Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Formazanate Ligands as Structurally Versatile, Redox-Active Analogues of β-Diketiminates in Zinc Chemistry

View Author Information
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
Cite this: Inorg. Chem. 2015, 54, 1, 379–388
Publication Date (Web):December 10, 2014
https://doi.org/10.1021/ic5025873
Copyright © 2014 American Chemical Society

    Article Views

    2346

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (6)»

    Abstract

    Abstract Image

    A range of tetrahedral bis(formazanate)zinc complexes with different steric and electronic properties of the formazanate ligands were synthesized. The solid-state structures for several of these were determined by X-ray crystallography, which showed that complexes with symmetrical, unhindered ligands prefer coordination to the zinc center via the terminal N atoms of the NNCNN ligand backbone. Steric or electronic modifications can override this preference and give rise to solid-state structures in which the formazanate ligand forms a 5-membered chelate by binding to the metal center via an internal N atom. In solution, these compounds show dynamic equilibria that involve both 5- and 6-membered chelates. All compounds are intensely colored, and the effect of the ligand substitution pattern on the UV–vis absorption spectra was evaluated. In addition, their cyclic voltammetry is reported, which shows that all compounds may be electrochemically reduced to radical anionic (L2Zn) and dianionic (L2Zn2–) forms. While unhindered NAr substituents lie in the plane of the ligand backbone (Ar = Ph), the introduction of sterically demanding substituents (Ar = Mes) favors a perpendicular orientation in which the NMes group is no longer in conjugation with the backbone, resulting in hypsochromic shifts in the absorption spectra. The redox potentials in the series of L2Zn compounds may be altered in a straightforward manner over a relatively wide range (∼700 mV) via the introduction of electron-donating or -withdrawing substituents on the formazanate framework.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis and characterization data for all new ligands, cyclic voltammograms for compounds 18, NMR spectra for compounds 6 and 8, and CIF files for 3, 4, 6, 8, and 9. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 51 publications.

    1. Da Jin, Xiaofei Sun, Peter W. Roesky. Heavy Alkaline–Earth Metal Formazanate Complexes and Their Catalytic Applications. Organometallics 2023, 42 (14) , 1725-1731. https://doi.org/10.1021/acs.organomet.2c00591
    2. Liliana Capulín Flores, Lucas A. Paul, Inke Siewert, Remco Havenith, Noé Zúñiga-Villarreal, Edwin Otten. Neutral Formazan Ligands Bound to the fac-(CO)3Re(I) Fragment: Structural, Spectroscopic, and Computational Studies. Inorganic Chemistry 2022, 61 (34) , 13532-13542. https://doi.org/10.1021/acs.inorgchem.2c02168
    3. Chenggang Jiang, Thomas S. Teets. Trimetallic Iridium–Nickel–Iridium Bis(formazanate) Assemblies. Inorganic Chemistry 2022, 61 (23) , 8788-8796. https://doi.org/10.1021/acs.inorgchem.2c00726
