. International Journal of Hydrogen Energy 2023, 48 (85) , 33260-33275. https://doi.org/10.1016/j.ijhydene.2023.04.338
    26. Qian Guan, Yilei Fang, Xu Wu, Ranwen Ou, Xinyu Zhang, Hao Xie, Mengyu Tang, Guisheng Zeng. Stimuli responsive metal organic framework materials towards advanced smart application. Materials Today 2023, 64 , 138-164. https://doi.org/10.1016/j.mattod.2023.02.013
    27. Tobie J. Matemb Ma Ntep, Verena K. Gramm, Uwe Ruschewitz, Christoph Janiak. Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal–organic frameworks: challenges and potential. Chemical Communications 2022, 58 (64) , 8900-8933. https://doi.org/10.1039/D2CC02665A
    28. Okpara Sergeant Bull, Ibiso Bull, Gloria Kelechi Amadi, Chikwem Obaalologhi Odu, Eyu Okpa Okpa. A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Oriental Journal Of Chemistry 2022, 38 (3) , 490-516. https://doi.org/10.13005/ojc/380301
    29. Xueli Zhang, Rongxiu Tu, Zan Lu, Jinyun Peng, Chuantao Hou, Zonghua Wang. Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective. Coordination Chemistry Reviews 2021, 443 , 214032. https://doi.org/10.1016/j.ccr.2021.214032
    30. Qi Yin, Tian‐Fu Liu. Relationship Between MOF Structures and Gas Absorption Properties. 2021, 833-879. https://doi.org/10.1002/9783527831753.ch14
    31. Yuehong Wen, Xintao Wu, Qi‐Long Zhu. The Structures of Metal–Organic Frameworks. 2021, 283-309. https://doi.org/10.1002/9783527831753.ch6a
    32. Yuehong Wen, Xintao Wu, Qi‐Long Zhu. The Structures of Metal–Organic Frameworks. 2021, 309-389. https://doi.org/10.1002/9783527831753.ch6b
    33. Yuehong Wen, Xintao Wu, Qi‐Long Zhu. The Structures of Metal–Organic Frameworks. 2021, 342-389. https://doi.org/10.1002/9783527831753.ch6c
    34. Gaurav Verma, Shengqian Ma. Metal-Organic Frameworks Derived From Multitopic Ligands: Structural Aspects. 2021, 1021-1054. https://doi.org/10.1016/B978-0-08-102688-5.00085-4
    35. Hosein Ghasempour, Kun-Yu Wang, Joshua A. Powell, Farnoosh ZareKarizi, Xiu-Liang Lv, Ali Morsali, Hong-Cai Zhou. Metal–organic frameworks based on multicarboxylate linkers. Coordination Chemistry Reviews 2021, 426 , 213542. https://doi.org/10.1016/j.ccr.2020.213542
    36. Arne Klinkebiel, Ole Beyer, Ulrich Lüning. Substituted 1,3,5-Triazine Hexacarboxylates as Potential Linkers for MOFs. Molecules 2019, 24 (19) , 3480. https://doi.org/10.3390/molecules24193480
    37. Hien Duy Mai, Ngoc Minh Tran, Hyojong Yoo. Multilevel coordination-driven assembly for metallosupramolecules with hierarchical structures. Coordination Chemistry Reviews 2019, 387 , 180-198. https://doi.org/10.1016/j.ccr.2019.02.010
    38. Pei-Zhou Li, Xiao-Jun Wang, Yanli Zhao. Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coordination Chemistry Reviews 2019, 380 , 484-518. https://doi.org/10.1016/j.ccr.2018.11.006
    39. Dingxin Liu, Dianting Zou, Haolin Zhu, Jianyong Zhang. Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small 2018, 14 (37) https://doi.org/10.1002/smll.201801454
    40. Aeri J. Gosselin, Gregory R. Lorzing, Benjamin A. Trump, Craig M. Brown, Eric D. Bloch. Gas adsorption in an isostructural series of pillared coordination cages. Chemical Communications 2018, 54 (49) , 6392-6395. https://doi.org/10.1039/C8CC03216E
    41. Hui‐Min Wen, Bin Li, Libo Li, Rui‐Biao Lin, Wei Zhou, Guodong Qian, Banglin Chen. A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials 2018, 30 (16) https://doi.org/10.1002/adma.201704792
    42. Mikhail Suyetin. Rht-MOFs with triptycene-modified linkers for balanced gravimetric/volumetric hydrogen storage: A molecular simulation study. International Journal of Hydrogen Energy 2017, 42 (5) , 3114-3121. https://doi.org/10.1016/j.ijhydene.2017.01.062
    43. Tony Pham, Katherine A. Forrest, Douglas M. Franz, Brian Space. Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm 2017, 19 (32) , 4646-4665. https://doi.org/10.1039/C7CE01032J
    44. Alauddin Ahmed, Yiyang Liu, Justin Purewal, Ly D. Tran, Antek G. Wong-Foy, Mike Veenstra, Adam J. Matzger, Donald J. Siegel. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy & Environmental Science 2017, 10 (11) , 2459-2471. https://doi.org/10.1039/C7EE02477K
