Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives.
My Activity
    Article

    Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives.
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
    Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
    § Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
    Max-Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
    *E-mail: [email protected] (P.J.C.).
    Other Access OptionsSupporting Information (2)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2012, 51, 6, 3770–3785
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic202750n
    Published March 6, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The electronic structures of the four- and five-coordinate aryl-substituted bis(imino)pyridine iron dinitrogen complexes, (iPrPDI)FeN2 and (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-(2,6-iPr2–C6H3–N=CMe)2C5H3N), have been investigated by a combination of spectroscopic techniques (NMR, Mössbauer, X-ray Absorption, and X-ray Emission) and DFT calculations. Homologation of the imine methyl backbone to ethyl or isopropyl groups resulted in the preparation of the new bis(imino)pyridine iron dinitrogen complexes, (iPrRPDI)FeN2 (iPrRPDI = 2,6-(2,6-iPr2–C6H3–N=CR)2C5H3N; R = Et, iPr), that are exclusively four coordinate both in the solid state and in solution. The spectroscopic and computational data establish that the (iPrRPDI)FeN2 compounds are intermediate spin ferrous derivatives (SFe = 1) antiferromagnetically coupled to bis(imino)pyridine triplet diradical dianions (SPDI = 1). While this ground state description is identical to that previously reported for (iPrPDI)Fe(DMAP) (DMAP = 4-N,N-dimethylaminopyridine) and other four-coordinate iron compounds with principally σ-donating ligands, the d-orbital energetics determine the degree of coupling of the metal-chelate magnetic orbitals resulting in different NMR spectroscopic behavior. For (iPrRPDI)Fe(DMAP) and related compounds, this coupling is strong and results in temperature independent paramagnetism where a triplet excited state mixes with the singlet ground state via spin orbit coupling. In the (iPrRPDI)FeN2 family, one of the iron singly occupied molecular orbitals (SOMOs) is essentially dz2 in character resulting in poor overlap with the magnetic orbitals of the chelate, leading to thermal population of the triplet state and hence temperature dependent NMR behavior. The electronic structures of (iPrRPDI)FeN2 and (iPrPDI)Fe(DMAP) differ from (iPrPDI)Fe(N2)2, a highly covalent molecule with a redox noninnocent chelate that is best described as a resonance hybrid between iron(0) and iron(II) canonical forms as originally proposed in 2004.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    X-ray crystallographic data for (iPrEtPDI)FeN2 and (iPriPr PDI)FeN2 in cif format. SQUID, Mössbauer, IR, VT-XAS, XES fits, and calculated XAS and XES deconvolutions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 117 publications.

    1. Aleksandra Wandzilak, Katarzyna Grubel, Kazimer L. Skubi, Sean F. McWilliams, Dimitrios Bessas, Atanu Rana, Stefan Hugenbruch, Abhishek Dey, Patrick L. Holland, Serena DeBeer. Mössbauer and Nuclear Resonance Vibrational Spectroscopy Studies of Iron Species Involved in N–N Bond Cleavage. Inorganic Chemistry 2023, 62 (45) , 18449-18464. https://doi.org/10.1021/acs.inorgchem.3c02594
    2. Christopher J. Pollock, Louise M. Debefve. Resonant Excitation Unlocks Chemical Selectivity of Platinum Lβ Valence-to-Core X-ray Emission Spectra. Inorganic Chemistry 2023, 62 (34) , 13681-13691. https://doi.org/10.1021/acs.inorgchem.3c01930
    3. Leah Gajecki, Barbara Sawicka, David J. Berg, Allen G. Oliver. Synthesis and Magnetic Studies of Two Neutral, Bis-Ligand Fe(II) Complexes Containing Carbazole-Bis(tetrazole) Ligands. Inorganic Chemistry 2023, 62 (31) , 12372-12382. https://doi.org/10.1021/acs.inorgchem.3c01167
    4. Leif E. Hertwig, Thilo Bender, Felix J. Becker, Patrick Jäger, Serhiy Demeshko, Sophie Jana Gross, Joachim Ballmann, Dragoş-Adrian Roşca. Iron-Catalyzed Synthesis of Conformationally Restricted Bicyclic N-Heterocycles via [2+2]-Cycloaddition: Exploring Ring Expansion─Mechanistic Insights and Challenges. ACS Catalysis 2023, 13 (9) , 6416-6429. https://doi.org/10.1021/acscatal.3c01305
    5. Carli B. Kovel, Jonathan M. Darmon, S. Chantal E. Stieber, Gisselle Pombar, Tyler P. Pabst, Bastian Theis, Zoë R. Turner, Ökten Üngör, Michael Shatruk, Serena DeBeer, Paul J. Chirik. Bimolecular Reductive Elimination of Ethane from Pyridine(diimine) Iron Methyl Complexes: Mechanism, Electronic Structure, and Entry into [2+2] Cycloaddition Catalysis. Journal of the American Chemical Society 2023, 145 (9) , 5061-5073. https://doi.org/10.1021/jacs.2c10547
    6. G. Spiekermann, Ch. J. Sahle, J. Niskanen, K. Gilmore, S. Petitgirard, C. Sternemann, J. S. Tse, M. Murakami. Sensitivity of the Kβ″ X-ray Emission Line to Coordination Changes in GeO2 and TiO2. The Journal of Physical Chemistry Letters 2023, 14 (7) , 1848-1853. https://doi.org/10.1021/acs.jpclett.3c00017
    7. Adam Rettig, James Shee, Joonho Lee, Martin Head-Gordon. Revisiting the Orbital Energy-Dependent Regularization of Orbital-Optimized Second-Order Møller–Plesset Theory. Journal of Chemical Theory and Computation 2022, 18 (9) , 5382-5392. https://doi.org/10.1021/acs.jctc.2c00641
    8. Julianna S. Doll, Nicolas I. Regenauer, Viktoria P. Bothe, Hubert Wadepohl, Dragoş-Adrian Roşca. Redox Activity of Iron Diazine-Diimine Carbonyl and Dinitrogen Complexes: A Comparative Study of the Influence of the Heterocyclic Ring. Inorganic Chemistry 2022, 61 (1) , 520-532. https://doi.org/10.1021/acs.inorgchem.1c03212
    9. Julianna S. Doll, Robert Eichelmann, Leif E. Hertwig, Thilo Bender, Vincenz J. Kohler, Eckhard Bill, Hubert Wadepohl, Dragoş-Adrian Roşca. Iron-Catalyzed Trimerization of Terminal Alkynes Enabled by Pyrimidinediimine Ligands: A Regioselective Method for the Synthesis of 1,3,5-Substituted Arenes. ACS Catalysis 2021, 11 (9) , 5593-5600. https://doi.org/10.1021/acscatal.1c00978
    10. Weixuan Nie, Drew E. Tarnopol, Charles C. L. McCrory. Enhancing a Molecular Electrocatalyst’s Activity for CO2 Reduction by Simultaneously Modulating Three Substituent Effects. Journal of the American Chemical Society 2021, 143 (10) , 3764-3778. https://doi.org/10.1021/jacs.0c09357
    11. Phan N. Phu, Carlos E. Gutierrez, Subrata Kundu, Dimosthenis Sokaras, Thomas Kroll, Timothy H. Warren, S. Chantal E. Stieber. Quantification of Ni–N–O Bond Angles and NO Activation by X-ray Emission Spectroscopy. Inorganic Chemistry 2021, 60 (2) , 736-744. https://doi.org/10.1021/acs.inorgchem.0c02724
    12. Zhihan Zhang, Jing-Xuan Zhang, Fu Kit Sheong, Zhenyang Lin. 1,4-Selective Hydrovinylation of Diene Catalyzed by an Iron Diimine Catalyst: A Computational Case Study on Two-State Reactivity. ACS Catalysis 2020, 10 (21) , 12454-12465. https://doi.org/10.1021/acscatal.0c03535
    13. Hai T. Dong, Matthew J. Chalkley, Paul H. Oyala, Jiyong Zhao, E. Ercan Alp, Michael Y. Hu, Jonas C. Peters, Nicolai Lehnert. Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes. Inorganic Chemistry 2020, 59 (20) , 14967-14982. https://doi.org/10.1021/acs.inorgchem.0c01686
    14. Rajashree Newar, Wahida Begum, Neha Antil, Sakshi Shukla, Ajay Kumar, Naved Akhtar, Balendra, Kuntal Manna. Single-Site Cobalt-Catalyst Ligated with Pyridylimine-Functionalized Metal–Organic Frameworks for Arene and Benzylic Borylation. Inorganic Chemistry 2020, 59 (15) , 10473-10481. https://doi.org/10.1021/acs.inorgchem.0c00747
    15. Tianchang Liu, Michael R. Gau, Neil C. Tomson. Mimicking the Constrained Geometry of a Nitrogen-Fixation Intermediate. Journal of the American Chemical Society 2020, 142 (18) , 8142-8146. https://doi.org/10.1021/jacs.0c01861