    4. Folkert de Vries, Edwin Otten. Reversible On/Off Switching of Lactide Cyclopolymerization with a Redox-Active Formazanate Ligand. ACS Catalysis 2022, 12 (7) , 4125-4130. https://doi.org/10.1021/acscatal.1c05689
    5. Deniz Ar, Alexander F. R. Kilpatrick, Beatrice Cula, Christian Herwig, Christian Limberg. Transformation of Formazanate at Nickel(II) Centers to Give a Singly Reduced Nickel Complex with Azoiminate Radical Ligands and Its Reactivity toward Dioxygen. Inorganic Chemistry 2021, 60 (18) , 13844-13853. https://doi.org/10.1021/acs.inorgchem.0c03761
    6. Francesca Milocco, Folkert de Vries, Harmke S. Siebe, Silène Engbers, Serhiy Demeshko, Franc Meyer, Edwin Otten. Widening the Window of Spin-Crossover Temperatures in Bis(formazanate)iron(II) Complexes via Steric and Noncovalent Interactions. Inorganic Chemistry 2021, 60 (3) , 2045-2055. https://doi.org/10.1021/acs.inorgchem.0c03593
    7. Folkert de Vries, Raquel Travieso-Puente, Peter Roewen, Edwin Otten. Three-Coordinate Zinc Methyl Complexes with Sterically Demanding Formazanate Ligands. Organometallics 2021, 40 (1) , 63-71. https://doi.org/10.1021/acs.organomet.0c00720
    8. Evanta Kabir, Ge Mu, David A. Momtaz, Noah A. Bryce, Thomas S. Teets. Formazanate Complexes of Bis-Cyclometalated Iridium. Inorganic Chemistry 2019, 58 (17) , 11672-11683. https://doi.org/10.1021/acs.inorgchem.9b01657
    9. Ranajit Mondol, Edwin Otten. Aluminum Complexes with Redox-Active Formazanate Ligand: Synthesis, Characterization, and Reduction Chemistry. Inorganic Chemistry 2019, 58 (9) , 6344-6355. https://doi.org/10.1021/acs.inorgchem.9b00553
    10. Alex Van Belois, Ryan R. Maar, Mark S. Workentin, Joe B. Gilroy. Dialkynylborane Complexes of Formazanate Ligands: Synthesis, Electronic Properties, and Reactivity. Inorganic Chemistry 2019, 58 (1) , 834-843. https://doi.org/10.1021/acs.inorgchem.8b02966
    11. Evanta Kabir, Dhruti Patel, Kevin Clark, Thomas S. Teets. Spectroscopic and Electrochemical Properties of Electronically Modified Cycloplatinated Formazanate Complexes. Inorganic Chemistry 2018, 57 (17) , 10906-10917. https://doi.org/10.1021/acs.inorgchem.8b01543
    12. Daniel L. J. Broere, Brandon Q. Mercado, Eckhard Bill, Kyle M. Lancaster, Stephen Sproules, Patrick L. Holland. Alkali Cation Effects on Redox-Active Formazanate Ligands in Iron Chemistry. Inorganic Chemistry 2018, 57 (16) , 9580-9591. https://doi.org/10.1021/acs.inorgchem.8b00226
    13. Raquel Travieso-Puente, J. O. P. Broekman, Mu-Chieh Chang, Serhiy Demeshko, Franc Meyer, and Edwin Otten . Spin-Crossover in a Pseudo-tetrahedral Bis(formazanate) Iron Complex. Journal of the American Chemical Society 2016, 138 (17) , 5503-5506. https://doi.org/10.1021/jacs.6b01552
    14. Mu-Chieh Chang and Edwin Otten . Intramolecular Hydride Transfer Reactions in (Formazanate)Boron Dihydride Complexes. Organometallics 2016, 35 (4) , 534-542. https://doi.org/10.1021/acs.organomet.5b00968
    15. Evanta Kabir, Chia-Hua Wu, Judy I-Chia Wu, and Thomas S. Teets . Heteroleptic Complexes of Cyclometalated Platinum with Triarylformazanate Ligands. Inorganic Chemistry 2016, 55 (2) , 956-963. https://doi.org/10.1021/acs.inorgchem.5b02595
