ACS Publications. Most Trusted. Most Cited. Most Read
Selective Oxidation in Supercritical Carbon Dioxide Using Clean Oxidants
My Activity

Figure 1Loading Img
    Article

    Selective Oxidation in Supercritical Carbon Dioxide Using Clean Oxidants
    Click to copy article linkArticle link copied!

    View Author Information
    U.S. Environmental Protection Agency, ORD, National Risk Management Research Laboratory, Cincinnati, Ohio 45268
    Other Access Options

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2000, 39, 12, 4858–4864
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie000175h
    Published November 3, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catalysts, a metal complex {cis-[Fe(dmp)2(H2O)2] (CF3SO3)2} (dmp = 2,9-dimethyl-1,10-phenanthroline), 0.5% platinum γ-alumina, and 0.5% palladium γ-alumina, were used at a pressure of 200 bar, at temperatures from 60 to 150 °C, and for 3−18 h for partial oxidation of organic substrates. The metal−oxo catalyst used gave as high as 3.9% conversion of cycloxene to its oxides and epoxides, with the major products being the ketone and alcohol. The oxidation of cyclohexene strongly depended on the concentration of oxygen, whereas length of reaction (3−18 h) and temperature (60−150 °C) were shown to be less significant on the conversion and selectivity of the reaction. Oxidation of cyclohexene over Pd and Pt/Al2O3 catalysts resulted in a mixture of dehydrogenation and oxygenated products.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Telephone:  513-569-7739. Fax:  513-569-7677. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 33 publications.

