ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Semiconductive and Magnetic One-Dimensional Coordination Polymers of Cu(II) with Modified Nucleobases

View Author Information
Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Departamento de Química Inorgánica, Universidad del País Vasco (UPV/EHU), Apartado 644, E-48080 Bilbao, Spain
§ Instituto de Ciencia Molecular (ICMol), Parque Científico, Universidad de Valencia, Catedrático José Beltrán, 2, 46980 Paterna Valencia, Spain
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (UP), India
Cite this: Inorg. Chem. 2013, 52, 19, 11428–11437
Publication Date (Web):September 16, 2013
https://doi.org/10.1021/ic401758w
Copyright © 2013 American Chemical Society

    Article Views

    1164

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Four new copper(II) coordination complexes, obtained by reaction of CuX2 (X = acetate or chloride) with thymine-1-acetic acid and uracil-1-propionic acid as ligands, of formulas [Cu(TAcO)2(H2O)4]·4H2O (1), [Cu(TAcO)2(H2O)2]n (2), [Cu3(TAcO)4(H2O)2(OH)2]n·4H2O (3), and [Cu3(UPrO)2Cl2(OH)2(H2O)2]n (4) (TAcOH = thymine-1-acetic acid, UPrOH = uracil-1-propionic acid) are described. While 1 is a discrete complex, 24 are one-dimensional coordination polymers. Complexes 24 present dc conductivity values between 10–6 and 10–9 S/cm–1. The magnetic behavior of complex 2 is typical for almost isolated Cu(II) metal centers. Moderate–weak antiferromagnetic interactions have been found in complex 3, whereas a combination of strong and weak antiferromagnetic interactions have been found in complex 4. Quantum computational calculations have been done to estimate the individual “J” magnetic coupling constant for each superexchange pathway in complexes 3 and 4. Compounds 24 are the first known examples of semiconductor and magnetic coordination polymers containing nucleobases.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    X-ray crystallographic files in CIF format for compounds 14 (CCDC 949549–949552). Crystallographic data, selected bond lengths and angles, hydrogen bonding interactions, temperature variable χmT and χm curves, calculated coupling constants, and thermal variation of the dc conductivity for compounds 14. This material is available free of charge via Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 38 publications.

    1. Verónica G. Vegas, Ana Latorre, María Luisa Marcos, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Jacobo Gómez, José Martínez-Costas, Miguel Vázquez López, Álvaro Somoza, Pilar Amo-Ochoa. Rational Design of Copper(II)–Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media. ACS Applied Materials & Interfaces 2021, 13 (31) , 36948-36957. https://doi.org/10.1021/acsami.1c11612
    2. Javier Conesa-Egea, Carlos. D. Redondo, J. Ignacio Martínez, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Pilar Amo-Ochoa. Supramolecular Interactions Modulating Electrical Conductivity and Nanoprocessing of Copper–Iodine Double-Chain Coordination Polymers. Inorganic Chemistry 2018, 57 (13) , 7568-7577. https://doi.org/10.1021/acs.inorgchem.8b00364
    3. Hyunjin Park, Eunjin Kwon, Hojae Chiang, Hansu Im, Kang Yeol Lee, Jineun Kim, and Tae Ho Kim . Reversible Crystal Transformations and Luminescence Vapochromism by Fast Guest Exchange in Cu(I) Coordination Polymers. Inorganic Chemistry 2017, 56 (14) , 8287-8294. https://doi.org/10.1021/acs.inorgchem.7b00951