    45. Fengli Chen, Dongjie Bai, Yao Wang, Donghao Jiang, Yabing He. A family of ssa-type copper-based MOFs constructed from unsymmetrical diisophthalates: synthesis, characterization and selective gas adsorption. Materials Chemistry Frontiers 2017, 1 (11) , 2283-2291. https://doi.org/10.1039/C7QM00302A
    46. Hiroyasu Furukawa, Xixi Sun. Extended Linkers for Ultrahigh Surface Area Metal-Organic Frameworks. 2016, 271-307. https://doi.org/10.1002/9783527693078.ch10
    47. Di‐Ming Chen, Jia‐Yue Tian, Chun‐Sen Liu. An Unusual (6, 14)‐Connected Metal‐Organic Framework Constructed from Two Distinct Cobalt(II) Cluster Units and a Bifunctional Organic Linker. Zeitschrift für anorganische und allgemeine Chemie 2016, 642 (11-12) , 714-718. https://doi.org/10.1002/zaac.201600114
    48. R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review. Applied Energy 2016, 161 , 225-255. https://doi.org/10.1016/j.apenergy.2015.10.011
    49. Jie Zhao, Xin Wang, Jing Zhao, Rui Luo, Xuan Shen, Dunru Zhu, Su Jing. [Ln 4 @Ln 4 ] matryoshka tetrahedron: a novel secondary building unit. CrystEngComm 2016, 18 (6) , 863-867. https://doi.org/10.1039/C5CE02417J
    50. Tony Pham, Katherine A. Forrest, Wen‐Yang Gao, Shengqian Ma, Brian Space. Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in rht ‐Metal–Organic Frameworks. ChemPhysChem 2015, 16 (15) , 3170-3179. https://doi.org/10.1002/cphc.201500504
    51. Evgeniya I. Volkova, Alexander V. Vakhrushev, Mikhail Suyetin. Triptycene-modified linkers of MOFs for methane sorption enhancement: A molecular simulation study. Chemical Physics 2015, 459 , 14-18. https://doi.org/10.1016/j.chemphys.2015.07.019
    52. Eunji Lee, Huiyeong Ju, Suk‐Hee Moon, Youngjin Kang, Ki‐Min Park. Three‐Dimensional Tetranuclear Cd( II ) Coordination Network Based on a 1,3‐Alternate Calix[4]arene Derivative. Bulletin of the Korean Chemical Society 2015, 36 (8) , 2124-2127. https://doi.org/10.1002/bkcs.10373
    53. Hong-Mei Zhang, Jin Yang, Ying-Ying Liu, Da-Wei Kang, Jian-Fang Ma. A family of coordination polymers assembled with a flexible hexacarboxylate ligand and auxiliary N-donor ligands: syntheses, structures, and physical properties. CrystEngComm 2015, 17 (16) , 3181-3196. https://doi.org/10.1039/C5CE00181A
    54. Guodong Xu, Yongwu Peng, Zhigang Hu, Daqiang Yuan, Bruno Donnadieu, Dan Zhao, Hansong Cheng. A 2D metal–organic framework composed of a bi-functional ligand with ultra-micropores for post-combustion CO 2 capture. RSC Advances 2015, 5 (59) , 47384-47389. https://doi.org/10.1039/C5RA04295J
    55. Xiaoqing Wang, Liangliang Zhang, Jie Yang, Fuling Liu, Fangna Dai, Rongming Wang, Daofeng Sun. Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. Journal of Materials Chemistry A 2015, 3 (24) , 12777-12785. https://doi.org/10.1039/C5TA00061K
    56. Samson Jegan Jennifer, Packianathan Thomas Muthiah. Syntheses and characterization of two novel tetranuclear lead(II) clusters self-assembled by hydrogen bonded interactions. Chemistry Central Journal 2014, 8 (1) https://doi.org/10.1186/1752-153X-8-39
    57. Song‐De Han, Xiao‐Hong Miao, Sui‐Jun Liu, Xian‐He Bu. Large Magnetocaloric Effect in a Dense and Stable Inorganic–Organic Hybrid Cobridged by In Situ Generated Sulfate and Oxalate. Chemistry – An Asian Journal 2014, 9 (11) , 3116-3120. https://doi.org/10.1002/asia.201402777
    58. Xiao-Jun Wang, Jian Li, Pei-Zhou Li, Ling-Bao Xing, Han Lu, Hui Wu, Yanhui Shi, Ruqiang Zou, Yanli Zhao. An amine functionalized rht-type metal-organic framework with the improved performance for gas uptake. Inorganic Chemistry Communications 2014, 46 , 13-16. https://doi.org/10.1016/j.inoche.2014.04.027
    59. Henrietta W. Langmi, Jianwei Ren, Brian North, Mkhulu Mathe, Dmitri Bessarabov. Hydrogen Storage in Metal-Organic Frameworks: A Review. Electrochimica Acta 2014, 128 , 368-392. https://doi.org/10.1016/j.electacta.2013.10.190