    1. Pradip Munshi, Eric J. Beckman and Sudhakar Padmanabhan . Combined Influence of Fluorinated Solvent and Base in Friedel−Crafts Reaction of Toluene and CO2. Industrial & Engineering Chemistry Research 2010, 49 (14) , 6678-6682. https://doi.org/10.1021/ie100533c
    2. Tsunetake Seki and Alfons Baiker. Catalytic Oxidations in Dense Carbon Dioxide. Chemical Reviews 2009, 109 (6) , 2409-2454. https://doi.org/10.1021/cr8004058
    3. Maria C. Esmelindro, Octávio A. C. Antunes, Elton Franceschi, Gustavo R. Borges, Marcos L. Corazza, J. Vladimir Oliveira, Wilson Linhares and Cláudio Dariva . Phase Behavior of the Reactant and Products of Cyclohexane Oxidation in Compressed CO2. Journal of Chemical & Engineering Data 2008, 53 (9) , 2050-2055. https://doi.org/10.1021/je800109s
    4. Ruizhen Zhang,, Zhangfeng Qin,, Guofu Wang,, Mei Dong,, Xianglin Hou, and, Jianguo Wang. Critical Properties of the Reacting Mixture in the Selective Oxidation of Cyclohexane by Oxygen in the Presence of Carbon Dioxide. Journal of Chemical & Engineering Data 2005, 50 (4) , 1414-1418. https://doi.org/10.1021/je0500882
    5. Jesse L. Kuiper,, Patricia A. Shapley, and, Christopher M. Rayner. Synthesis, Structure, and Reactivity of the Ruthenium(VI)−Nickel(II) Complex (dppe)Ni(μ3-S)2{Ru(N)Me2}2. Organometallics 2004, 23 (16) , 3814-3818. https://doi.org/10.1021/om034373v
    6. Unnikrishnan R. Pillai and, Endalkachew Sahle-Demessie. Hydrogenation of 4-Oxoisophorone over a Pd/Al2O3 Catalyst under Supercritical CO2 Medium. Industrial & Engineering Chemistry Research 2003, 42 (26) , 6688-6696. https://doi.org/10.1021/ie030571a
    7. Naaser A. Y. Abduh, Abdullah A. Al-Kahtani, Mabrook S. Amer, Tahani Saad Algarni, Abdel-Basit Al-Odayni. Fabricated Gamma-Alumina-Supported Zinc Ferrite Catalyst for Solvent-Free Aerobic Oxidation of Cyclic Ethers to Lactones. Molecules 2023, 28 (20) , 7192. https://doi.org/10.3390/molecules28207192
    8. Nuno Reis Conceição, Beatriz P. Nobre, Atash V. Gurbanov, António M. F. Palavra, M. Fátima C. Guedes da Silva, Kamran T. Mahmudov, Armando J. L. Pombeiro. Peroxidative Oxidation of Cyclohexane Using 3d Metal Complexes with Hydrazone-Derived Ligands as Catalysts: Exploring (Un)Conventional Conditions. Inorganics 2023, 11 (2) , 62. https://doi.org/10.3390/inorganics11020062
    9. Nuno Reis Conceição, Beatriz P. Nobre, Anirban Karmakar, António M.F. Palavra, Kamran T. Mahmudov, M. Fátima C. Guedes da Silva, Armando J.L. Pombeiro. Knoevenagel condensation reaction in supercritical carbon dioxide medium using a Zn(II) coordination polymer as catalyst. Inorganica Chimica Acta 2022, 538 , 120981. https://doi.org/10.1016/j.ica.2022.120981
    10. Sonia López, Jesús Manuel García-Vargas, María Teresa García, Juan Francisco Rodríguez, Ignacio Gracia, María Jesús Ramos. Copper-Containing Catalysts for Azide–Alkyne Cycloaddition in Supercritical CO2. Catalysts 2022, 12 (2) , 194. https://doi.org/10.3390/catal12020194
    11. Praskovya L. Pavlova, Andrey V. Minakov, Dmitriy V. Platonov, Vladimir A. Zhigarev, Dmitriy V. Guzei. Supercritical Fluid Application in the Oil and Gas Industry: A Comprehensive Review. Sustainability 2022, 14 (2) , 698. https://doi.org/10.3390/su14020698
    12. I. A. Makaryan, A. Yu. Kostin, I. V. Sedov. Application of Supercritical Fluid Technologies in Chemical and Petrochemical Industries (Review). Petroleum Chemistry 2020, 60 (3) , 244-254. https://doi.org/10.1134/S0965544120030135
    13. Manas Sutradhar, Ana P.C. Ribeiro, M. Fátima C. Guedes da Silva, António M.F. Palavra, Armando J.L. Pombeiro. Application of molybdenum complexes for the oxidation of cyclohexane in acetonitrile, ionic liquid and supercritical CO2 media, a comparative study. Molecular Catalysis 2020, 482 , 100356. https://doi.org/10.1016/j.mcat.2017.10.026
    14. Hossein Ghafuri, Ghazaleh Jafari, Afsaneh Rashidizadeh, Faranak Manteghi. Co2+ immobilized on highly ordered mesoporous graphitic carbon nitride (ompg-C3N4/Co2+) as an efficient and recyclable heterogeneous catalyst for one-pot tandem selective photo-oxidation/Knoevenagel condensation. Molecular Catalysis 2019, 475 , 110491. https://doi.org/10.1016/j.mcat.2019.110491
    15. Ana P. C. Ribeiro, Elisabete C. B. A. Alegria, António Palavra, Armando J. L. Pombeiro. Alkane Functionalization under Unconventional Conditions: in Ionic Liquid, in Supercritical CO 2 , and Microwave Assisted. 2019, 523-537. https://doi.org/10.1002/9781119379256.ch24
    16. Ana Ribeiro, Luísa Martins, Elisabete Alegria, Inês Matias, Tiago Duarte, Armando Pombeiro. Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, Ionic Liquid and/or Supercritical CO2 Media: A Comparative Study. Catalysts 2017, 7 (8) , 230. https://doi.org/10.3390/catal7080230
    17. Nasrin Zohreh, Maryam Tavakolizadeh, Seyed Hassan Hosseini, Ali Pourjavadi, Craig Bennett. Tungstate-loaded triazine-based magnetic poly(Bis-imidazolium ionic liquid): An effective bi-functional catalyst for tandem selective oxidation/Knoevenagel condensation in water. Polymer 2017, 112 , 342-350. https://doi.org/10.1016/j.polymer.2017.02.028
    18. Hui Ling Ding, Lan Ping Zeng. Highly Efficient Oxidation of Toluene to Benzoic Acid Catalyzed by N-Hydroxyphthalimide and Oxime in PEG -1000-Based Dicationic Ionic Liquid. Advanced Materials Research 2013, 709 , 74-79. https://doi.org/10.4028/www.scientific.net/AMR.709.74
    19. Endalkachew Sahle-Demessie, Venu Gopal Devulapelli, Ashraf Aly Hassan. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst. Catalysts 2012, 2 (1) , 85-100. https://doi.org/10.3390/catal2010085
    20. Jun Jiang, Yuanyuan Jing, Yaofa Zhang, Na Zhang, Jiemin Jiao, Weimin Zhu, Huazhen Xue, Yongli Zong, Guanyu Yang. Highly Efficient Oxidation of Toluene to Benzoic Acid Catalyzed by Manganese Dioxide and N-Hydroxyphthalimide. Catalysis Letters 2011, 141 (4) , 544-548. https://doi.org/10.1007/s10562-010-0507-9
    21. Bing Wu, Rick Huang, Manoranjan Sahu, Xueyang Feng, Pratim Biswas, Yinjie J. Tang. Bacterial responses to Cu-doped TiO2 nanoparticles. Science of The Total Environment 2010, 408 (7) , 1755-1758. https://doi.org/10.1016/j.scitotenv.2009.11.004
    22. Xueguang Wang, Hajime Kawanami, Sudhir E. Dapurkar, Natarajan S. Venkataramanan, Maya Chatterjee, Toshirou Yokoyama, Yutaka Ikushima. Selective oxidation of alcohols to aldehydes and ketones over TiO2-supported gold nanoparticles in supercritical carbon dioxide with molecular oxygen. Applied Catalysis A: General 2008, 349 (1-2) , 86-90. https://doi.org/10.1016/j.apcata.2008.07.007
    23. Takafumi Sato, Ayako Watanabe, Norihito Hiyoshi, Masayuki Shirai, Naotsugu Itoh. Partial oxidation kinetics of m-hydroxybenzyl alcohol with noble metal catalysts in supercritical carbon dioxide. The Journal of Supercritical Fluids 2007, 43 (2) , 295-302. https://doi.org/10.1016/j.supflu.2007.06.009
    24. Xueguang Wang, Natarajan S. Venkataramanan, Hajime Kawanami, Yutaka Ikushima. Selective oxidation of styrene to acetophenone over supported Au–Pd catalyst with hydrogen peroxide in supercritical carbon dioxide. Green Chemistry 2007, 9 (12) , 1352. https://doi.org/10.1039/b703458j
    25. Shik Chi Tsang, Jie Zhu, Kai Man K. Yu. Selective catalytic oxidation of alkylaromatic molecules by nanosize water droplets containing Co 2 + species in supercritical carbon dioxide fluid. Journal of Experimental Nanoscience 2006, 1 (4) , 435-456. https://doi.org/10.1080/17458080601067682
    26. Shik Chi Tsang, Jie Zhu, Kai Man K. Yu. A New Oxidation Catalyst System using Fluorous Cobalt(II) Species in Water-supercritical Carbon dioxide (C–H free environment). Catalysis Letters 2006, 106 (3-4) , 123-126. https://doi.org/10.1007/s10562-005-9618-0
    27. Ruizhen Zhang, Zhangfeng Qin, Mei Dong, Guofu Wang, Jianguo Wang. Selective oxidation of cyclohexane in supercritical carbon dioxide over CoAPO-5 molecular sieves. Catalysis Today 2005, 110 (3-4) , 351-356. https://doi.org/10.1016/j.cattod.2005.09.033
    28. Ben Walsh, Jason R. Hyde, Peter Licence, Martyn Poliakoff. The automation of continuous reactions in supercritical CO2: the acid-catalysed etherification of short chain alcohols. Green Chemistry 2005, 7 (6) , 456. https://doi.org/10.1039/b413890b
    29. B Kerler, R.E Robinson, A.S Borovik, B Subramaniam. Application of CO2-expanded solvents in heterogeneous catalysis: a case study. Applied Catalysis B: Environmental 2004, 49 (2) , 91-98. https://doi.org/10.1016/j.apcatb.2003.11.012
    30. Jie Zhu, Shik Chi Tsang. Micellar catalysis for partial oxidation of toluene to benzoic acid in supercritical CO2: effects of fluorinated surfactants. Catalysis Today 2003, 81 (4) , 673-679. https://doi.org/10.1016/S0920-5861(03)00165-2
    31. Unnikrishnan R. Pillai, Endalkachew Sahle-Demessie, Douglas Young. Maleic anhydride hydrogenation over Pd/Al2O3 catalyst under supercritical CO2 medium. Applied Catalysis B: Environmental 2003, 43 (2) , 131-138. https://doi.org/10.1016/S0926-3373(02)00305-3
    32. Jan-Dierk Grunwaldt, Roland Wandeler, Alfons Baiker. Supercritical Fluids in Catalysis: Opportunities of In Situ Spectroscopic Studies and Monitoring Phase Behavior. Catalysis Reviews 2003, 45 (1) , 1-96. https://doi.org/10.1081/CR-120015738
    33. Unnikrishnan R. Pillai, Endalkachew Sahle-Demessie, Rajender S. Varma. Environmentally friendlier organic transformations on mineral supports under non-traditional conditions. J. Mater. Chem. 2002, 12 (11) , 3199-3207. https://doi.org/10.1039/B205916A

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2000, 39, 12, 4858–4864
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie000175h
    Published November 3, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    641

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.