    16. Mu-Chieh Chang and Edwin Otten . Reduction of (Formazanate)boron Difluoride Provides Evidence for an N-Heterocyclic B(I) Carbenoid Intermediate. Inorganic Chemistry 2015, 54 (17) , 8656-8664. https://doi.org/10.1021/acs.inorgchem.5b01287
    17. Abhishek Mandal, Brigitte Schwederski, Jan Fiedler, Wolfgang Kaim, and Goutam Kumar Lahiri . Evidence for Bidirectional Noninnocent Behavior of a Formazanate Ligand in Ruthenium Complexes. Inorganic Chemistry 2015, 54 (16) , 8126-8135. https://doi.org/10.1021/acs.inorgchem.5b01408
    18. Stephanie M. Barbon, Viktor N. Staroverov, and Joe B. Gilroy . Effect of Extended π Conjugation on the Spectroscopic and Electrochemical Properties of Boron Difluoride Formazanate Complexes. The Journal of Organic Chemistry 2015, 80 (10) , 5226-5235. https://doi.org/10.1021/acs.joc.5b00620
    19. Sunita Birara, Shalu Saini, Moumita Majumder, Prem Lama, Shree Prakash Tiwari, Ramesh K. Metre. Design and synthesis of a solution-processed redox-active bis(formazanate) zinc complex for resistive switching applications. Dalton Transactions 2023, 52 (48) , 18429-18441. https://doi.org/10.1039/D3DT02809G
    20. Da Jin, Xiaofei Sun, Vanitha R. Naina, Peter W. Roesky. Diverse Reactions of Formazanate/Formazan with Tetrylenes: Reduction, C−H Bond Activation, Substitution and Addition. Chemistry – A European Journal 2023, 29 (61) https://doi.org/10.1002/chem.202301958
    21. Neetu Singh, Harvinder Singh Sohal, Meenakshi Verma, Rajeev Sharma, Manvinder Kaur. Synthesis and bio-activity of complex azo compounds: A review on formazans and its complexes. Main Group Chemistry 2023, 7 , 1-32. https://doi.org/10.3233/MGC-230014
    22. Natalia A. Protasenko, Maxim V. Arsenyev, Evgeny V. Baranov, Alyona A. Starikova, Artem S. Bogomyakov, Vladimir K. Cherkasov. Heteroligand o‐Semiquinonato Cobalt Complexes of 3‐Cyano and 3‐Nitroformazans. European Journal of Inorganic Chemistry 2022, 2022 (17) https://doi.org/10.1002/ejic.202200152
    23. Da Jin, Xiaofei Sun, Alexander Hinz, Peter W. Roesky. Rare-earth metal complexes with redox-active formazanate ligands. Dalton Transactions 2022, 51 (13) , 5218-5226. https://doi.org/10.1039/D2DT00456A
    24. Atash V. Gurbanov, Marta A. Andrade, Luísa M. D. R. S. Martins, Kamran T. Mahmudov, Armando J. L. Pombeiro. Water-soluble Al( iii ), Fe( iii ) and Cu( ii ) formazanates: synthesis, structure, and applications in alkane and alcohol oxidations. New Journal of Chemistry 2022, 46 (11) , 5002-5011. https://doi.org/10.1039/D1NJ06211E
    25. Errikos Kounalis, Daniël L.J. Broere. Redox-Active Ligands in Organometallic Chemistry. 2022, 421-441. https://doi.org/10.1016/B978-0-12-820206-7.00028-7
    26. Thota Peddarao, Ashim Baishya, Nabin Sarkar, Rudresh Acharya, Sharanappa Nembenna. Conjugated Bis‐Guanidines (CBGs) as β ‐Diketimine Analogues: Synthesis, Characterization of CBGs/Their Lithium Salts and CBG Li Catalyzed Addition of B−H and TMSCN to Carbonyls. European Journal of Inorganic Chemistry 2021, 2021 (21) , 2034-2046. https://doi.org/10.1002/ejic.202100141
    27. Kirti Singh, Vidhyalakshmi S., Debashis Adhikari. Visible light photoredox by a ( ph,Ar NacNac) 2 Zn photocatalyst: photophysical properties and mechanistic understanding. Inorganic Chemistry Frontiers 2021, 8 (8) , 2078-2087. https://doi.org/10.1039/D0QI01466D
