ACS Publications. Most Trusted. Most Cited. Most Read
The Role of Substituents on Functionalized 1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices
My Activity
    Article

    The Role of Substituents on Functionalized 1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Dipartimento di Chimica Fisica ed Elettrochimica, Centro di Eccellenza CIMAINA dell'Università di Milano, Istituto di Scienze e Tecnologie Molecolari, CNR, and UdR dell'INSTM di Milano, via Venezian 21, 20133 Milano, Italy
    Istituto di Scienze e Tecnologie Molecolari, CNR, c/o Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy
    Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via P. Gobetti 101, I-40129 Bologna, Italy
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2007, 46, 21, 8533–8547
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic700414z
    Published September 21, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The photophysical and electrochemical properties of the novel complexes [Ir(ppy)2(5-X-1,10-phen)][PF6] (ppy = 2-phenylpyridine, phen = phenanthroline, X = NMe2, NO2), [Ir(pq)2(5-X-1,10-phen)][PF6] (pq = 2-phenylquinoline, X = H, Me, NMe2, NO2), [Ir(ppy)2(4-Me,7-Me-1,10-phen)][PF6], [Ir(ppy)2(5-Me,6-Me-1,10-phen)][PF6], [Ir(ppy)2(2-Me,9-Me-1,10-phen)][PF6], and [Ir(pq)2(4-Ph,7-Ph-1,10-phen)][PF6] have been investigated and compared with those of the known reference complexes [Ir(ppy)2(4-Me or 5-H or 5-Me-1,10-phen)][PF6] and [Ir(ppy)2(4-Ph,7-Ph-1,10-phen)][PF6], showing how the nature and number of the phenanthroline substituents tune the color of the emission, its quantum yield, and the emission lifetime. It turns out that the quantum yield is strongly dependent on the nonradiative decay. The geometry, ground state, electronic structure, and excited electronic states of the investigated complexes have been calculated on the basis of density functional theory (DFT) and time-dependent DFT approaches, thus substantiating the electrochemical measurements and providing insight into the electronic origin of the absorption spectra and of the lowest excited states involved in the light emission process. These results provide useful guidelines for further tailoring of the photophysical properties of ionic Ir(III) complexes.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Dipartimento di Chimica Inorganica, Metallorganica e Analitica.

    §

     Centro di Eccellenza CIMAINA dell'Università di Milano.

     UdR dell'INSTM di Milano.

     Dipartimento di Chimica Fisica ed Elettrochimica.

    *

     To whom correspondence should be addressed. E-mail:  simona@ thch.unipg.it (S.F.), [email protected] (P.M.), dominique.roberto@ unimi.it (D.R.).

     Istituto di Scienze e Tecnologie Molecolari, CNR.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Energies of the frontier molecular orbitals and energy differences between some frontier molecular orbitals for complexes 17 in CH3CN solution and in CH2Cl2; isodensity plots of selected molecular orbitals of 1bd and 2b complexes; comparison between the experimental and computed UV−vis absorption spectra of 1a, 1d, 3a, and 3b complexes; cyclovoltammetric patterns of compounds 2ac and 46; graph of Eem vs ln(knr) for 1a, 1d, and 2a; graph of the experimental vs the calculated HOMO−LUMO energy gaps. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 166 publications.

    1. Alexander C. Marwitz, Aaron D. Nicholas, Leticia M. Breuer, Jeffery A. Bertke, Karah E. Knope. Harnessing Bismuth Coordination Chemistry to Achieve Bright, Long-Lived Organic Phosphorescence. Inorganic Chemistry 2021, 60 (21) , 16840-16851. https://doi.org/10.1021/acs.inorgchem.1c02748
    2. Yanling Zhuang, Yu Wang, Yongjing Deng, Feiyang Li, Xintong Chen, Shujuan Liu, Yi Tong, Qiang Zhao. Memristors Based on an Iridium(III) Complex Containing Viologen for Advanced Synaptic Bionics. Inorganic Chemistry 2021, 60 (17) , 13021-13028. https://doi.org/10.1021/acs.inorgchem.1c01439
    3. Kenji Kamada, Jieun Jung, Taku Wakabayashi, Keita Sekizawa, Shunsuke Sato, Takeshi Morikawa, Shunichi Fukuzumi, Susumu Saito. Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. Journal of the American Chemical Society 2020, 142 (23) , 10261-10266. https://doi.org/10.1021/jacs.0c03097
    4. Dongyang Xu, Long Chen, Xing Dai, Baoyu Li, Yaxing Wang, Wei Liu, Jie Li, Yi Tao, Yanlong Wang, Yong Liu, Guowen Peng, Ruhong Zhou, Zhifang Chai, Shuao Wang. A Porous Aromatic Framework Functionalized with Luminescent Iridium(III) Organometallic Complexes for Turn-On Sensing of 99TcO4–. ACS Applied Materials & Interfaces 2020, 12 (13) , 15288-15297. https://doi.org/10.1021/acsami.0c01929