    4. Jose M. Seco, Itziar Oyarzabal, Sonia Pérez-Yáñez, Javier Cepeda, and Antonio Rodríguez-Diéguez . Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials. Inorganic Chemistry 2016, 55 (21) , 11230-11248. https://doi.org/10.1021/acs.inorgchem.6b01845
    5. Leonardo H. R. Dos Santos, Arianna Lanza, Alyssa M. Barton, Jamie Brambleby, William J. A. Blackmore, Paul A. Goddard, Fan Xiao, Robert C. Williams, Tom Lancaster, Francis L. Pratt, Stephen J. Blundell, John Singleton, Jamie L. Manson, and Piero Macchi . Experimental and Theoretical Electron Density Analysis of Copper Pyrazine Nitrate Quasi-Low-Dimensional Quantum Magnets. Journal of the American Chemical Society 2016, 138 (7) , 2280-2291. https://doi.org/10.1021/jacs.5b12817
    6. K. Hassanein, P. Amo-Ochoa, C. J. Gómez-García, S. Delgado, O. Castillo, P. Ocón, J. I. Martínez, J. Perles, and F. Zamora . Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties. Inorganic Chemistry 2015, 54 (22) , 10738-10747. https://doi.org/10.1021/acs.inorgchem.5b01754
    7. Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, and Pilar Amo-Ochoa . Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases. Crystal Growth & Design 2015, 15 (11) , 5485-5494. https://doi.org/10.1021/acs.cgd.5b01110
    8. Subrata Kundu, Jitendra Kumar, Arun Kumar, Sandeep Verma, and Vadapalli Chandrasekhar . Multi-Uracil Arrays Built on Organostannoxane, Organotelluroxane, and Copper(II) Carboxylate Platforms. C–H···O Interactions Leading to Tetrameric Uracil Motifs. Crystal Growth & Design 2014, 14 (10) , 5171-5181. https://doi.org/10.1021/cg500900n
    9. Verónica G. Vegas, Andrea García-Hernán, Fernando Aguilar-Galindo, Josefina Perles, Pilar Amo-Ochoa. Structural and Theoretical Study of Copper(II)-5-fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor. Polymers 2023, 15 (13) , 2827. https://doi.org/10.3390/polym15132827
    10. Wei-Jhe Chen, Chia-Yi Lee, Yung-Hao Huang, Jhy-Der Chen. Cd(II) and Co(II) coordination polymers constructed from N,N'-Bis(3-pyridylmethyl)oxalamide and 1,4-Naphthalenedicarboxylic acid. Polyhedron 2022, 223 , 115991. https://doi.org/10.1016/j.poly.2022.115991
    11. Noelia Maldonado, Ana Latorre, Félix Zamora, Álvaro Somoza, Carlos J. Gómez-García, Agatha Bastida, Pilar Amo-Ochoa, . A Nanostructured Cu(II) Coordination Polymer Based on Alanine as a Trifunctional Mimic Enzyme and Efficient Composite in the Detection of Sphingobacteria. Bioinorganic Chemistry and Applications 2022, 2022 , 1-10. https://doi.org/10.1155/2022/8788221
    12. Scott G. Harroun, Yaoting Zhang, Yu-Syuan Lin, Huan-Tsung Chang. Surface-enhanced Raman spectroscopy and density functional theory study of thymine-1-acetic acid interaction with silver nanoparticles. Canadian Journal of Chemistry 2022, 100 (1) , 55-62. https://doi.org/10.1139/cjc-2021-0085
    13. Faruk Ahmed, Basudeb Dutta, Mohammad Hedayetullah Mir. Electrically conductive 1D coordination polymers: design strategies and controlling factors. Dalton Transactions 2021, 50 (1) , 29-38. https://doi.org/10.1039/D0DT03222K
    14. Khaled Hassanein, Chiara Cappuccino, Pilar Amo-Ochoa, Jesús López-Molina, Lucia Maini, Elisa Bandini, Barbara Ventura. Multifunctional coordination polymers based on copper( i ) and mercaptonicotinic ligands: synthesis, and structural, optical and electrical characterization. Dalton Transactions 2020, 49 (30) , 10545-10553. https://doi.org/10.1039/D0DT01127D