    28. Jasveer S. Dhindsa, Adyn Melenbacher, Stephanie M. Barbon, Martin J. Stillman, Joe B. Gilroy. Altering the optoelectronic properties of boron difluoride formazanate dyes via conjugation with platinum( ii )-acetylides. Dalton Transactions 2020, 49 (45) , 16133-16142. https://doi.org/10.1039/C9DT03417J
    29. Ge Mu, Chenggang Jiang, Thomas S. Teets. Dinuclear Complexes of Flexidentate Pyridine‐Substituted Formazanate Ligands. Chemistry – A European Journal 2020, 26 (51) , 11877-11886. https://doi.org/10.1002/chem.202002351
    30. Morten Gotthold Vinum, Laura Voigt, Steen H. Hansen, Colby Bell, Kensha Marie Clark, René Wugt Larsen, Kasper S. Pedersen. Ligand field-actuated redox-activity of acetylacetonate. Chemical Science 2020, 11 (31) , 8267-8272. https://doi.org/10.1039/D0SC01836H
    31. Ranajit Mondol, Edwin Otten. Cation effects on dynamics of ligand-benzylated formazanate boron and aluminium complexes. Dalton Transactions 2020, 49 (26) , 9094-9098. https://doi.org/10.1039/D0DT01918F
    32. Joe B. Gilroy, Edwin Otten. Formazanate coordination compounds: synthesis, reactivity, and applications. Chemical Society Reviews 2020, 49 (1) , 85-113. https://doi.org/10.1039/C9CS00676A
    33. Ranajit Mondol, Edwin Otten. Structure and bonding in reduced boron and aluminium complexes with formazanate ligands. Dalton Transactions 2019, 48 (37) , 13981-13988. https://doi.org/10.1039/C9DT02831E
    34. G. N. Lipunova, T. G. Fedorchenko, O. N. Chupakhin. New Aspects of the Chemistry of Formazans. Russian Journal of General Chemistry 2019, 89 (6) , 1225-1245. https://doi.org/10.1134/S1070363219060203
    35. Natalia A. Protasenko, Andrey I. Poddel'sky, Artem S. Bogomyakov, Andrey G. Starikov, Ivan V. Smolyaninov, Nadezhda T. Berberova, Georgy K. Fukin, Vladimir K. Cherkasov. The chemical and electrochemical reduction of heteroligand o-semiquinonato-formazanato cobalt complexes. Inorganica Chimica Acta 2019, 489 , 1-7. https://doi.org/10.1016/j.ica.2019.02.002
    36. Jarl Ivar van der Vlugt. Radical‐Type Reactivity and Catalysis by Single‐Electron Transfer to or from Redox‐Active Ligands. Chemistry – A European Journal 2019, 25 (11) , 2651-2662. https://doi.org/10.1002/chem.201802606
    37. Daniël L. J. Broere, Brandon Q. Mercado, James T. Lukens, Avery C. Vilbert, Gourab Banerjee, Hannah M. C. Lant, Shin Hee Lee, Eckhard Bill, Stephen Sproules, Kyle M. Lancaster, Patrick L. Holland. Reversible Ligand‐Centered Reduction in Low‐Coordinate Iron Formazanate Complexes. Chemistry – A European Journal 2018, 24 (37) , 9417-9425. https://doi.org/10.1002/chem.201801298
    38. Francesca Milocco, Serhiy Demeshko, Franc Meyer, Edwin Otten. Ferrate( ii ) complexes with redox-active formazanate ligands. Dalton Transactions 2018, 47 (26) , 8817-8823. https://doi.org/10.1039/C8DT01597J
    39. E. Folkertsma, S. H. Benthem, L. Witteman, C. A. M. R. van Slagmaat, M. Lutz, R. J. M. Klein Gebbink, M.-E. Moret. Formation of exceptionally weak C–C bonds by metal-templated pinacol coupling. Dalton Transactions 2017, 46 (19) , 6177-6182. https://doi.org/10.1039/C7DT01130J