    5. Sili Yi, Zhen Lu, Jin Zhang, Jun Wang, Zenghong Xie, Linxi Hou. Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces 2019, 11 (17) , 15276-15289. https://doi.org/10.1021/acsami.9b01205
    6. Bingqing Liu, Levi Lystrom, Svetlana Kilina, Wenfang Sun. Effects of Varying the Benzannulation Site and π Conjugation of the Cyclometalating Ligand on the Photophysics and Reverse Saturable Absorption of Monocationic Iridium(III) Complexes. Inorganic Chemistry 2019, 58 (1) , 476-488. https://doi.org/10.1021/acs.inorgchem.8b02714
    7. Guo Zou, Li Zhao, Longwei Zeng, Kaijun Luo, Hailiang Ni, Haifeng Wang, Quan Li, Wenhao Yu, Xuelian Li. Columnar Iridium(III) Metallomesogens Based on Polycatenar Pyridyltetrazolate with Ambipolar Carrier Mobility Behavior. Inorganic Chemistry 2019, 58 (1) , 861-869. https://doi.org/10.1021/acs.inorgchem.8b02984
    8. Chao Wang, Mona Amiri, Riley T. Endean, Octavio Martinez Perez, Samuel Varley, Ben Rennie, Loorthuraja Rasu, Steven H. Bergens. Modular Construction of Photoanodes with Covalently Bonded Ru- and Ir-Polypyridyl Visible Light Chromophores. ACS Applied Materials & Interfaces 2018, 10 (29) , 24533-24542. https://doi.org/10.1021/acsami.8b06605
    9. Hanah Na, Thomas S. Teets. Highly Luminescent Cyclometalated Iridium Complexes Generated by Nucleophilic Addition to Coordinated Isocyanides. Journal of the American Chemical Society 2018, 140 (20) , 6353-6360. https://doi.org/10.1021/jacs.8b02416
    10. Yuichi Tamura, Yosuke Hisamatsu, Ayami Kazama, Kenji Yoza, Kyouhei Sato, Reiko Kuroda, Shin Aoki. Stereospecific Synthesis of Tris-heteroleptic Tris-cyclometalated Iridium(III) Complexes via Different Heteroleptic Halogen-Bridged Iridium(III) Dimers and Their Photophysical Properties. Inorganic Chemistry 2018, 57 (8) , 4571-4589. https://doi.org/10.1021/acs.inorgchem.8b00323
    11. Wanhe Wang, Kasipandi Vellaisamy, Guodong Li, Chun Wu, Chung-Nga Ko, Chung-Hang Leung, and Dik-Lung Ma . Development of a Long-Lived Luminescence Probe for Visualizing β-Galactosidase in Ovarian Carcinoma Cells. Analytical Chemistry 2017, 89 (21) , 11679-11684. https://doi.org/10.1021/acs.analchem.7b03114
    12. Wenbo Yang, Brennan Ashwood, Jianzhang Zhao, Wei Ji, Daniel Escudero, Denis Jacquemin, and Carlos E. Crespo-Hernández . Ultrafast Excited-State Dynamics in Cyclometalated Ir(III) Complexes Coordinated with Perylenebisimide and Its π-Radical Anion Ligands. The Journal of Physical Chemistry C 2017, 121 (39) , 21184-21198. https://doi.org/10.1021/acs.jpcc.7b06714
    13. Hanah Na, Ayan Maity, Rakib Morshed, and Thomas S. Teets . Bis-Cyclometalated Iridium Complexes with Chelating Dicarbene Ancillary Ligands. Organometallics 2017, 36 (15) , 2965-2972. https://doi.org/10.1021/acs.organomet.7b00428
    14. Yuichi Tamura, Yosuke Hisamatsu, Sarvendra Kumar, Taiki Itoh, Kyouhei Sato, Reiko Kuroda, and Shin Aoki . Efficient Synthesis of Tris-Heteroleptic Iridium(III) Complexes Based on the Zn2+-Promoted Degradation of Tris-Cyclometalated Iridium(III) Complexes and Their Photophysical Properties. Inorganic Chemistry 2017, 56 (2) , 812-833. https://doi.org/10.1021/acs.inorgchem.6b02270
    15. Luis Sanhueza Diego Cortés Iván González Bárbara Loeb . Condensation Reaction between Phenanthroline-5,6-diones and Ethylenediamine and Its Optimization through Dialogue between Theory and Experiment. 2017, 79-89. https://doi.org/10.1021/bk-2017-1258.ch006
    16. Monima Sarma, Tanmay Chatterjee, Ramakrishna Bodapati, Katturi Naga Krishnakanth, Syed Hamad, S. Venugopal Rao, and Samar K. Das . Cyclometalated Iridium(III) Complexes Containing 4,4′-π-Conjugated 2,2′-Bipyridine Derivatives as the Ancillary Ligands: Synthesis, Photophysics, and Computational Studies. Inorganic Chemistry 2016, 55 (7) , 3530-3540. https://doi.org/10.1021/acs.inorgchem.5b02999
    17. Daisuke Uraguchi, Natsuko Kinoshita, Tomohito Kizu, and Takashi Ooi . Synergistic Catalysis of Ionic Brønsted Acid and Photosensitizer for a Redox Neutral Asymmetric α-Coupling of N-Arylaminomethanes with Aldimines. Journal of the American Chemical Society 2015, 137 (43) , 13768-13771. https://doi.org/10.1021/jacs.5b09329
    18. Katherine J. Castor, Kimberly L. Metera, Ushula M. Tefashe, Christopher J. Serpell, Janine Mauzeroll, and Hanadi F. Sleiman . Cyclometalated Iridium(III) Imidazole Phenanthroline Complexes as Luminescent and Electrochemiluminescent G-Quadruplex DNA Binders. Inorganic Chemistry 2015, 54 (14) , 6958-6967. https://doi.org/10.1021/acs.inorgchem.5b00921
    19. Filippo Monti, Maria Grazia I. La Placa, Nicola Armaroli, Rosario Scopelliti, Michael Grätzel, Mohammad Khaja Nazeeruddin, and Florian Kessler . Cationic Iridium(III) Complexes with Two Carbene-Based Cyclometalating Ligands: Cis Versus Trans Isomers. Inorganic Chemistry 2015, 54 (6) , 3031-3042. https://doi.org/10.1021/acs.inorgchem.5b00148
    20. Rui Liu, Naveen Dandu, Jinquan Chen, Yuhao Li, Zhongjing Li, Shan Liu, Chengzhe Wang, Svetlana Kilina, Bern Kohler, and Wenfang Sun . Influence of Different Diimine (N∧N) Ligands on the Photophysics and Reverse Saturable Absorption of Heteroleptic Cationic Iridium(III) Complexes Bearing Cyclometalating 2-{3-[7-(Benzothiazol-2-yl)fluoren-2-yl]phenyl}pyridine (C∧N) Ligands. The Journal of Physical Chemistry C 2014, 118 (40) , 23233-23246. https://doi.org/10.1021/jp506765k
    21. David Schallenberg, Antje Neubauer, Elisa Erdmann, Marco Tänzler, Alexander Villinger, Stefan Lochbrunner, and Wolfram W. Seidel . Dinuclear Ru/Ni, Ir/Ni, and Ir/Pt Complexes with Bridging Phenanthroline-5,6-dithiolate: Synthesis, Structure, and Electrochemical and Photophysical Behavior. Inorganic Chemistry 2014, 53 (17) , 8859-8873. https://doi.org/10.1021/ic4031206
    22. Kassio P. S. Zanoni, Bruna K. Kariyazaki, Akitaka Ito, M. Kyle Brennaman, Thomas J. Meyer, and Neyde Y. Murakami Iha . Blue-Green Iridium(III) Emitter and Comprehensive Photophysical Elucidation of Heteroleptic Cyclometalated Iridium(III) Complexes. Inorganic Chemistry 2014, 53 (8) , 4089-4099. https://doi.org/10.1021/ic500070s
    23. Yuhao Li, Naveen Dandu, Rui Liu, Zhongjing Li, Svetlana Kilina, and Wenfang Sun . Effects of Extended π-Conjugation in Phenanthroline (N∧N) and Phenylpyridine (C∧N) Ligands on the Photophysics and Reverse Saturable Absorption of Cationic Heteroleptic Iridium(III) Complexes. The Journal of Physical Chemistry C 2014, 118 (12) , 6372-6384. https://doi.org/10.1021/jp411259f
    24. Shin-ya Takizawa, Kengo Shimada, Yoichi Sato, and Shigeru Murata . Controlling the Excited State and Photosensitizing Property of a 2-(2-Pyridyl)benzo[b]thiophene-Based Cationic Iridium Complex through Simple Chemical Modification. Inorganic Chemistry 2014, 53 (6) , 2983-2995. https://doi.org/10.1021/ic402778x
    25. Nathir A. F. Al-Rawashdeh, Sayandev Chatterjee, Jeanette A. Krause, and William B. Connick . Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2′-Bipyridyl Ligand Substituent Effects. Inorganic Chemistry 2014, 53 (1) , 294-307. https://doi.org/10.1021/ic4022454
    26. Wei Yang, Dawei Wang, Qijun Song, Song Zhang, Quan Wang, and Yuqiang Ding . Phosphorescent Cyclometalated Iridium(III) Complexes Based on Amidate Ancillary Ligands: Their Synthesis and Photophysical Properties. Organometallics 2013, 32 (15) , 4130-4135. https://doi.org/10.1021/om400275m
    27. Moussa Zaarour, Anu Singh, Camille Latouche, J. A. Gareth Williams, Isabelle Ledoux-Rak, Joseph Zyss, Abdou Boucekkine, Hubert Le Bozec, Véronique Guerchais, Claudia Dragonetti, Alessia Colombo, Dominique Roberto, and Adriana Valore . Linear and Nonlinear Optical Properties of Tris-cyclometalated Phenylpyridine Ir(III) Complexes Incorporating π-Conjugated Substituents. Inorganic Chemistry 2013, 52 (14) , 7987-7994. https://doi.org/10.1021/ic400541e
    28. Thiago B. de Queiroz, Moema B. S. Botelho, Jesús M. Fernández-Hernández, Hellmut Eckert, Rodrigo Q. Albuquerque, and Andrea S. S. de Camargo . New Luminescent Host–Guest System Based on an Iridium(III) Complex: Design, Synthesis, and Theoretical–Experimental Spectroscopic Characterization. The Journal of Physical Chemistry C 2013, 117 (6) , 2966-2975. https://doi.org/10.1021/jp309873y
    29. Xiaolong Liu, Shanfei Pan, Junshi Wu, Yapei Wang, and Wanzhi Chen . A Planar π-Conjugated Naphthyridine-Based N-Heterocyclic Carbene Ligand and Its Derived Transition-Metal Complexes. Organometallics 2013, 32 (1) , 209-217. https://doi.org/10.1021/om3009876
    30. Emily E. Langdon-Jones, Andrew J. Hallett, Jack D. Routledge, David A. Crole, Benjamin D. Ward, James A. Platts, and Simon J. A. Pope . Using Substituted Cyclometalated Quinoxaline Ligands To Finely Tune the Luminescence Properties of Iridium(III) Complexes. Inorganic Chemistry 2013, 52 (1) , 448-456. https://doi.org/10.1021/ic301853t