    15. V. G. Vegas, G. Beobide, O. Castillo, E. Reyes, C. J. Gómez-García, F. Zamora, P. Amo-Ochoa. A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition. Nanoscale 2020, 12 (27) , 14699-14707. https://doi.org/10.1039/D0NR04166A
    16. Lamia L.G. Al-mahamad. Synthesis and surface characterization of new triplex polymer of Ag(I) and mixture nucleosides: cytidine and 8-bromoguanosine. Heliyon 2019, 5 (5) , e01609. https://doi.org/10.1016/j.heliyon.2019.e01609
    17. Davut Avcı, Sümeyye Altürk, Fatih Sönmez, Ömer Tamer, Adil Başoğlu, Yusuf Atalay, Belma Zengin Kurt, Necmi Dege. Three novel Cu(II), Cd(II) and Cr(III) complexes of 6−Methylpyridine−2−carboxylic acid with thiocyanate: Synthesis, crystal structures, DFT calculations, molecular docking and α-Glucosidase inhibition studies. Tetrahedron 2018, 74 (50) , 7198-7208. https://doi.org/10.1016/j.tet.2018.10.054
    18. Roman Komor, Gabriela Pastuch-Gawolek, Ewelina Krol, Wieslaw Szeja. Synthesis and Preliminary Evaluation of Biological Activity of Glycoconjugates Analogues of Acyclic Uridine Derivatives. Molecules 2018, 23 (8) , 2017. https://doi.org/10.3390/molecules23082017
    19. Sümeyye Altürk, Davut Avcı, Adil Başoğlu, Ömer Tamer, Yusuf Atalay, Necmi Dege. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV–Vis spectra, refractive index, band gap and NLO parameters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 190 , 220-230. https://doi.org/10.1016/j.saa.2017.09.041
    20. Javier Conesa-Egea, Khaled Hassanein, Marta Muñoz, Félix Zamora, Pilar Amo-Ochoa. Fast and efficient direct formation of size-controlled nanostructures of coordination polymers based on copper( i )–iodine bearing functional pyridine terminal ligands. Dalton Transactions 2018, 47 (16) , 5607-5613. https://doi.org/10.1039/C8DT00083B
    21. Angel García-Raso, Angel Terrón, Antonio Bauzá, Antonio Frontera, Jhon J. Molina, Ezequiel M. Vázquez-López, Juan J. Fiol. Crystal structures of N 6 -modified-aminoacid/peptide nucleobase analogs: hybrid adenine–glycine and adenine–glycylglycine molecules. New Journal of Chemistry 2018, 42 (18) , 14742-14750. https://doi.org/10.1039/C8NJ02147C
    22. Verónica Vegas, Marta Villar-Alonso, Carlos Gómez-García, Félix Zamora, Pilar Amo-Ochoa. Direct Formation of Sub-Micron and Nanoparticles of a Bioinspired Coordination Polymer Based on Copper with Adenine. Polymers 2017, 9 (11) , 565. https://doi.org/10.3390/polym9110565
    23. Minghuey Shieh, Chia-Chi Yu, Chia-Yeh Miu, Chang-Hung Kung, Chung-Yi Huang, Yu-Hsin Liu, Hsiang-Lin Liu, Chih-Chiang Shen. Semiconducting Coordination Polymers Based on the Predesigned Ternary Te-Fe-Cu Carbonyl Cluster and Conjugation-Interrupted Dipyridyl Linkers. Chemistry - A European Journal 2017, 23 (47) , 11261-11271. https://doi.org/10.1002/chem.201701257
    24. Shuang Yao, Fei-Yan Yi, Guanghua Li, Yang Yu, Jing-yuan Wang, Dan Liu, Shu-Yan Song. Syntheses, structures, and magnetic properties of cobalt(II) and nickel(II) coordination polymers based on a V-shaped ligand. Journal of Solid State Chemistry 2017, 250 , 6-13. https://doi.org/10.1016/j.jssc.2017.03.010
    25. Miroslava Puchoňová, Milan Mazúr, Ján Moncol, Zdeňka Růžičková, Dušan Valigura. Dimeric and different polymeric copper(II) salicylates – Crystal structure and spectral properties. Journal of Molecular Structure 2017, 1137 , 706-713. https://doi.org/10.1016/j.molstruc.2017.02.081