    40. Thomas W. Myers, Tobias J. Sherbow, James C. Fettinger, Louise A. Berben. Synthesis and characterization of bis(imino)pyridine complexes of divalent Mg and Zn. Dalton Transactions 2016, 45 (14) , 5989-5998. https://doi.org/10.1039/C5DT01541C
    41. W. Schorn, D. Grosse-Hagenbrock, B. Oelkers, J. Sundermeyer. Formazanido complexes of heavier group 13 elements aluminium, gallium, and indium. Dalton Transactions 2016, 45 (3) , 1201-1207. https://doi.org/10.1039/C5DT03906A
    42. Samantha Novoa, Joseph A. Paquette, Stephanie M. Barbon, Ryan R. Maar, Joe B. Gilroy. Side-chain boron difluoride formazanate polymers via ring-opening metathesis polymerization. Journal of Materials Chemistry C 2016, 4 (18) , 3987-3994. https://doi.org/10.1039/C5TC03287C
    43. M.-C. Chang, A. Chantzis, D. Jacquemin, E. Otten. Boron difluorides with formazanate ligands: redox-switchable fluorescent dyes with large stokes shifts. Dalton Transactions 2016, 45 (23) , 9477-9484. https://doi.org/10.1039/C6DT01226D
    44. Clément Camp, John Arnold. On the non-innocence of “Nacnacs”: ligand-based reactivity in β-diketiminate supported coordination compounds. Dalton Transactions 2016, 45 (37) , 14462-14498. https://doi.org/10.1039/C6DT02013E
    45. Nuno M. R. Martins, Kamran T. Mahmudov, M. Fátima C. Guedes da Silva, Luísa M. D. R. S. Martins, Armando J. L. Pombeiro. Copper( ii ) and iron( iii ) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands as catalysts for oxidation of alcohols. New Journal of Chemistry 2016, 40 (12) , 10071-10083. https://doi.org/10.1039/C6NJ02161A
    46. Stephanie M. Barbon, Joe B. Gilroy. Boron difluoride formazanate copolymers with 9,9-di-n-hexylfluorene prepared by copper-catalyzed alkyne–azide cycloaddition chemistry. Polymer Chemistry 2016, 7 (21) , 3589-3598. https://doi.org/10.1039/C6PY00441E
    47. Gulsen Turkoglu, Halil Berber. Novel formazan derivatives containing phenylsulfanyl and carbonyl units: synthesis, optical and electrochemical properties. RSC Advances 2016, 6 (98) , 96065-96078. https://doi.org/10.1039/C6RA23008C
    48. Ryan R. Maar, Stephanie M. Barbon, Neha Sharma, Hilary Groom, Leonard G. Luyt, Joe B. Gilroy. Evaluation of Anisole‐Substituted Boron Difluoride Formazanate Complexes for Fluorescence Cell Imaging. Chemistry – A European Journal 2015, 21 (44) , 15589-15599. https://doi.org/10.1002/chem.201502821
    49. Dan Tian, Qianwen Xie, Lei Yan, Hongbo Tong, Meisu Zhou. Zinc and aluminum complexes derived from 2, 4-N, N′-disubstituted 1, 3, 5-triazapentadienyl ligands: Synthesis, characterization and catalysis of the ring-opening polymerization of rac-lactide. Inorganic Chemistry Communications 2015, 58 , 35-38. https://doi.org/10.1016/j.inoche.2015.05.021
    50. Mahdi Hesari, Stephanie M. Barbon, Viktor N. Staroverov, Zhifeng Ding, Joe B. Gilroy. Efficient electrochemiluminescence of a readily accessible boron difluoride formazanate dye. Chemical Communications 2015, 51 (18) , 3766-3769. https://doi.org/10.1039/C4CC10038G
    51. Stephanie M. Barbon, Jacquelyn T. Price, Umesh Yogarajah, Joe B. Gilroy. Synthesis and characterization of conjugated/cross-conjugated benzene-bridged boron difluoride formazanate dimers. RSC Advances 2015, 5 (69) , 56316-56324. https://doi.org/10.1039/C5RA09505K