    31. Kyle R. Schwartz, Raghu Chitta, Jon N. Bohnsack, Darren J. Ceckanowicz, Pere Miró, Christopher J. Cramer, and Kent R. Mann . Effect of Axially Projected Oligothiophene Pendants and Nitro-Functionalized Diimine Ligands on the Lowest Excited State in Cationic Ir(III) bis-Cyclometalates. Inorganic Chemistry 2012, 51 (9) , 5082-5094. https://doi.org/10.1021/ic202573y
    32. Nail M. Shavaleev, Filippo Monti, Rubén D. Costa, Rosario Scopelliti, Henk J. Bolink, Enrique Ortí, Gianluca Accorsi, Nicola Armaroli, Etienne Baranoff, Michael Grätzel, and Mohammad K. Nazeeruddin . Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes. Inorganic Chemistry 2012, 51 (4) , 2263-2271. https://doi.org/10.1021/ic202297h
    33. Vadapalli Chandrasekhar, Tanima Hajra, Jitendra K. Bera, S.M. Wahidur Rahaman, Nisa Satumtira, Oussama Elbjeirami, and Mohammad A. Omary . Ligand-Bridged Dinuclear Cyclometalated IrIII Complexes: From Metallamacrocycles to Discrete Dimers. Inorganic Chemistry 2012, 51 (3) , 1319-1329. https://doi.org/10.1021/ic2012952
    34. Rubén D. Costa, Filippo Monti, Gianluca Accorsi, Andrea Barbieri, Henk J. Bolink, Enrique Ortí, and Nicola Armaroli . Photophysical Properties of Charged Cyclometalated Ir(III) Complexes: A Joint Theoretical and Experimental Study. Inorganic Chemistry 2011, 50 (15) , 7229-7238. https://doi.org/10.1021/ic200820t
    35. Vincent Aubert, Lucie Ordronneau, Muriel Escadeillas, J. A. Gareth Williams, Abdou Boucekkine, Esther Coulaud, Claudia Dragonetti, Stefania Righetto, Dominique Roberto, Renato Ugo, Adriana Valore, Anu Singh, Joseph Zyss, Isabelle Ledoux-Rak, Hubert Le Bozec, and Véronique Guerchais . Linear and Nonlinear Optical Properties of Cationic Bipyridyl Iridium(III) Complexes: Tunable and Photoswitchable?. Inorganic Chemistry 2011, 50 (11) , 5027-5038. https://doi.org/10.1021/ic2002892
    36. Gihane Nasr, Audrey Guerlin, Frédéric Dumur, Stéphane A. Baudron, Eddy Dumas, Fabien Miomandre, Gilles Clavier, Michel Sliwa, and Cédric R. Mayer . Dithiolate-Appended Iridium(III) Complex with Dual Functions of Reducing and Capping Agent for the Design of Small-Sized Gold Nanoparticles. Journal of the American Chemical Society 2011, 133 (17) , 6501-6504. https://doi.org/10.1021/ja111384m
    37. Dustin M. Jenkins and Stefan Bernhard . Synthesis and Characterization of Luminescent Bis-Cyclometalated PlatinumIV Complexes. Inorganic Chemistry 2010, 49 (24) , 11297-11308. https://doi.org/10.1021/ic100761f
    38. Sébastien Ladouceur, Daniel Fortin, and Eli Zysman-Colman. Role of Substitution on the Photophysical Properties of 5,5′-Diaryl-2,2′-bipyridine (bpy*) in [Ir(ppy)2(bpy*)]PF6 Complexes: A Combined Experimental and Theoretical Study. Inorganic Chemistry 2010, 49 (12) , 5625-5641. https://doi.org/10.1021/ic100521t
    39. Kenneth Yin Zhang, Hua-Wei Liu, Tommy Tsz-Him Fong, Xian-Guang Chen and Kenneth Kam-Wing Lo. Luminescent Dendritic Cyclometalated Iridium(III) Polypyridine Complexes: Synthesis, Emission Behavior, and Biological Properties. Inorganic Chemistry 2010, 49 (12) , 5432-5443. https://doi.org/10.1021/ic902443e
    40. Siu-Kit Leung, Karen Ying Kwok, Kenneth Yin Zhang and Kenneth Kam-Wing Lo. Design of Luminescent Biotinylation Reagents Derived from Cyclometalated Iridium(III) and Rhodium(III) Bis(pyridylbenzaldehyde) Complexes. Inorganic Chemistry 2010, 49 (11) , 4984-4995. https://doi.org/10.1021/ic100092d
    41. Marco Bandini, Michele Bianchi, Giovanni Valenti, Fabio Piccinelli, Francesco Paolucci, Magda Monari, Achille Umani-Ronchi and Massimo Marcaccio. Electrochemiluminescent Functionalizable Cyclometalated Thiophene-Based Iridium(III) Complexes. Inorganic Chemistry 2010, 49 (4) , 1439-1448. https://doi.org/10.1021/ic901660m
    42. E. Margapoti, V. Shukla, A. Valore, A. Sharma, C. Dragonetti, C. C. Kitts, D. Roberto, M. Murgia, R. Ugo and M. Muccini . Excimer Emission in Single Layer Electroluminescent Devices Based on [Ir(4,5-diphenyl-2-methylthiazolo)2(5-methyl-1,10-phenanthroline)]+ [PF6]−. The Journal of Physical Chemistry C 2009, 113 (28) , 12517-12522. https://doi.org/10.1021/jp901927e
    43. Kenneth Yin Zhang and Kenneth Kam-Wing Lo. Synthesis, Properties, and Live-Cell Imaging Studies of Luminescent Cyclometalated Iridium(III) Polypyridine Complexes Containing Two or Three Biotin Pendants. Inorganic Chemistry 2009, 48 (13) , 6011-6025. https://doi.org/10.1021/ic900412n
    44. Stefano Stagni, Silvia Colella, Antonio Palazzi, Giovanni Valenti, Stefano Zacchini, Francesco Paolucci, Massimo Marcaccio, Rodrigo Q. Albuquerque and Luisa De Cola. Essential Role of the Ancillary Ligand in the Color Tuning of Iridium Tetrazolate Complexes. Inorganic Chemistry 2008, 47 (22) , 10509-10521. https://doi.org/10.1021/ic801157k
    45. Filippo De Angelis, Fabrizio Santoro, Mohammad K. Nazeruddin and Vincenzo Barone . Ab Initio Prediction of the Emission Color in Phosphorescent Iridium(III) Complexes for OLEDs. The Journal of Physical Chemistry B 2008, 112 (42) , 13181-13183. https://doi.org/10.1021/jp806519d
    46. Xin Gu, Teng Fei, Houyu Zhang, Hai Xu, Bing Yang, Yuguang Ma and Xiaodong Liu . Theoretical Studies of Blue-Emitting Iridium Complexes with Different Ancillary Ligands. The Journal of Physical Chemistry A 2008, 112 (36) , 8387-8393. https://doi.org/10.1021/jp8026429
    47. Luca Salassa, Claudio Garino, Andrea Albertino, Giorgio Volpi, Carlo Nervi, Roberto Gobetto and Kenneth I. Hardcastle. Computational and Spectroscopic Studies of New Rhenium(I) Complexes Containing Pyridylimidazo[1,5-a]pyridine Ligands: Charge Transfer and Dual Emission by Fine-Tuning of Excited States. Organometallics 2008, 27 (7) , 1427-1435. https://doi.org/10.1021/om701175z
    48. Katarzyna Choroba, Joanna Palion-Gazda, Mateusz Penkala, Patrycja Rawicka, Barbara Machura. Tunability of triplet excited states and photophysical behaviour of bis-cyclometalated iridium( iii ) complexes with imidazo[4,5- f ][1,10]phenanthroline. Dalton Transactions 2024, 53 (44) , 17934-17947. https://doi.org/10.1039/D4DT01996B
    49. Mario Prejanò, Tiziana Marino. Structural and electronic properties of 1,10-phenantroline derivatives in complex with Sm, Gd and Tm lanthanides: Insights from calculations. Inorganica Chimica Acta 2024, 570 , 122157. https://doi.org/10.1016/j.ica.2024.122157
    50. Tahmineh Hashemzadeh, Andrew J. Christofferson, Keith F. White, Peter J. Barnard. Experimental and theoretical studies of pH-responsive iridium( iii ) complexes of azole and N-heterocyclic carbene ligands. Dalton Transactions 2024, 53 (19) , 8478-8493. https://doi.org/10.1039/D3DT03766E
    51. Ya-Qiong Zhang, Yu Zhang, Guoping Zeng, Rong-Zhen Liao, Man Li. Mechanism of photocatalytic CO 2 reduction to HCO 2 H by a robust multifunctional iridium complex. Dalton Transactions 2024, 140 https://doi.org/10.1039/D3DT03329E
    52. Yu-Yi Ling, Ya-Jie Kong, Liang Hao, Zheng-Yin Pan, Zong-Wan Mao, Cai-Ping Tan. Photodegradation of carbonic anhydrase by iridium complexes for induction of immunogenic cell death under hypoxia. Inorganic Chemistry Frontiers 2023, 72 https://doi.org/10.1039/D3QI00376K
    53. Jianhua Dong, Yangming Ding, Yuyang Zhou. Synthesis and comparison study of electrochemiluminescence from mononuclear and corresponding heterodinuclear Ir–Ru complexes via an amide bond as a bridge. Dalton Transactions 2022, 51 (39) , 15031-15039. https://doi.org/10.1039/D2DT02524H
    54. Zhongxian Fan, Jiaen Xie, Tumpa Sadhukhan, Chao Liang, Can Huang, Wenqing Li, Tingxuan Li, Pingyu Zhang, Samya Banerjee, Krishnan Raghavachari, Huaiyi Huang. Highly Efficient Ir(III)‐Coumarin Photo‐Redox Catalyst for Synergetic Multi‐Mode Cancer Photo‐Therapy. Chemistry – A European Journal 2022, 28 (3) https://doi.org/10.1002/chem.202103346
    55. Yu Chen, Yuan Zhang, Yang Shen, Yao Yao, Yuanyuan Zhao, Yong-Qing Qiu. A computational study on second-order nonlinear optical properties based on bis-cyclometalated Ir( iii ) complexes: redox and substituent effects. New Journal of Chemistry 2021, 45 (24) , 10725-10734. https://doi.org/10.1039/D1NJ01766G
    56. Guodong Li, Chun Wu, Dik-Lung Ma, Chung-Hang Leung. Drug screening strategies using metal-based luminescent probes. TrAC Trends in Analytical Chemistry 2021, 139 , 116270. https://doi.org/10.1016/j.trac.2021.116270
    57. Rebeca Arevalo, Ramón López, Larry R. Falvello, Lucía Riera, Julio Perez. Building C(sp 3 ) Molecular Complexity on 2,2′‐Bipyridine and 1,10‐Phenanthroline in Rhenium Tricarbonyl Complexes. Chemistry – A European Journal 2021, 27 (1) , 379-389. https://doi.org/10.1002/chem.202003814
    58. S. Taboukhat, N. Kichou, J.-L. Fillaut, O. Alévêque, K. Waszkowska, A. Zawadzka, A. El-Ghayoury, A. Migalska-Zalas, B. Sahraoui. Transition metals induce control of enhanced NLO properties of functionalized organometallic complexes under laser modulations. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-71769-2
    59. Hui Li, Shan Liu, Levi Lystrom, Svetlana Kilina, Wenfang Sun. Improving triplet excited-state absorption and lifetime of cationic iridium(III) complexes by extending π-conjugation of the 2-(2-quinolinyl)quinoxaline ligand. Journal of Photochemistry and Photobiology A: Chemistry 2020, 400 , 112609. https://doi.org/10.1016/j.jphotochem.2020.112609
    60. Ying‐Hao Lo, François P. Gabbai. Cyclometalated Iridium Bipyridine Complexes with Peripheral Antimony Substituents. Zeitschrift für anorganische und allgemeine Chemie 2020, 646 (13) , 636-641. https://doi.org/10.1002/zaac.201900186
    61. Alessia Colombo, Claudia Dragonetti, Véronique Guerchais, Claus Hierlinger, Eli Zysman-Colman, Dominique Roberto. A trip in the nonlinear optical properties of iridium complexes. Coordination Chemistry Reviews 2020, 414 , 213293. https://doi.org/10.1016/j.ccr.2020.213293
    62. Sili Yi, Zhen Lu, Yandai Lin, Jun Wang, Ziwen Qiao, Rongkai Shen, Jin Zhang, Linxi Hou. A novel mitochondria-targeted phosphorescence probe for hypochlorite ions detection in living cells. Talanta 2020, 209 , 120516. https://doi.org/10.1016/j.talanta.2019.120516
    63. Anna Kamecka, Olga Grochowska, Andrzej Kapturkiewicz. Luminescent Ir(III) complexes with deprotonated 1-methyl-2-(2′-pyridyl)pyridinium ligand and 1,10-phenanthroline derivatives. Inorganic Chemistry Communications 2019, 108 , 107547. https://doi.org/10.1016/j.inoche.2019.107547
    64. Alessia Colombo, Mattia Fontani, Claudia Dragonetti, Dominique Roberto, J. A. Gareth Williams, Rossella Scotto di Perrotolo, Francesca Casagrande, Sara Barozzi, Simona Polo. A Highly Luminescent Tetrahydrocurcumin Ir III Complex with Remarkable Photoactivated Anticancer Activity. Chemistry – A European Journal 2019, 25 (33) , 7948-7952. https://doi.org/10.1002/chem.201901527
    65. Jia Wang, Senqiang Zhu, Rui Liu, Meng Tang, Huan Su, Xiao Cai, Hongjun Zhu. Cyclometalated iridium(III) complex containing indolinyl-based phenanthroline ligand: Synthesis, structure and photophysical properties. Inorganica Chimica Acta 2019, 491 , 132-137. https://doi.org/10.1016/j.ica.2019.04.009
    66. Jochen Ortmeyer, Yannik Vukadinovic, Adam Neuba, Ulrich Flörke, Gerald Henkel. Combining a Phenanthroline Moiety with Peralkylated Guanidine Residues: Homometallic Cu II , Ni II and Zn II Halide Complexes with Site‐Differentiating Janus Head Ligands. European Journal of Inorganic Chemistry 2018, 2018 (48) , 5176-5190. https://doi.org/10.1002/ejic.201800905
    67. Cristina Momblona, Cathrin D. Ertl, Antonio Pertegás, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft. Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[ d ]thiazole-containing iridium( iii ) complexes for stable light-emitting electrochemical cells. Journal of Materials Chemistry C 2018, 6 (46) , 12679-12688. https://doi.org/10.1039/C8TC04727H
    68. Marta Penconi, Marco Cazzaniga, Sagar Kesarkar, Clara Baldoli, Patrizia R. Mussini, Davide Ceresoli, Alberto Bossi. β-Diketonate ancillary ligands in heteroleptic iridium complexes: a balance between synthetic advantages and photophysical troubles. Photochemical & Photobiological Sciences 2018, 17 (9) , 1169-1178. https://doi.org/10.1039/c8pp00052b
    69. Marion Graf, Yvonne Gothe, Daniel Siegmund, Nils Metzler-Nolte, Karlheinz Sünkel. Synthesis and characterization of cyclometallated rhodium(III) and iridium(III) compounds with antiproliferative activities in the nanomolar range. Inorganica Chimica Acta 2018, 471 , 265-271. https://doi.org/10.1016/j.ica.2017.11.003
    70. Wanhe Wang, Chun Wu, Chao Yang, Guodong Li, Quan-Bin Han, Shengnan Li, Simon Ming-Yuen Lee, Chung-Hang Leung, Dik-Lung Ma. A dual-functional luminescent probe for imaging H2S in living zebrafish and discrimination hypoxic cells from normoxic cells. Sensors and Actuators B: Chemical 2018, 255 , 1953-1959. https://doi.org/10.1016/j.snb.2017.08.222
    71. Marta Penconi, Marco Cazzaniga, Sagar Kesarkar, Clara Baldoli, Patrizia R. Mussini, Davide Ceresoli, Alberto Bossi. β-Diketonate ancillary ligands in heteroleptic iridium complexes: a balance between synthetic advantages and photophysical troubles. Photochemical & Photobiological Sciences 2018, 17 (9) , 1169-1178. https://doi.org/10.1039/C8PP00052B
    72. Jochen Ortmeyer, Yannik Vukadinovic, Adam Neuba, Hans Egold, Ulrich Flörke, Gerald Henkel. Combining a Phenanthroline Moiety with Two Peralkylated Guanidine Residues: Janus Head Pro‐Ligands. European Journal of Organic Chemistry 2017, 2017 (40) , 6085-6095. https://doi.org/10.1002/ejoc.201700711
    73. V. Thamilarasan, V. Sethuraman, P. Karunakaran, M. Sethupathi, P. Manisankar, C. Selvaraju, N. Sengottuvelan. Synthesis, physicochemical properties, thermal analysis and biological application of phosphorescent cationic iridium(III) complexes. Inorganica Chimica Acta 2017, 467 , 264-275. https://doi.org/10.1016/j.ica.2017.07.061