    26. Manabu Nakaya, Ryo Ohtani, Kunihisa Sugimoto, Masaaki Nakamura, Leonard F. Lindoy, Shinya Hayami. Molecular Assemblies of Metal Complexes via Base‐Pairing of Nucleic Acids in the Crystalline State. Chemistry – A European Journal 2017, 23 (30) , 7232-7237. https://doi.org/10.1002/chem.201700593
    27. Chen Wang, Jiao Niu, Jun Li, Xiaoxun Ma. Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand. Journal of Molecular Structure 2017, 1135 , 75-81. https://doi.org/10.1016/j.molstruc.2017.01.021
    28. Jian-Jun Liu, Ying-Fang Guan, Ling Li, Yong Chen, Wen-Xin Dai, Chang-Cang Huang, Mei-Jin Lin. Construction of a bicontinuous donor–acceptor hybrid material at the molecular level by inserting inorganic nanowires into porous MOFs. Chemical Communications 2017, 53 (32) , 4481-4484. https://doi.org/10.1039/C7CC00495H
    29. Ilesha Avasthi, Shruti Khanna, Santosh K. Tripathi, Sandeep Verma. N9 substituent mediated structural tuning of copper–purine complexes: chelate effect and thin film studies. CrystEngComm 2017, 19 (35) , 5202-5213. https://doi.org/10.1039/C7CE01017F
    30. F. García, J. Perles, F. Zamora, P. Amo-Ochoa. Rhodium and copper 6-methylpicolinate complexes. Structural diversity and supramolecular interaction study. Inorganica Chimica Acta 2016, 453 , 574-582. https://doi.org/10.1016/j.ica.2016.08.040
    31. Khaled Hassanein, Félix Zamora, Oscar Castillo, Pilar Amo-Ochoa. Supramolecular interactions in Cobalt(II)–nucleobases complexes: A methyl matter. Inorganica Chimica Acta 2016, 452 , 251-257. https://doi.org/10.1016/j.ica.2016.02.032
    32. Jun-Xi Wu, Dong-Dong Zhou, Chi Zhang, Hao-Long Zhou, Jie-Peng Zhang. From discrete complex to 1-D coordination polymer by subtle variation of ligand donor: structures and electrical conductivities. Journal of Coordination Chemistry 2016, 69 (11-13) , 1837-1843. https://doi.org/10.1080/00958972.2016.1190838
    33. Sringeri Ramesh Sushrutha, Srinivasan Natarajan. Selective Sensing of Nitrophenols by a Inorganic Coordination Polymer: [Cd 2 (C 4 H 4 O 5 ) 2 (C 5 H 5 N 5 )].H 2 O. DMA. ChemistrySelect 2016, 1 (10) , 2413-2421. https://doi.org/10.1002/slct.201600474
    34. S. R. Sushrutha, Raghunandan Hota, Srinivasan Natarajan. Adenine‐Based Coordination Polymers: Synthesis, Structure, and Properties. European Journal of Inorganic Chemistry 2016, 2016 (18) , 2962-2974. https://doi.org/10.1002/ejic.201600111
    35. Wataru Fujita, Akio Tokumitu, Yutaka Fujii, Hikomitsu Kikuchi. Crystal growth, structures and magnetic properties of copper hydroxide compounds with distorted diamond chain magnetic networks. CrystEngComm 2016, 18 (44) , 8614-8621. https://doi.org/10.1039/C6CE01631F
    36. Li-Yun Du, Hui Wang, Ge Liu, Dong Xie, Fu-Sheng Guo, Lei Hou, Yao-Yu Wang. Structural diversity of five new bitriazole-based complexes: luminescence, sorption, and magnetic properties. Dalton Transactions 2015, 44 (3) , 1110-1119. https://doi.org/10.1039/C4DT03129F
    37. Pilar Amo-Ochoa, Félix Zamora. Coordination polymers with nucleobases: From structural aspects to potential applications. Coordination Chemistry Reviews 2014, 276 , 34-58. https://doi.org/10.1016/j.ccr.2014.05.017
    38. Shota Yoneyama, Takeshi Kodama, Koichi Kikuchi, Yutaka Fujii, Hikomitsu Kikuchi, Wataru Fujita. Preparation, crystal structure, and magnetic properties of a copper hydroxy salt with diamond chain magnetic network. CrystEngComm 2014, 16 (45) , 10385-10388. https://doi.org/10.1039/C4CE01642D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect