ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Lanthanide-Porphyrin Hybrids: from Layered Structures to Metal–Organic Frameworks with Photophysical Properties

View Author Information
Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Praha 8, Czech Republic
§ Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Praha, Czech Republic
Cite this: Inorg. Chem. 2013, 52, 5, 2779–2786
Publication Date (Web):February 20, 2013
Copyright © 2013 American Chemical Society

    Article Views





    Read OnlinePDF (2 MB)
    Supporting Info (2)»


    Abstract Image

    Rare-earth layered hydroxides with intercalated tetrasulfonated porphyrins and corresponding to the chemical formula Ln2(OH)4.7(Por)0.33·2H2O (Ln = Eu3+, Tb3+; Por = 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and PdTPPS) have been prepared to investigate their photophysical properties. A slight variation of the synthetic procedure led to the metal–organic framework (MOF) assembled from a distorted octahedral oxometalate clusters [Eu66-O)(μ3-OH)8(H2O)14]8+. These secondary building units (SBUs) are linked together by six distorted porphyrin units. During activation, the original SBU loses not only water molecules from the coordination sphere but also the central μ6-O atom. The loss of the central atom results in the distortion of the octahedral [Eu66-O)(μ3-OH)8(H2O)14]8+ SBU into a trigonal antiprismatic [Eu63-OH)8(H2O)2]10+ SBU with two μ3-OH groups nearly in plane with the europium atoms and the reduction of pores to approximately 2 × 3 Å. As a result, the MOF has no accessible porosity. This transformation was thoroughly characterized by means of single-crystal X-ray crystallographic analysis of both phases. Solid-state photophysical investigations suggest that the MOF material is fluorescent; however, in contrast to the prepared layered hydroxides, the as-prepared MOF is an effective sensitizer of singlet oxygen, O2(1Δg), with a relatively long lifetime of 23 ± 1 μs. The transition is also accompanied by variation in photophysical properties of the coordinated TPPS. The alteration of the fluorescence properties and of the O2(1Δg) lifetime presents an opportunity for preparation of MOFs with oxygen-sensing ability or with oxidation potential toward organic molecules by O2(1Δg).

    Supporting Information

    Jump To

    Full experimental details (elemental analysis, characterization, XRD data, structural description, luminescence, CIF files). This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 65 publications.

    1. Jinjie Hou, Pei Jia, Kairong Yang, Tong Bu, Shuang Zhao, Longwen Li, Li Wang. Fluorescence and Colorimetric Dual-Mode Ratiometric Sensor Based on Zr–Tetraphenylporphyrin Tetrasulfonic Acid Hydrate Metal–Organic Frameworks for Visual Detection of Copper Ions. ACS Applied Materials & Interfaces 2022, 14 (11) , 13848-13857.
    2. Nikolas Király, Vladimír Zeleňák, Nina Lenártová, Adriana Zeleňáková, Erik Čižmár, Miroslav Almáši, Vera Meynen, Andrej Hovan, Róbert Gyepes. Novel Lanthanide(III) Porphyrin-Based Metal–Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties. ACS Omega 2021, 6 (38) , 24637-24649.
    3. Adrien Schlachter, Paul Asselin, Pierre D. Harvey. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices. ACS Applied Materials & Interfaces 2021, 13 (23) , 26651-26672.
    4. Wen-Tong Chen, Zhuan-Xia Zhang, Long-Zhen Lin, Yan Sui, Dong-Sheng Liu, Hua-Long Chen. Preparation, Crystal Structures, and Properties of a Series of Crystalline Tetra(4-sulfonatophenyl)porphyrinato Histidine 4f-3d Porphyrinic Compounds. Crystal Growth & Design 2018, 18 (9) , 5456-5464.
    5. Jan Hynek, Jaroslav Zelenka, Jiří Rathouský, Pavel Kubát, Tomáš Ruml, Jan Demel, Kamil Lang. Designing Porphyrinic Covalent Organic Frameworks for the Photodynamic Inactivation of Bacteria. ACS Applied Materials & Interfaces 2018, 10 (10) , 8527-8535.
    6. Wei Huang, Feifei Pan, Yang Liu, Shuaidan Huang, Yujie Li, Juan Yong, Yao Li, Alexander M. Kirillov, and Dayu Wu . An Efficient Blue-Emissive Metal–Organic Framework (MOF) for Lanthanide-Encapsulated Multicolor and Stimuli-Responsive Luminescence. Inorganic Chemistry 2017, 56 (11) , 6362-6370.
    7. Alexey D. Yapryntsev, Alexander Yu. Bykov, Alexander E. Baranchikov, Konstantin Yu. Zhizhin, Vladimir K. Ivanov, and Nikolay T. Kuznetsov . closo-Dodecaborate Intercalated Yttrium Hydroxide as a First Example of Boron Cluster Anion-Containing Layered Inorganic Substances. Inorganic Chemistry 2017, 56 (6) , 3421-3428.
    8. Hang Zhang, Jin Yang, Ying-Ying Liu, Shuyan Song, and Jian-Fang Ma . A Family of Metal–Organic Frameworks with a New Chair-Conformation Resorcin[4]arene-Based Ligand: Selective Luminescent Sensing of Amine and Aldehyde Vapors, and Solvent-Mediated Structural Transformations. Crystal Growth & Design 2016, 16 (6) , 3244-3255.
    9. Karabi Nath, Ahmad Husain, and Parthasarathi Dastidar . Metallogels and Silver Nanoparticles Generated from a Series of Transition Metal-Based Coordination Polymers Derived from a New Bis-pyridyl-bis-amide Ligand and Various Carboxylates. Crystal Growth & Design 2015, 15 (9) , 4635-4645.
    10. Janek Rausch, Volker Lorenz, Cristian G. Hrib, Vanessa Frettlöh, Matthias Adlung, Claudia Wickleder, Liane Hilfert, Peter G. Jones, and Frank T. Edelmann . Heterometallic Europium Disiloxanediolates: Synthesis, Structural Diversity, and Photoluminescence Properties. Inorganic Chemistry 2014, 53 (21) , 11662-11674.
    11. Dominik Drozd, Krzysztof Szczubiałka, Michał Skiba, Mariusz Kepczynski, and Maria Nowakowska . Porphyrin–Nanoclay Photosensitizers for Visible Light Induced Oxidation of Phenol in Aqueous Media. The Journal of Physical Chemistry C 2014, 118 (17) , 9196-9202.
    12. Quanzheng Zha, Caixia Ding, Xing Rui, and Yongshu Xie . A Novel Porphyrin-Based Ligand Containing Four 4,4′-Dipyridylamine Moieties: Syntheses, Structures, and Luminescent Properties of Mn(II), Cu(II), Zn(II), and Cd(II) Coordination Polymers. Crystal Growth & Design 2013, 13 (10) , 4583-4590.
    13. Jayashree Panda, Suraj Prakash Tripathy, Srabani Dash, Asheli Ray, Pragyandeepti Behera, Satyabrata Subudhi, Kulamani Parida. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. Nanoscale 2023, 15 (17) , 7640-7675.
    14. Jinjin Wang, Mengke Xia, Jie Wei, Tianhui Jiao, Qingmin Chen, Quansheng Chen, Xiaomei Chen. Dual-signal amplified cathodic electrochemiluminescence aptsensor based on a europium-porphyrin coordination polymer for the ultrasensitive detection of zearalenone in maize. Sensors and Actuators B: Chemical 2023, 382 , 133532.