    60. Evgeniya I. Volkova, Alexander V. Vakhrushev, Mikhail Suyetin. Improved design of metal-organic frameworks for efficient hydrogen storage at ambient temperature: A multiscale theoretical investigation. International Journal of Hydrogen Energy 2014, 39 (16) , 8347-8350. https://doi.org/10.1016/j.ijhydene.2014.03.167
    61. Yabo Xie, Hui Yang, Zhiyong U. Wang, Yangyang Liu, Hong-Cai Zhou, Jian-Rong Li. Unusual preservation of polyhedral molecular building units in a metal–organic framework with evident desymmetrization in ligand design. Chem. Commun. 2014, 50 (5) , 563-565. https://doi.org/10.1039/C3CC48089E
    62. Zu-Jin Lin, Jian Lü, Maochun Hong, Rong Cao. Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43 (16) , 5867-5895. https://doi.org/10.1039/C3CS60483G
    63. Weigang Lu, Zhangwen Wei, Zhi-Yuan Gu, Tian-Fu Liu, Jinhee Park, Jihye Park, Jian Tian, Muwei Zhang, Qiang Zhang, Thomas Gentle III, Mathieu Bosch, Hong-Cai Zhou. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014, 43 (16) , 5561-5593. https://doi.org/10.1039/C4CS00003J
    64. Yabing He, Wei Zhou, Guodong Qian, Banglin Chen. Methane storage in metal–organic frameworks. Chem. Soc. Rev. 2014, 43 (16) , 5657-5678. https://doi.org/10.1039/C4CS00032C
    65. Yabing He, Bin Li, Michael O'Keeffe, Banglin Chen. Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev. 2014, 43 (16) , 5618-5656. https://doi.org/10.1039/C4CS00041B
    66. Vincent Guillerm, Dongwook Kim, Jarrod F. Eubank, Ryan Luebke, Xinfang Liu, Karim Adil, Myoung Soo Lah, Mohamed Eddaoudi. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 2014, 43 (16) , 6141-6172. https://doi.org/10.1039/C4CS00135D
    67. Jian Li, Pei-Zhou Li, Qiu-Yan Li, Yang Cao, Han Lu, Hui Wu, Fei Li, Yanhui Shi, Xiao-Jun Wang, Yanli Zhao. An rht-type metal–organic framework constructed from an unsymmetrical ligand exhibiting high hydrogen uptake capability. RSC Adv. 2014, 4 (96) , 53975-53980. https://doi.org/10.1039/C4RA07101H
    68. Xiao-Li Hu, Fu-Hong Liu, Hai-Ning Wang, Chao Qin, Chun-Yi Sun, Zhong-Min Su, Fu-Chen Liu. Controllable synthesis of isoreticular pillared-layer MOFs: gas adsorption, iodine sorption and sensing small molecules. J. Mater. Chem. A 2014, 2 (36) , 14827-14834. https://doi.org/10.1039/C4TA01749H
    69. Irena Senkovska, Stefan Kaskel. Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chemical Communications 2014, 50 (54) , 7089. https://doi.org/10.1039/c4cc00524d
    70. Hiroyasu Furukawa, Kyle E. Cordova, Michael O’Keeffe, Omar M. Yaghi. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149) https://doi.org/10.1126/science.1230444
    71. Yang Peng, Gadipelli Srinivas, Christopher E. Wilmer, Ibrahim Eryazici, Randall Q. Snurr, Joseph T. Hupp, Taner Yildirim, Omar K. Farha. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chemical Communications 2013, 49 (29) , 2992. https://doi.org/10.1039/c3cc40819a
    72. Baishu Zheng, Zhen Yang, Junfeng Bai, Yizhi Li, Shuhua Li. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chemical Communications 2012, 48 (56) , 7025. https://doi.org/10.1039/c2cc17593b
    73. Lifang Song, Jian Zhang, Lixian Sun, Fen Xu, Fen Li, Huanzhi Zhang, Xiaoliang Si, Chengli Jiao, Zhibao Li, Shuang Liu, Yingliang Liu, Huaiying Zhou, Dalin Sun, Yong Du, Zhong Cao, Zelimir Gabelica. Mesoporous metal–organic frameworks: design and applications. Energy & Environmental Science 2012, 5 (6) , 7508. https://doi.org/10.1039/c2ee03517k
    74. Guang-Sheng Yang, Mei-Na Li, Shun-Li Li, Ya-Qian Lan, Wen-Wen He, Xin-Long Wang, Jun-Sheng Qin, Zhong-Min Su. Controllable synthesis of microporous, nanotubular and mesocage-like metal–organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. Journal of Materials Chemistry 2012, 22 (34) , 17947. https://doi.org/10.1039/c2jm32990e

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2011, 50, 21, 10528–10530
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic201744n
    Published September 26, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2255

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.