    16. Matthew V. Joannou, Jordan M. Hoyt, Paul J. Chirik. Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed [2 + 2] Cycloaddition of Alkenes. Journal of the American Chemical Society 2020, 142 (11) , 5314-5330. https://doi.org/10.1021/jacs.0c00250
    17. Wei-Ting Chen, Che-Wei Hsu, Jyh-Fu Lee, Chih-Wen Pao, I-Jui Hsu. Theoretical Analysis of Fe K-Edge XANES on Iron Pentacarbonyl. ACS Omega 2020, 5 (10) , 4991-5000. https://doi.org/10.1021/acsomega.9b03887
    18. Nicolas I. Regenauer, Simon Settele, Eckhard Bill, Hubert Wadepohl, Dragoş-Adrian Roşca. Bis(imino)pyrazine-Supported Iron Complexes: Ligand-Based Redox Chemistry, Dearomatization, and Reversible C–C Bond Formation. Inorganic Chemistry 2020, 59 (4) , 2604-2612. https://doi.org/10.1021/acs.inorgchem.9b03665
    19. Peter G. N. Neate, Mark D. Greenhalgh, William W. Brennessel, Stephen P. Thomas, Michael L. Neidig. Mechanism of the Bis(imino)pyridine-Iron-Catalyzed Hydromagnesiation of Styrene Derivatives. Journal of the American Chemical Society 2019, 141 (25) , 10099-10108. https://doi.org/10.1021/jacs.9b04869
    20. Rebeca Arevalo, Paul J. Chirik. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. Journal of the American Chemical Society 2019, 141 (23) , 9106-9123. https://doi.org/10.1021/jacs.9b03337
    21. C. Rose Kennedy, Hongyu Zhong, Rachel L. Macaulay, Paul J. Chirik. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. Journal of the American Chemical Society 2019, 141 (21) , 8557-8573. https://doi.org/10.1021/jacs.9b02443
    22. Lukas Alig, Maximilian Fritz, Sven Schneider. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chemical Reviews 2019, 119 (4) , 2681-2751. https://doi.org/10.1021/acs.chemrev.8b00555
    23. Ivan A. Popov, Nada Mehio, Terry Chu, Benjamin L. Davis, Rangachary Mukundan, Ping Yang, Enrique R. Batista. Impact of Ligand Substitutions on Multielectron Redox Properties of Fe Complexes Supported by Nitrogenous Chelates. ACS Omega 2018, 3 (11) , 14766-14778. https://doi.org/10.1021/acsomega.8b01921
    24. Jesse B. Gordon, Jeremy P. McGale, Joshua R. Prendergast, Zahra Shirani-Sarmazeh, Maxime A. Siegler, Guy N. L. Jameson, David P. Goldberg. Structures, Spectroscopic Properties, and Dioxygen Reactivity of 5- and 6-Coordinate Nonheme Iron(II) Complexes: A Combined Enzyme/Model Study of Thiol Dioxygenases. Journal of the American Chemical Society 2018, 140 (44) , 14807-14822. https://doi.org/10.1021/jacs.8b08349
    25. Santi Prasad Rath, Debabrata Sengupta, Pradip Ghosh, Rameswar Bhattacharjee, Mou Chakraborty, Subhas Samanta, Ayan Datta, Sreebrata Goswami. Effects of Ancillary Ligands on Redox and Chemical Properties of Ruthenium Coordinated Azoaromatic Pincer. Inorganic Chemistry 2018, 57 (19) , 11995-12009. https://doi.org/10.1021/acs.inorgchem.8b01558
    26. Sean F. McWilliams, Eckhard Bill, Gudrun Lukat-Rodgers, Kenton R. Rodgers, Brandon Q. Mercado, Patrick L. Holland. Effects of N2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. Journal of the American Chemical Society 2018, 140 (27) , 8586-8598. https://doi.org/10.1021/jacs.8b04828
    27. John J. Sandoval, Eleuterio Álvarez, Pilar Palma, Antonio Rodríguez-Delgado, Juan Cámpora. Neutral Bis(imino)-1,4-dihydropyridinate and Cationic Bis(imino)pyridine σ-Alkylzinc(II) Complexes as Hydride Exchange Systems: Classic Organometallic Chemistry Meets Ligand-Centered, Biomimetic Reactivity. Organometallics 2018, 37 (11) , 1734-1744. https://doi.org/10.1021/acs.organomet.8b00183
    28. Benjamin K. Leipzig, Julian A. Rees, Joanna K. Kowalska, Roslyn M. Theisen, Matjaž Kavčič, Penny Chaau Yan Poon, Werner Kaminsky, Serena DeBeer, Eckhard Bill, and Julie A. Kovacs . How Do Ring Size and π-Donating Thiolate Ligands Affect Redox-Active, α-Imino-N-heterocycle Ligand Activation?. Inorganic Chemistry 2018, 57 (4) , 1935-1949. https://doi.org/10.1021/acs.inorgchem.7b02748
    29. Renyuan Pony Yu, Jonathan M. Darmon, Scott P. Semproni, Zoë R. Turner, and Paul J. Chirik . Synthesis of Iron Hydride Complexes Relevant to Hydrogen Isotope Exchange in Pharmaceuticals. Organometallics 2017, 36 (22) , 4341-4343. https://doi.org/10.1021/acs.organomet.7b00398
    30. Naser Rahimi, Bas de Bruin, and Peter H. M. Budzelaar . Balance between Metal and Ligand Reduction in Diiminepyridine Complexes of Ti. Organometallics 2017, 36 (17) , 3189-3198. https://doi.org/10.1021/acs.organomet.7b00239
    31. Manuel A. Ortuño and Christopher J. Cramer . Multireference Electronic Structures of Fe–Pyridine(diimine) Complexes over Multiple Oxidation States. The Journal of Physical Chemistry A 2017, 121 (31) , 5932-5939. https://doi.org/10.1021/acs.jpca.7b06032
    32. Jules Moutet, Christian Philouze, Amaury du Moulinet d’Hardemare, Nicolas Leconte, and Fabrice Thomas . Ni(II) Complexes of the Redox-Active Bis(2-aminophenyl)dipyrrin: Structural, Spectroscopic, and Theoretical Characterization of Three Members of an Electron Transfer Series. Inorganic Chemistry 2017, 56 (11) , 6380-6392. https://doi.org/10.1021/acs.inorgchem.7b00433
    33. Peter T. Wolczanski . Flipping the Oxidation State Formalism: Charge Distribution in Organometallic Complexes As Reported by Carbon Monoxide. Organometallics 2017, 36 (3) , 622-631. https://doi.org/10.1021/acs.organomet.6b00820
    34. Heejun Lee, Michael G. Campbell, Raúl Hernández Sánchez, Jonas Börgel, Jean Raynaud, Sarah E. Parker, and Tobias Ritter . Mechanistic Insight Into High-Spin Iron(I)-Catalyzed Butadiene Dimerization. Organometallics 2016, 35 (17) , 2923-2929. https://doi.org/10.1021/acs.organomet.6b00474
    35. Teng Zhang, Kuntal Manna, and Wenbin Lin . Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations. Journal of the American Chemical Society 2016, 138 (9) , 3241-3249. https://doi.org/10.1021/jacs.6b00849
    36. Christopher J. Pollock and Serena DeBeer . Insights into the Geometric and Electronic Structure of Transition Metal Centers from Valence-to-Core X-ray Emission Spectroscopy. Accounts of Chemical Research 2015, 48 (11) , 2967-2975. https://doi.org/10.1021/acs.accounts.5b00309
    37. Brian M. Lindley, Peter T. Wolczanski, Thomas R. Cundari, and Emil B. Lobkovsky . First-Row Transition Metal and Lithium Pyridine-ene-amide Complexes Exhibiting N- and C-Isomers and Ligand-Based Activation of Benzylic C–H Bonds. Organometallics 2015, 34 (19) , 4656-4668. https://doi.org/10.1021/acs.organomet.5b00385
    38. Mayra Delgado, Samantha K. Sommer, Seth P. Swanson, Robert F. Berger, Takele Seda, Lev N. Zakharov, and John D. Gilbertson . Probing the Protonation State and the Redox-Active Sites of Pendant Base Iron(II) and Zinc(II) Pyridinediimine Complexes. Inorganic Chemistry 2015, 54 (15) , 7239-7248. https://doi.org/10.1021/acs.inorgchem.5b00633
    39. Alex McSkimming and W. Hill Harman . A Terminal N2 Complex of High-Spin Iron(I) in a Weak, Trigonal Ligand Field. Journal of the American Chemical Society 2015, 137 (28) , 8940-8943. https://doi.org/10.1021/jacs.5b06337
    40. Paul J. Chirik . Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Accounts of Chemical Research 2015, 48 (6) , 1687-1695. https://doi.org/10.1021/acs.accounts.5b00134
    41. Burkhard Butschke, Kathlyn L. Fillman, Tatyana Bendikov, Linda J. W. Shimon, Yael Diskin-Posner, Gregory Leitus, Serge I. Gorelsky, Michael L. Neidig, and David Milstein . How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorganic Chemistry 2015, 54 (10) , 4909-4926. https://doi.org/10.1021/acs.inorgchem.5b00509
    42. Nickolas H. Anderson, Samuel O. Odoh, Ursula J. Williams, Andrew J. Lewis, Gregory L. Wagner, Juan Lezama Pacheco, Stosh A. Kozimor, Laura Gagliardi, Eric J. Schelter, and Suzanne C. Bart . Investigation of the Electronic Ground States for a Reduced Pyridine(diimine) Uranium Series: Evidence for a Ligand Tetraanion Stabilized by a Uranium Dimer. Journal of the American Chemical Society 2015, 137 (14) , 4690-4700. https://doi.org/10.1021/ja511867a