    15. Maria A. Teplonogova, Marina V. Volostnykh, Alexey D. Yapryntsev, Madina M. Sozarukova, Yulia G. Gorbunova, Ekaterina D. Sheichenko, Alexander E. Baranchikov, Vladimir K. Ivanov. Switchable Nanozyme Activity of Porphyrins Intercalated in Layered Gadolinium Hydroxide. International Journal of Molecular Sciences 2022, 23 (23) , 15373.
    16. Haoran Li, Xiaolian Sun, Jiaju Fu, Wenlei Zhu. Two Novel Pyrene Tetra-Sulfonate Europium Coordination Polymers: Structure Formation Mechanism Analysis and Sequential Modulation Strategy. Crystals 2022, 12 (12) , 1818.
    17. Yulia G. Gorbunova, Yulia Yu. Enakieva, Marina V. Volostnykh, Anna A. Sinelshchikova, Inna A. Abdulaeva, Kirill P. Birin, Aslan Yu. Tsivadze. Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. Russian Chemical Reviews 2022, 91 (4) , RCR5038.
    18. Alsu G. Nugmanova, Evgeniya A. Safonova, Alexander E. Baranchikov, Alexey R. Tameev, Andrey V. Shkolin, Artem A. Mitrofanov, Artem A. Eliseev, Ivan N. Meshkov, Maria A. Kalinina. Interfacial self-assembly of porphyrin-based SURMOF/graphene oxide hybrids with tunable pore size: An approach toward size-selective ambivalent heterogeneous photocatalysts. Applied Surface Science 2022, 579 , 152080.
    19. Bing Yan. Rare earth metal-organic framework hybrid materials for luminescence responsive chemical sensing of general molecules. 2022, 283-325.
    20. Shirley Nakagaki, Guilherme Sippel Machado, João Felipe Stival, Everton Henrique dos Santos, Gabriel Machado Silva, Fernando Wypych. Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis. Progress in Solid State Chemistry 2021, 64 , 100335.
    21. Hudson A. Bicalho, Victor Quezada-Novoa, Ashlee J. Howarth. Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews 2021, 2 (4) , 041301.
    22. Wai-Lun Chan, Chen Xie, Wai-Sum Lo, Jean-Claude G. Bünzli, Wai-Kwok Wong, Ka-Leung Wong. Lanthanide–tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chemical Society Reviews 2021, 50 (21) , 12189-12257.
    23. Qian Han, Cun Wang, Pingkun Liu, Gui Zhang, Li Song, Yingzi Fu. Functionalized europium-porphyrin coordination polymer: Rational design of high performance electrochemiluminescence emitter for mucin 1 sensing. Biosensors and Bioelectronics 2021, 191 , 113422.
    24. A. G. Nugmanova, M. A. Kalinina. Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide. Colloid Journal 2021, 83 (5) , 614-626.
    25. Pierre D. Harvey. Porphyrin-based MOFs as heterogeneous photocatalysts for the eradication of organic pollutants and toxins. Journal of Porphyrins and Phthalocyanines 2021, 25 (07n08) , 583-604.
    26. Siddhartha De, Thomas Devic, Alexandra Fateeva. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Transactions 2021, 50 (4) , 1166-1188.
    27. Yu. G. Gorbunova, A. G. Martynov, K. P. Birin, A. Yu. Tsivadze. NMR Spectroscopy—A Versatile Tool for Studying the Structure and Magnetic Properties of Paramagnetic Lanthanide Complexes in Solutions (Review). Russian Journal of Inorganic Chemistry 2021, 66 (2) , 202-216.
    28. Xuan Zhang, Megan C. Wasson, Mohsen Shayan, Ellan K. Berdichevsky, Joseph Ricardo-Noordberg, Zujhar Singh, Edgar K. Papazyan, Anthony J. Castro, Paola Marino, Zvart Ajoyan, Zhijie Chen, Timur Islamoglu, Ashlee J. Howarth, Yangyang Liu, Marek B. Majewski, Michael J. Katz, Joseph E. Mondloch, Omar K. Farha. A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews 2021, 429 , 213615.
    29. Jan Hynek, Mandeep K. Chahal, Daniel T. Payne, Jan Labuta, Jonathan P. Hill. Porous framework materials for singlet oxygen generation. Coordination Chemistry Reviews 2020, 425 , 213541.
    30. Felix Saraci, Victor Quezada-Novoa, P. Rafael Donnarumma, Ashlee J. Howarth. Rare-earth metal–organic frameworks: from structure to applications. Chemical Society Reviews 2020, 49 (22) , 7949-7977.
    31. Anastasia Kuznetsova, Vladislava Matveevskaya, Dmitry Pavlov, Andrei Yakunenkov, Andrei Potapov. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. Materials 2020, 13 (12) , 2699.