    74. Adewale Adeloye, Malose Mphahlele, Abolanle Adekunle, Lydia Rhyman, Ponnadurai Ramasami. Spectroscopic, Electrochemical and DFT Studies of Phosphorescent Homoleptic Cyclometalated Iridium(III) Complexes Based on Substituted 4-Fluorophenylvinyl- and 4-Methoxyphenylvinylquinolines. Materials 2017, 10 (10) , 1061. https://doi.org/10.3390/ma10101061
    75. Marion Graf, Yvonne Gothe, Nils Metzler-Nolte, Rafał Czerwieniec, Karlheinz Sünkel. Bis-cyclometalated rhodium- and iridium-complexes with the 4,4′-dichloro-2,2′-bipyridine ligand. Evaluation of their photophysical properties and biological activity. Inorganica Chimica Acta 2017, 463 , 36-43. https://doi.org/10.1016/j.ica.2017.04.006
    76. Si-Pei Ye, Yi-Bi Xie, Ke-Yan Zhao, Yang Liu, Jian Yang, De-Jiang Li, Long Wang. Synthesis, structures, photophysical and catalytic properties of benzothienyl iridium(III) complexes. Journal of Chemical Research 2017, 41 (5) , 287-290. https://doi.org/10.3184/174751917X14931195075562
    77. Yi-Ming Jing, Yue Zhao, You-Xuan Zheng. Photoluminescence and electroluminescence of iridium( iii ) complexes with 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine and 1,3,4-oxadiazole/1,3,4-thiadiazole derivative ligands. Dalton Transactions 2017, 46 (3) , 845-853. https://doi.org/10.1039/C6DT03919G
    78. Siew San Tan, Susumu Yanagisawa, Kouji Inagaki, Yoshitada Morikawa, Mohammad B. Kassim. Augmented pH-sensitivity absorbance of a ruthenium( ii ) bis(bipyridine) complex with elongation of the conjugated ligands: an experimental and theoretical investigation. Physical Chemistry Chemical Physics 2017, 19 (37) , 25734-25745. https://doi.org/10.1039/C7CP04268J
    79. Hanah Na, Ayan Maity, Thomas S. Teets. Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ancillary ligands. Dalton Transactions 2017, 46 (15) , 5008-5016. https://doi.org/10.1039/C7DT00694B
    80. Yi-Ming Jing, You-Xuan Zheng. Photoluminescence and electroluminescence of an iridium( iii ) complex with 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine and 2-(5-phenyl-1,3,4-thiadiazol-2-yl)phenol ligands. New Journal of Chemistry 2017, 41 (8) , 3029-3035. https://doi.org/10.1039/C7NJ00163K
    81. Julia Ponce, Juan Aragó, Ignacio Vayá, Jorge Gómez Magenti, Sergio Tatay, Enrique Ortí, Eugenio Coronado. Photophysical Properties of Oligo­(phenylene ethynylene) Iridium(III) Complexes Functionalized with Metal‐Anchoring Groups. European Journal of Inorganic Chemistry 2016, 2016 (12) , 1851-1859. https://doi.org/10.1002/ejic.201501409
    82. Wenfang Sun, Chengkui Pei, Taotao Lu, Peng Cui, Zhongguo Li, Christopher McCleese, Yu Fang, Svetlana Kilina, Yinglin Song, Clemens Burda. Reverse saturable absorbing cationic iridium( iii ) complexes bearing the 2-(2-quinolinyl)quinoxaline ligand: effects of different cyclometalating ligands on linear and nonlinear absorption. Journal of Materials Chemistry C 2016, 4 (22) , 5059-5072. https://doi.org/10.1039/C6TC00710D
    83. Jun Ohata, Farrukh Vohidov, Amirhossein Aliyan, Kewei Huang, Angel A. Martí, Zachary T. Ball. Luminogenic iridium azide complexes. Chemical Communications 2015, 51 (82) , 15192-15195. https://doi.org/10.1039/C5CC06099K
    84. Guang-Wei Zhao, Yong-Xu Hu, Hai-Jun Chi, Yan Dong, Guo-Yong Xiao, Xiao Li, Dong-Yu Zhang. High efficient OLEDs based on novel Re(I) complexes with phenanthroimidazole derivatives. Optical Materials 2015, 47 , 173-179. https://doi.org/10.1016/j.optmat.2015.05.013
    85. Modi Wang, Bingyong He, Lihua Lu, Chung-Hang Leung, Jean-Louis Mergny, Dik-Lung Ma. Label-free luminescent detection of LMP1 gene deletion using an intermolecular G-quadruplex-based switch-on probe. Biosensors and Bioelectronics 2015, 70 , 338-344. https://doi.org/10.1016/j.bios.2015.03.047
    86. Xuan Liu, Song Zhang, Yi-Ming Jin, Guang-Zhao Lu, Liang Jiang, Xiao Liang, Qiu-Lei Xu, You-Xuan Zheng. Syntheses, crystal structure and photophysical property of iridium complexes with 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as ancillary ligands. Journal of Organometallic Chemistry 2015, 785 , 11-18. https://doi.org/10.1016/j.jorganchem.2015.02.025
    87. Alessia Colombo, Claudia Dragonetti, Dominique Roberto, Adriana Valore, Camilla Ferrante, Ilaria Fortunati, A. Lorena Picone, Francesco Todescato, J. A. Gareth Williams. Two-photon absorption properties and 1 O 2 generation ability of Ir complexes: an unexpected large cross section of [Ir(CO) 2 Cl(4-(para-di-n-butylaminostyryl)pyridine)]. Dalton Transactions 2015, 44 (35) , 15712-15720. https://doi.org/10.1039/C5DT00552C
    88. Kassio Papi Silva Zanoni, Rodolfo Lopes Coppo, Ronaldo Costa Amaral, Neyde Yukie Murakami Iha. Ir( iii ) complexes designed for light-emitting devices: beyond the luminescence color array. Dalton Transactions 2015, 44 (33) , 14559-14573. https://doi.org/10.1039/C5DT01644D
    89. Kassio P. S. Zanoni, Akitaka Ito, Neyde Y. Murakami Iha. Molecular-engineered [Ir(Fppy) 2 (Mepic)] towards efficient blue-emission. New Journal of Chemistry 2015, 39 (8) , 6367-6376. https://doi.org/10.1039/C5NJ01352F
    90. Sara Tortorella, Gabriele Marotta, Gabriele Cruciani, Filippo De Angelis. Quantitative structure–property relationship modeling of ruthenium sensitizers for solar cells applications: novel tools for designing promising candidates. RSC Advances 2015, 5 (30) , 23865-23873. https://doi.org/10.1039/C5RA01906K
    91. Loredana Ricciardi, Teresa Fina Mastropietro, Mauro Ghedini, Massimo La Deda, Elisabeta Ildyko Szerb. Ionic-pair effect on the phosphorescence of ionic iridium(III) complexes. Journal of Organometallic Chemistry 2014, 772-773 , 307-313. https://doi.org/10.1016/j.jorganchem.2014.09.034
    92. Huaijun Tang, Liying Wei, Guoyun Meng, Yanhu Li, Guanze Wang, Furui Yang, Hongbin Wu, Wei Yang, Yong Cao. Polymer light-emitting diodes based on cationic iridium(III) complexes with a 1,10-phenanthroline derivative containing a bipolar carbazole–oxadiazole unit as the auxiliary ligand. Optical Materials 2014, 37 , 679-687. https://doi.org/10.1016/j.optmat.2014.08.013
    93. Marion Graf, Yvonne Gothe, Nils Metzler-Nolte, Rafał Czerwieniec, Karlheinz Sünkel. Photophysical and biological characterization of new cationic cyclometalated M(III) complexes of rhodium and iridium. Journal of Organometallic Chemistry 2014, 765 , 46-52. https://doi.org/10.1016/j.jorganchem.2014.04.031
    94. Parvej Alam, Maheswararao Karanam, Debashree Bandyopadhyay, Angshuman Roy Choudhury, Inamur Rahaman Laskar. Aggregation‐Induced Emission Activity in Iridium(III) Diimine Complexes: Investigations of Their Vapochromic Properties. European Journal of Inorganic Chemistry 2014, 2014 (23) , 3710-3719. https://doi.org/10.1002/ejic.201402222
    95. Kassio Papi Silva Zanoni, Mario Sabro Sanematsu, Neyde Yukie Murakami Iha. Photophysical characterization of [Ir(ppy)2(dmb)][PF6] towards application in light-emitting electrochemical cells (LECs). Inorganic Chemistry Communications 2014, 43 , 162-164. https://doi.org/10.1016/j.inoche.2014.02.010
    96. Peng Li, Guo‐Gang Shan, Hong‐Tao Cao, Dong‐Xia Zhu, Zhong‐Min Su, Rukkiat Jitchati, Martin R. Bryce. Intramolecular π Stacking in Cationic Iridium(III) Complexes with Phenyl‐Functionalized Cyclometalated Ligands: Synthesis, Structure, Photophysical Properties, and Theoretical Studies. European Journal of Inorganic Chemistry 2014, 2014 (14) , 2376-2382. https://doi.org/10.1002/ejic.201400007
    97. Xiao-Hong Shang, Yu-Qi Liu, Juan-Juan Su, Godefroid Gahungu, Xiao-Chun Qu, Zhi-Jian Wu. Theoretical study on the electronic structures and optical properties of blue-green and blue phosphorescent iridium(III) complexes with tetraphenylimidodiphosphinate ligand. International Journal of Quantum Chemistry 2014, 114 (3) , 183-191. https://doi.org/10.1002/qua.24540
    98. Hashem Shahroosvand, Parisa Abbasi, Alireza Faghih, Ezeddin Mohajerani, Mohammad Janghouri, Malek Mahmoudi. A new class of color-tunable electroluminescent ruthenium( ii ) phenanthroline emitters. RSC Adv. 2014, 4 (3) , 1150-1154. https://doi.org/10.1039/C3RA43900C
    99. Kun Chen, Michael Schmittel. A triple-channel lab-on-a-molecule for triple-anion quantification using an iridium( iii )–imidazolium conjugate. Chem. Commun. 2014, 50 (43) , 5756-5759. https://doi.org/10.1039/C4CC01421A
    100. Shengqiang Fan, Xu Zong, Paul E. Shaw, Xin Wang, Yan Geng, Arthur R. G. Smith, Paul L. Burn, Lianzhou Wang, Shih-Chun Lo. Energetic requirements of iridium( iii ) complex based photosensitisers in photocatalytic hydrogen generation. Phys. Chem. Chem. Phys. 2014, 16 (39) , 21577-21585. https://doi.org/10.1039/C4CP02997F
    Load all citations

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2007, 46, 21, 8533–8547
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic700414z
    Published September 21, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    2343

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.