    43. Matthias W. Löble, Jason M. Keith, Alison B. Altman, S. Chantal E. Stieber, Enrique R. Batista, Kevin S. Boland, Steven D. Conradson, David L. Clark, Juan Lezama Pacheco, Stosh A. Kozimor, Richard L. Martin, Stefan G. Minasian, Angela C. Olson, Brian L. Scott, David K. Shuh, Tolek Tyliszczak, Marianne P. Wilkerson, and Ralph A. Zehnder . Covalency in Lanthanides. An X-ray Absorption Spectroscopy and Density Functional Theory Study of LnCl6x– (x = 3, 2). Journal of the American Chemical Society 2015, 137 (7) , 2506-2523. https://doi.org/10.1021/ja510067v
    44. Jonathan M. Darmon, Renyuan Pony Yu, Scott P. Semproni, Zoë R. Turner, S. Chantal E. Stieber, Serena DeBeer, and Paul J. Chirik . Electronic Structure Determination of Pyridine N-Heterocyclic Carbene Iron Dinitrogen Complexes and Neutral Ligand Derivatives. Organometallics 2014, 33 (19) , 5423-5433. https://doi.org/10.1021/om500727t
    45. Christopher J. Pollock, Kyle M. Lancaster, Kenneth D. Finkelstein, and Serena DeBeer . Study of Iron Dimers Reveals Angular Dependence of Valence-to-Core X-ray Emission Spectra. Inorganic Chemistry 2014, 53 (19) , 10378-10385. https://doi.org/10.1021/ic501462y
    46. Wesley D. Morris, Peter T. Wolczanski, Jörg Sutter, Karsten Meyer, Thomas R. Cundari, and Emil B. Lobkovsky . Iron and Chromium Complexes Containing Tridentate Chelates Based on Nacnac and Imino- and Methyl-Pyridine Components: Triggering C—X Bond Formation. Inorganic Chemistry 2014, 53 (14) , 7467-7484. https://doi.org/10.1021/ic500807y
    47. David W. Boyce, Debra J. Salmon, and William B. Tolman . Linkage Isomerism in Transition-Metal Complexes of Mixed (Arylcarboxamido)(arylimino)pyridine Ligands. Inorganic Chemistry 2014, 53 (11) , 5788-5796. https://doi.org/10.1021/ic500638z
    48. Valerie A. Williams, Peter T. Wolczanski, Jörg Sutter, Karsten Meyer, Emil B. Lobkovsky, and Thomas R. Cundari . Iron Complexes Derived from {nacnac-(CH2py)2}− and {nacnac-(CH2py)(CHpy)}n Ligands: Stabilization of Iron(II) via Redox Noninnocence. Inorganic Chemistry 2014, 53 (9) , 4459-4474. https://doi.org/10.1021/ic5001123
    49. Pradip Ghosh, Subhas Samanta, Suman K. Roy, Serhiy Demeshko, Franc Meyer, and Sreebrata Goswami . Introducing a New Azoaromatic Pincer Ligand. Isolation and Characterization of Redox Events in Its Ferrous Complexes. Inorganic Chemistry 2014, 53 (9) , 4678-4686. https://doi.org/10.1021/ic500355f
    50. Brian M. Hoffman, Dmitriy Lukoyanov, Zhi-Yong Yang, Dennis R. Dean, and Lance C. Seefeldt . Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews 2014, 114 (8) , 4041-4062. https://doi.org/10.1021/cr400641x
    51. Leland R. Widger, Yunbo Jiang, Maxime A. Siegler, Devesh Kumar, Reza Latifi, Sam P. de Visser, Guy N. L. Jameson, and David P. Goldberg . Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes. Inorganic Chemistry 2013, 52 (18) , 10467-10480. https://doi.org/10.1021/ic4013558
    52. Renyuan Pony Yu, Jonathan M. Darmon, Carsten Milsmann, Grant W. Margulieux, S. Chantal E. Stieber, Serena DeBeer, and Paul J. Chirik . Catalytic Hydrogenation Activity and Electronic Structure Determination of Bis(arylimidazol-2-ylidene)pyridine Cobalt Alkyl and Hydride Complexes. Journal of the American Chemical Society 2013, 135 (35) , 13168-13184. https://doi.org/10.1021/ja406608u
    53. Christopher J. Pollock, Katarzyna Grubel, Patrick L. Holland, and Serena DeBeer . Experimentally Quantifying Small-Molecule Bond Activation Using Valence-to-Core X-ray Emission Spectroscopy. Journal of the American Chemical Society 2013, 135 (32) , 11803-11808. https://doi.org/10.1021/ja3116247
    54. P. Chandrasekaran, Karen P. Chiang, Dennis Nordlund, Uwe Bergmann, Patrick L. Holland, and Serena DeBeer . Sensitivity of X-ray Core Spectroscopy to Changes in Metal Ligation: A Systematic Study of Low-Coordinate, High-Spin Ferrous Complexes. Inorganic Chemistry 2013, 52 (11) , 6286-6298. https://doi.org/10.1021/ic3021723
    55. Crisita Carmen Hojilla Atienza, Carsten Milsmann, Scott P. Semproni, Zoë R. Turner, and Paul J. Chirik . Reversible Carbon–Carbon Bond Formation Induced by Oxidation and Reduction at a Redox-Active Cobalt Complex. Inorganic Chemistry 2013, 52 (9) , 5403-5417. https://doi.org/10.1021/ic400352r
    56. Vladimir Shuster, Sandro Gambarotta, Grigory B. Nikiforov, and Peter H. M. Budzelaar . Heterometallic Aluminum–Chromium Phenazine and Thiophenazine Complexes. Formation of a Tetranuclear Chromium(I) Sandwich Complex. Organometallics 2013, 32 (8) , 2329-2335. https://doi.org/10.1021/om3012097
    57. Jordan M. Hoyt, Kevin T. Sylvester, Scott P. Semproni, and Paul J. Chirik . Synthesis and Electronic Structure of Bis(imino)pyridine Iron Metallacyclic Intermediates in Iron-Catalyzed Cyclization Reactions. Journal of the American Chemical Society 2013, 135 (12) , 4862-4877. https://doi.org/10.1021/ja400895j
    58. Aaron M. Tondreau, S. Chantal E. Stieber, Carsten Milsmann, Emil Lobkovsky, Thomas Weyhermüller, Scott P. Semproni, and Paul J. Chirik . Oxidation and Reduction of Bis(imino)pyridine Iron Dinitrogen Complexes: Evidence for Formation of a Chelate Trianion.. Inorganic Chemistry 2013, 52 (2) , 635-646. https://doi.org/10.1021/ic301675t
    59. Thomas R. Dugan, Eckhard Bill, K. Cory MacLeod, Gemma J. Christian, Ryan E. Cowley, William W. Brennessel, Shengfa Ye, Frank Neese, and Patrick L. Holland . Reversible C–C Bond Formation between Redox-Active Pyridine Ligands in Iron Complexes. Journal of the American Chemical Society 2012, 134 (50) , 20352-20364. https://doi.org/10.1021/ja305679m
    60. Jonathan M. Darmon, S. Chantal E. Stieber, Kevin T. Sylvester, Ignacio Fernández, Emil Lobkovsky, Scott P. Semproni, Eckhard Bill, Karl Wieghardt, Serena DeBeer, and Paul J. Chirik . Oxidative Addition of Carbon–Carbon Bonds with a Redox-Active Bis(imino)pyridine Iron Complex. Journal of the American Chemical Society 2012, 134 (41) , 17125-17137. https://doi.org/10.1021/ja306526d
    61. Vladimir Shuster, Sandro Gambarotta, Grigory B. Nikiforov, Ilia Korobkov, and Peter H. M. Budzelaar . Radical Cleavage of Al–C Bonds Promoted by Phenazine: From Noninnocent Ligand to Radical Abstractor. Organometallics 2012, 31 (19) , 7011-7019. https://doi.org/10.1021/om300889m
    62. Zachary Thammavongsy, Takele Seda, Lev N. Zakharov, Werner Kaminsky, and John D. Gilbertson . Ligand-Based Reduction of CO2 and Release of CO on Iron(II). Inorganic Chemistry 2012, 51 (17) , 9168-9170. https://doi.org/10.1021/ic3015404
    63. Renyuan Pony Yu, Jonathan M. Darmon, Jordan M. Hoyt, Grant W. Margulieux, Zoë R. Turner, and Paul J. Chirik . High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catalysis 2012, 2 (8) , 1760-1764. https://doi.org/10.1021/cs300358m
    64. Scott P. Semproni, Carsten Milsmann, and Paul J. Chirik . Side-on Dinitrogen Complexes of Titanocenes with Disubstituted Cyclopentadienyl Ligands: Synthesis, Structure, and Spectroscopic Characterization. Organometallics 2012, 31 (9) , 3672-3682. https://doi.org/10.1021/om300156z
    65. Sven Strübbe, Michal Nowakowski, Roland Schoch, Matthias Bauer. High‐Resolution X‐ray Absorption and Emission Spectroscopy for Detailed Analysis of New CO 2 Methanation Catalysts. ChemPhysChem 2023, 24 (23) https://doi.org/10.1002/cphc.202300113
    66. Naved Akhtar, Manav Chauhan, Poorvi Gupta, Neha Antil, Kuntal Manna. A supported pyridylimine–cobalt catalyst for N -formylation of amines using CO 2. Dalton Transactions 2023, 52 (42) , 15384-15393. https://doi.org/10.1039/D3DT00058C
    67. Nicolas I. Regenauer, Hubert Wadepohl, Dragoş‐Adrian Roşca. Terminal N 2 Dissociation in [(PNN)Fe(N 2 )] 2 (μ‐N 2 ) Leads to Local Spin‐State Changes and Augmented Bridging N 2 Activation. Chemistry – A European Journal 2022, 28 (58) https://doi.org/10.1002/chem.202202172
    68. James E. T. Smith, Joonho Lee, Sandeep Sharma. Near-exact nuclear gradients of complete active space self-consistent field wave functions. The Journal of Chemical Physics 2022, 157 (9) https://doi.org/10.1063/5.0085515
    69. Daniela Sanchez Arana, Jaylan R. Billups, Bruno Donnadieu, Sidney E. Creutz. Synthesis and electronic structure of a series of first-row transition-metal pyrazine(diimine) complexes in two oxidation states. Journal of Coordination Chemistry 2022, 75 (11-14) , 1815-1840. https://doi.org/10.1080/00958972.2022.2115889
    70. Errikos Kounalis, Daniël L.J. Broere. Redox-Active Ligands in Organometallic Chemistry. 2022, 421-441. https://doi.org/10.1016/B978-0-12-820206-7.00028-7
    71. S. Chantal E. Stieber. Computational Methods in Organometallic Chemistry. 2022, 176-210. https://doi.org/10.1016/B978-0-12-820206-7.00099-8
    72. Michael L. Neidig, Nikki J. Bakas, Peter G.N. Neate, Jeffrey D. Sears. Metal-Carbon Bonds of Iron and Manganese. 2021, 82-122. https://doi.org/10.1016/B978-0-08-102688-5.00050-7
    73. David N. Stephens, Molly O’Hagan, Elliott Hulley, Michael T. Mock. Transition Metal Complexes for Dinitrogen Coordination and Activation. 2021, 363-409. https://doi.org/10.1016/B978-0-08-102688-5.00116-1
    74. Nicolas Mézailles. Reactivity and Structure of Complexes of Small Molecules: Dinitrogen. 2021, 875-958. https://doi.org/10.1016/B978-0-08-102688-5.00083-0
    75. William R. Buratto, Leslie J. Murray. Coordination Chemistry of Iron-Dinitrogen Complexes With Relevance to Biological N2 Fixation. 2021, 659-706. https://doi.org/10.1016/B978-0-12-409547-2.14822-X
    76. Jeongmin Cha, Hyunchul Kwon, Hayoung Song, Eunsung Lee. Dinitrogen activation by a penta-pyridyl molybdenum complex. Dalton Transactions 2020, 49 (37) , 12945-12949. https://doi.org/10.1039/D0DT02692A
    77. Evan P. Jahrman, William M. Holden, Niranjan Govind, Joshua J. Kas, Jatinkumar Rana, Louis F. J. Piper, Carrie Siu, M. Stanley Whittingham, Timothy T. Fister, Gerald T. Seidler. Valence-to-core X-ray emission spectroscopy of vanadium oxide and lithiated vanadyl phosphate materials. Journal of Materials Chemistry A 2020, 8 (32) , 16332-16344. https://doi.org/10.1039/D0TA03620J
    78. Nils Prinz, Leif Schwensow, Sven Wendholt, Andreas Jentys, Matthias Bauer, Wolfgang Kleist, Mirijam Zobel. Hard X-ray-based techniques for structural investigations of CO 2 methanation catalysts prepared by MOF decomposition. Nanoscale 2020, 12 (29) , 15800-15813. https://doi.org/10.1039/D0NR01750G
    79. Severine Rupp, Felix Plasser, Vera Krewald. Multi‐Tier Electronic Structure Analysis of Sita's Mo and W Complexes Capable of Thermal or Photochemical N 2 Splitting. European Journal of Inorganic Chemistry 2020, 2020 (15-16) , 1506-1518. https://doi.org/10.1002/ejic.201901304
    80. J. P. H. Oudsen, B. Venderbosch, T. J. Korstanje, M. Tromp. Electronic characterization of redox (non)-innocent Fe 2 S 2 reference systems: a multi K-edge X-ray spectroscopic study. RSC Advances 2020, 10 (2) , 729-738. https://doi.org/10.1039/C9RA08903A
    81. Anke Schoch, Lukas Burkhardt, Roland Schoch, Kai Stührenberg, Matthias Bauer. Hard X-ray spectroscopy: an exhaustive toolbox for mechanistic studies (?). Faraday Discussions 2019, 220 , 113-132. https://doi.org/10.1039/C9FD00070D
    82. Yusuke Sunada, Hideo Nagashima. Hydrosilylation Catalyzed by Base Metals. 2019, 417-437. https://doi.org/10.1002/9783527814787.ch11
    83. Ban Wang, Isaac G. Howard, Jackson W. Pope, Eric D. Conte, Yongming Deng. Bis(imino)pyridine iron complexes for catalytic carbene transfer reactions. Chemical Science 2019, 10 (34) , 7958-7963. https://doi.org/10.1039/C9SC02189B
    84. Jitendrasingh Rajpurohit, Maheswaran Shanmugam. The molecular and electronic structure of an unusual cobalt NNO pincer ligand complex. Dalton Transactions 2019, 48 (21) , 7378-7387. https://doi.org/10.1039/C9DT00056A
    85. Leslie D. Field, Hsiu L. Li, Scott J. Dalgarno, Ruaraidh D. McIntosh. Ammonia and Hydrazine from Coordinated Dinitrogen by Complexes of Iron(0). European Journal of Inorganic Chemistry 2019, 2019 (14) , 2006-2011. https://doi.org/10.1002/ejic.201900058
    86. Adam D. Piascik, Andrew E. Ashley. Group 8 Transition Metal–Dinitrogen Complexes. 2019, 285-335. https://doi.org/10.1002/9783527344260.ch6
    87. Cai-Hong Guo, Dandan Yang, Xiaoyan Liu, Xiang Zhang, Haijun Jiao. Exploring the mechanism of alkene hydrogenation catalyzed by defined iron complex from DFT computation. Journal of Molecular Modeling 2019, 25 (3) https://doi.org/10.1007/s00894-019-3942-6
    88. Andrei Chirila, Braja Gopal Das, Petrus F. Kuijpers, Vivek Sinha, Bas de Bruin. Application of Stimuli‐Responsive and “Non‐innocent” Ligands in Base Metal Catalysis. 2019, 1-31. https://doi.org/10.1002/9783527699087.ch1
    89. Christina Römelt, Thomas Weyhermüller, Karl Wieghardt. Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels. Coordination Chemistry Reviews 2019, 380 , 287-317. https://doi.org/10.1016/j.ccr.2018.09.018
    90. Maximilian Fritz, Sven Schneider. The Renaissance of Base Metal Catalysis Enabled by Functional Ligands. 2019, 1-36. https://doi.org/10.1007/430_2019_48
    91. Ryan J. Martinie, Elizabeth J. Blaesi, J. Martin Bollinger, Carsten Krebs, Kenneth D. Finkelstein, Christopher J. Pollock. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angewandte Chemie 2018, 130 (39) , 12936-12940. https://doi.org/10.1002/ange.201807366
    92. Ryan J. Martinie, Elizabeth J. Blaesi, J. Martin Bollinger, Carsten Krebs, Kenneth D. Finkelstein, Christopher J. Pollock. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angewandte Chemie International Edition 2018, 57 (39) , 12754-12758. https://doi.org/10.1002/anie.201807366
    93. Tabea Buban, Sarah Puhl, Peter Burger, Marc H. Prosenc, Jürgen Heck. Magnetic Properties of One-Dimensional Stacked Metal Complexes. 2018, 89-116. https://doi.org/10.1007/978-3-319-99558-8_5
    94. Juan Cámpora, Antonio Rodríguez-Delgado, Pilar Palma. σ-Organometallic Chemistry With 2,6-Bis(imino)pyridine Ligands. 2018, 539-586. https://doi.org/10.1016/B978-0-12-812931-9.00026-8
    95. Zekai Lin, Nathan C. Thacker, Takahiro Sawano, Tasha Drake, Pengfei Ji, Guangxu Lan, Lingyun Cao, Shubin Liu, Cheng Wang, Wenbin Lin. Metal–organic layers stabilize earth-abundant metal–terpyridine diradical complexes for catalytic C–H activation. Chemical Science 2018, 9 (1) , 143-151. https://doi.org/10.1039/C7SC03537C
    96. Anna Hanft, Crispin Lichtenberg. Aminotroponiminates: ligand-centred, reversible redox events under oxidative conditions in sodium and bismuth complexes. Dalton Transactions 2018, 47 (31) , 10578-10589. https://doi.org/10.1039/C8DT01019F
    97. Johanna Flock, Beate Steller, Petra Unger, Birgit Gerke, Rainer Pöttgen, Roland C. Fischer. Iminopyridine ligand complexes of group 14 dihalides and ditriflates – neutral chelates and ion pair formation. Zeitschrift für Naturforschung B 2017, 72 (11) , 883-894. https://doi.org/10.1515/znb-2017-0128
    98. Weiyi Li, Yajing Lyu, Huifang Zhang, Maoqin Zhu, Hanping Tang. A theoretical study on the unusual square-planar structure of bis(imino)pyridine-ligated Group 13 complexes. Dalton Transactions 2017, 46 (1) , 106-115. https://doi.org/10.1039/C6DT03775E
    99. Shogo Kuriyama, Kazuya Arashiba, Kazunari Nakajima, Yuki Matsuo, Hiromasa Tanaka, Kazuyuki Ishii, Kazunari Yoshizawa, Yoshiaki Nishibayashi. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12181
    100. Joanna K. Kowalska, Frederico A. Lima, Christopher J. Pollock, Julian A. Rees, Serena DeBeer. A Practical Guide to High‐resolution X‐ray Spectroscopic Measurements and their Applications in Bioinorganic Chemistry. Israel Journal of Chemistry 2016, 56 (9-10) , 803-815. https://doi.org/10.1002/ijch.201600037
    Load all citations

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2012, 51, 6, 3770–3785
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic202750n
    Published March 6, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    4505

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.