    32. Alexey D. Yapryntsev, Alexander E. Baranchikov, Vladimir K. Ivanov. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials. Russian Chemical Reviews 2020, 89 (6) , 629-666.
    33. С. Г. Карпова, А. А. Ольхов, С. Н. Чвалун, П. М. Тюбаева, А. А. Попов, А. Л. Иорданский. Сравнительный структурно-динамический анализ ультратонких волокон поли-(3-гидроксибутирата), модифицированного комплексами тетрафенилпорфирина с металлами. Российские нанотехнологии 2020, 14 (7-8) , 57-70.
    34. Alexey D. Yapryntsev, Konstantin B. Ustinovich, Anfisa A. Rodina, Vasiliy A. Lebedev, Oleg I. Pokrovskiy, Khursand E. Yorov, Andrey V. Gavrikov, Alexander E. Baranchikov, Vladimir K. Ivanov. Exfoliation of layered yttrium hydroxide by rapid expansion of supercritical suspensions. The Journal of Supercritical Fluids 2019, 150 , 40-48.
    35. S. G. Karpova, A. A. Ol’khov, S. N. Chvalun, P. M. Tyubaeva, A. A. Popov, A. L. Iordanskii. Comparative Structural Dynamic Analysis of Ultrathin Fibers of Poly-(3-Hydroxybutyrate) Modified by Tetraphenyl–Porphyrin Complexes with the Metals Fe, Mn, and Zn. Nanotechnologies in Russia 2019, 14 (7-8) , 367-379.
    36. Xi Chen, Yuru Wang, Xiuxiu Zhao, Binyuan Liu, Yang Xu, Yige Wang. A gadolinium(III)-porphyrin based coordination polymer for colorimetric and fluorometric dual mode determination of ferric ions. Microchimica Acta 2019, 186 (2)
    37. B. Lilli Neumeier, Mikhail Khorenko, Frauke Alves, Oliver Goldmann, Joanna Napp, Ute Schepers, Holger M. Reichardt, Claus Feldmann. Fluorescent Inorganic‐Organic Hybrid Nanoparticles. ChemNanoMat 2019, 5 (1) , 24-45.
    38. Jan Hynek, Sebastian Jurík, Martina Koncošová, Jaroslav Zelenka, Ivana Křížová, Tomáš Ruml, Kaplan Kirakci, Ivo Jakubec, František Kovanda, Kamil Lang, Jan Demel. The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy. Beilstein Journal of Nanotechnology 2018, 9 , 2960-2967.
    39. Yi Wang, Gaowei Zhang, Feng Zhang, Tianshu Chu, Yangyi Yang. A novel lanthanide MOF thin film: The highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sensors and Actuators B: Chemical 2017, 251 , 667-673.
    40. Guillaume Calvez, François Le Natur, Carole Daiguebonne, Kevin Bernot, Yan Suffren, Olivier Guillou. Lanthanide-based hexa-nuclear complexes and their use as molecular precursors. Coordination Chemistry Reviews 2017, 340 , 134-153.
    41. J. Hynek, S. Ondrušová, D. Bůžek, P. Kovář, J. Rathouský, J. Demel. Postsynthetic modification of a zirconium metal–organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability. Chemical Communications 2017, 53 (61) , 8557-8560.
    42. Soumyabrata Goswami, Bharat Kumar Tripuramallu, Israel Goldberg. Novel meso -substituted trans -A 2 B 2 porphyrins: synthesis and structure of their metal-mediated supramolecular assemblies. CrystEngComm 2017, 19 (45) , 6845-6857.
    43. Wen-Tong Chen, Dong-Sheng Liu, Ya-Ping Xu, Qiu-Yan Luo, Yun-Peng Pei. Photophysical and electrochemical properties of a dysprosium-zinc tetra(4-sulfonatophenyl)porphyrin complex. Luminescence 2016, 31 (1) , 158-163.
    44. Yan-xia Du, Zeng-qi Zhang, Ya-hong Yao, Jun Li. Synthesis, structures and properties of a meso -substituted pyrazolyl porphyrin and its Co(II) porphyrin complex. Inorganic Chemistry Communications 2016, 64 , 19-22.
    45. Wen-Tong Chen, Jian-Gen Hang, Xiang-Yang Lei, Rong-Hua Hu, Yun-Peng Pei, Yun-Xia Yang, Jie Zhou. A novel gadolinium tetra(4-sulfonatophenyl)porphyrin–amino acid complex with interesting photophysical and electrochemical properties. Journal of the Iranian Chemical Society 2016, 13 (1) , 95-101.
    46. Bharat Kumar Tripuramallu, Hatem M. Titi, Sadipan Roy, Roli Verma, Israel Goldberg. Ameliorated synthetic methodology for crystalline lanthanoid–metalloporphyrin open frameworks based on a multitopic octacarboxy-porphyrin scaffold: structural, gas sorption and photophysical properties. CrystEngComm 2016, 18 (4) , 515-520.
    47. Jan Hynek, Jiří Rathouský, Jan Demel, Kamil Lang. Design of porphyrin-based conjugated microporous polymers with enhanced singlet oxygen productivity. RSC Advances 2016, 6 (50) , 44279-44287.
    48. Yi Wang, Feng Zhang, Zhengsong Fang, Minghao Yu, Yangyi Yang, Ka-Leung Wong. Tb( iii ) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing. J. Mater. Chem. C 2016, 4 (36) , 8466-8472.
    49. Nolan W. Waggoner, Alisha M. Bohnsack, Simon M. Humphrey. Metal-Organic Frameworks as Chemical Sensors. 2015, 192-245.
    50. Nicholas U Day, Carl C Wamser, Michael G Walter. Porphyrin polymers and organic frameworks. Polymer International 2015, 64 (7) , 833-857.
    51. Wen-Tong Chen, Rong-Hua Hu, Ya-Ping Xu, Qiu-Yan Luo, Yan-Kang Dai, Shan-Lin Huang, Pei-Yu Guo. Photophysical and electrochemical properties of a novel lanthanide tetra(4-sulfonatophenyl)porphyrin. Journal of the Iranian Chemical Society 2015, 12 (6) , 937-942.
    52. Wen-Tong Chen, Rong-Hua Hu, Hua-Long Chen, Xian Zhang, Hong-Ru Fu. Synthesis, characterization and properties of a gadolinium tetra(4-sulfonatophenyl)porphyrin. Journal of the Iranian Chemical Society 2015, 12 (2) , 277-282.
    53. Yingying Bing, Meihui Yu, Ming Hu. Synthesis, structures, and properties of seven transition metal coordination polymers based on a long semirigid dicarboxylic acid ligand. RSC Advances 2015, 5 (58) , 47216-47224.
    54. Wen-Tong Chen, Jian-Gen Huang, Qiu-Yan Luo, Ya-Ping Xu, Hong-Ru Fu. A novel terbium-cobalt tetra(4-sulfonatophenyl)porphyrin: Synthesis, structure and photophysical and electrochemical properties. Journal of Porphyrins and Phthalocyanines 2015, 19 (01-03) , 154-159.
    55. Subhadip Neogi. Metal‐Organic Frameworks: Single‐Crystal‐to‐Single‐Crystal Transformations. 2014, 1-50.
    56. Chao Zou, Min Zhao, Chuan‐De Wu. Metal–Organic Frameworks: Porphyrinic Frameworks. 2014, 1-17.
    57. Wen-Tong Chen, Qiu-Yan Luo, Ya-Ping Xu, Yan-Kang Dai, Shan-Lin Huang, Pei-Yu Guo. Hydrothermal synthesis, crystal structure and properties of a thermally stable dysprosium porphyrin with a three-dimensional porous open framework. Inorganic Chemistry Communications 2014, 49 , 16-18.
    58. J. J. Wang, Y. H. Guo, Y. T. Wang, T. Y. Wang. Three one-dimensional chains with bulky backbone carboxylate ligands: Syntheses, crystal structures, and luminescent properties. Russian Journal of Coordination Chemistry 2014, 40 (9) , 676-685.
    59. Wen-Tong Chen, Ya-Ping Xu, Qiu-Yan Luo, Yan-Kang Dai, Shan-Lin Huang, Pei-Yu Guo. Photophysical and electrochemical properties of a novel 4f–3d heterometallic porphyrin. Journal of Porphyrins and Phthalocyanines 2014, 18 (07) , 600-603.
    60. Wen-Tong Chen, Rong-Hua Hu, Yin-Feng Wang, Xian Zhang, Juan Liu. A Tb–Zn tetra(4-sulfonatophenyl)porphyrin hybrid: Preparation, structure, photophysical and electrochemical properties. Journal of Solid State Chemistry 2014, 213 , 218-223.
    61. Wen-Tong Chen, Zhi-Gang Luo, Yin-Feng Wang, Xian Zhang, Hong-Ru Fu. Synthesis, structure, photophysical and electrochemical properties of a novel metalloporphyrin with a condensed three-dimensional porous open framework. Inorganica Chimica Acta 2014, 414 , 1-7.
    62. De-Shan Yu, Xian-Hua Zeng, Peng Wang, Xi-Hui Cao, Hao-Hong Li, Zhi-Rong Chen. New Three-Dimensional Lanthanide–Alkali–Heterometallic Frameworks Constructed from Isonicotinic Acid: Synthesis, Structures and Properties. Journal of Cluster Science 2014, 25 (2) , 581-590.
    63. Salvatrice Millesi, Antonino Gulino. Optical properties of porphyrin–Eu-β-diketonate supramolecular nanostructures. Journal of Materials Chemistry C 2014, 2 (29) , 5924.
    64. Yun-Shan Xue, Lian Zhou, Mei-Pin Liu, Su-Meng Liu, Yan Xu, Hong-Bin Du, Xiao-Zeng You. Construction of lanthanide metal–organic frameworks with highly-connected topology based on a tetrapodal linker. CrystEngComm 2013, 15 (31) , 6229.
    65. Subhadip Neogi, Susan Sen, Parimal K. Bharadwaj. Substitution at the metal center of coordination polymers in single-crystal-to-single-crystal (SC-SC) transformation. CrystEngComm 2013, 15 (45) , 9239.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect