ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

How to Design Fractional Crystallization Processes

Cite this: Ind. Eng. Chem. 1970, 62, 12, 6–33
Publication Date (Print):December 1, 1970
https://doi.org/10.1021/ie50732a004
    ACS Legacy Archive

    Article Views

    1408

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (3 MB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 37 publications.

    1. Pascal Böwer, Thomas Teusch, Suresh Ramsuroop, Jürgen Rarey, and Deresh Ramjugernath . Development of a Computational Tool for the Analysis and Synthesis of Crystallization Processes. Organic Process Research & Development 2018, 22 (2) , 219-227. https://doi.org/10.1021/acs.oprd.7b00364
    2. Xiaoyan Ji,, Xin Feng,, Xiaohua Lu,, Luzheng Zhang,, Yanru Wang, and, Jun Shi, , Yunda Liu. A Generalized Method for the Solid−Liquid Equilibrium Stage and Its Application in Process Simulation. Industrial & Engineering Chemistry Research 2002, 41 (8) , 2040-2046. https://doi.org/10.1021/ie0004545
    3. Gautham Parthasarathy and, Russell F. Dunn, , Mahmoud M. El-Halwagi. Development of Heat-Integrated Evaporation and Crystallization Networks for Ternary Wastewater Systems. 1. Design of the Separation System. Industrial & Engineering Chemistry Research 2001, 40 (13) , 2827-2841. https://doi.org/10.1021/ie000831d
    4. Gautham Parthasarathy, , Russell F. Dunn, , Mahmoud M. El-Halwagi. Development of Heat-Integrated Evaporation and Crystallization Networks for Ternary Wastewater Systems. 2. Interception Task Identification for the Separation and Allocation Network. Industrial & Engineering Chemistry Research 2001, 40 (13) , 2842-2856. https://doi.org/10.1021/ie0008934
    5. Marcos A. B. Cesar and, Ka M. Ng. Improving Product Recovery in Fractional Crystallization Processes:  Retrofit of an Adipic Acid Plant. Industrial & Engineering Chemistry Research 1999, 38 (3) , 823-832. https://doi.org/10.1021/ie9803671
    6. Luis A. Cisternas, , Ross E. Swaney. Separation System Synthesis for Fractional Crystallization from Solution Using a Network Flow Model. Industrial & Engineering Chemistry Research 1998, 37 (7) , 2761-2769. https://doi.org/10.1021/ie970335y
    7. Caleb Stetson, Denis Prodius, Hyeonseok Lee, Christopher Orme, Byron White, Harry Rollins, Daniel Ginosar, Ikenna C. Nlebedim, Aaron D. Wilson. Solvent-driven fractional crystallization for atom-efficient separation of metal salts from permanent magnet leachates. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31499-7
    8. Victoria Muñoz-Iglesias, Laura J. Bonales, Olga Prieto-Ballesteros. pH and Salinity Evolution of Europa's Brines: Raman Spectroscopy Study of Fractional Precipitation at 1 and 300 Bar. Astrobiology 2013, 13 (8) , 693-702. https://doi.org/10.1089/ast.2012.0900
    9. Mirko Skiborowski, Andreas Harwardt, Wolfgang Marquardt. Conceptual Design of Distillation-Based Hybrid Separation Processes. Annual Review of Chemical and Biomolecular Engineering 2013, 4 (1) , 45-68. https://doi.org/10.1146/annurev-chembioeng-061010-114129
    10. Sattar Ghader, Seyed Soheil Mansouri, Vahid Shadravan, Ali Farsi. Representation of Material Balance for Fractional Crystallization of Reciprocal Salt Pair Systems: KNO3 Production Case Study. Journal of Applied Sciences 2010, 10 (23) , 2989-2997. https://doi.org/10.3923/jas.2010.2989.2997
    11. Richard Lakerveld, Herman J.M. Kramer, Peter J. Jansens, Johan Grievink. The application of a task-based concept for the design of innovative industrial crystallizers. Computers & Chemical Engineering 2009, 33 (10) , 1692-1700. https://doi.org/10.1016/j.compchemeng.2009.01.008
    12. Jorge A. Lovera, Teófilo A. Graber, Héctor R. Galleguillos. Correlation of solubilities for the system with the Pitzer model at 15, 25, 50, and. Calphad 2009, 33 (2) , 388-392. https://doi.org/10.1016/j.calphad.2008.11.002
    13. Chang Liu, Yuanhui Ji, Yang Bai, Fangqin Cheng, Xiaohua Lu. Formation of porous crystals by coupling of dissolution and nucleation process in fractional crystallization. Fluid Phase Equilibria 2007, 261 (1-2) , 300-305. https://doi.org/10.1016/j.fluid.2007.07.052
    14. Luis A. Cisternas, Cristian M. Vásquez, Ross E. Swaney. On the design of crystallization‐based separation processes: Review and extension. AIChE Journal 2006, 52 (5) , 1754-1769. https://doi.org/10.1002/aic.10768
    15. Carlos Alberto Guerrero Fajardo, Sandra Escobar C, Diego Ramírez N. Managing salinity in water associated with petrol industry production. Ingeniería e Investigación 2005, 25 (3) , 27-33. https://doi.org/10.15446/ing.investig.v25n3.14669
    16. Gautham Parthasarathy, Russell F Dunn. Graphical strategies for design of evaporation crystallization networks for environmental wastewater applications. Advances in Environmental Research 2004, 8 (2) , 247-265. https://doi.org/10.1016/S1093-0191(02)00128-4
    17. Luis A. Cisternas, Mauricio A. Torres, María J. Godoy, Ross E. Swaney. Design of separation schemes for fractional crystallization of metathetical salts. AIChE Journal 2003, 49 (7) , 1731-1742. https://doi.org/10.1002/aic.690490712
    18. Irene Papaeconomou, Sten Bay Jørgensen, Rafiqul Gani, Joan Cordiner. Synthesis, design and operational modelling of batch processes: An integrated approach. 2003, 245-250. https://doi.org/10.1016/S1570-7946(03)80122-0
    19. Kiyoteru Takano, Rafiqul Gani, Takeshi Ishikawa, Petr Kolar. Conceptual design and analysis methodology for crystallization processes with electrolyte systems. Fluid Phase Equilibria 2002, 194-197 , 783-803. https://doi.org/10.1016/S0378-3812(01)00705-1
    20. Richard C. Bennett. Crystallizer selection and design. 2002, 115-140. https://doi.org/10.1016/B978-075067012-8/50007-0
    21. . References. 2001, 536-575. https://doi.org/10.1016/B978-075064833-2/50013-9
    22. Ketan D. Samant, David A. Berry, Ka M. Ng. Representation of high‐dimensional, molecular solid‐liquid phase diagrams. AIChE Journal 2000, 46 (12) , 2435-2455. https://doi.org/10.1002/aic.690461212
    23. Christianto Wibowo, Ka M. Ng. Unified approach for synthesizing crystallization‐based separation processes. AIChE Journal 2000, 46 (7) , 1400-1421. https://doi.org/10.1002/aic.690460713
    24. Kiyoteru Takano, Rafiqul Gani, Takeshi Ishikawa, Petr Kolar. Computer aided design and analysis of separation processes with electrolyte systems. Computers & Chemical Engineering 2000, 24 (2-7) , 645-651. https://doi.org/10.1016/S0098-1354(00)00383-5
    25. K. Takano, R. Gani, T. Ishikawa, P. Kolar. Integrated System for Design and Analysis of Separation Processes with Electrolyte Systems. Chemical Engineering Research and Design 2000, 78 (5) , 763-772. https://doi.org/10.1205/026387600527770
    26. Luis A. Cisternas. Optimal design of crystallization‐based separation schemes. AIChE Journal 1999, 45 (7) , 1477-1487. https://doi.org/10.1002/aic.690450711
    27. Kiyoteru Takano, Rafiqul Gani, Takeshi Ishikawa, Petr Kolar. Integrated system for design and analysis of industrial processes with electrolyte system. Computers & Chemical Engineering 1999, 23 , S121-S124. https://doi.org/10.1016/S0098-1354(99)80031-3
    28. L.A. Cisternas. On the synthesis of inorganic chemical and metallurgical processes, review and extension. Minerals Engineering 1999, 12 (1) , 15-41. https://doi.org/10.1016/S0892-6875(98)00117-4
    29. Kaj Thomsen, Peter Rasmussen, Rafiqul Gani. Simulation and optimization of fractional crystallization processes. Chemical Engineering Science 1998, 53 (8) , 1551-1564. https://doi.org/10.1016/S0009-2509(97)00447-8
    30. David A. Berry, Ka M. Ng. Separation of quaternary conjugate salt systems by fractional crystallization. AIChE Journal 1996, 42 (8) , 2162-2174. https://doi.org/10.1002/aic.690420808
    31. Susan R. Dye, Ka M. Ng. Fractional crystallization: Design alternatives and tradeoffs. AIChE Journal 1995, 41 (11) , 2427-2438. https://doi.org/10.1002/aic.690411109
    32. Phillip C. Wankat. Crystallization and Precipitation from Solution-Equilibrium Analysis. 1994, 19-79. https://doi.org/10.1007/978-94-011-1342-7_2
    33. Henrik Nicolaisen, Peter Rasmussen, Jens M. Sørensen. Correlation and prediction of mineral solubilities in the reciprocal salt system (Na+, K+)(Cl−, SO2−4)−H2O at 0–100°C. Chemical Engineering Science 1993, 48 (18) , 3149-3158. https://doi.org/10.1016/0009-2509(93)80201-Z
    34. S. Rajagopal, K.M. Ng, J.M. Douglas. A hierarchical procedure for the conceptual design of solids processes. Computers & Chemical Engineering 1992, 16 (7) , 675-689. https://doi.org/10.1016/0098-1354(92)80016-3
    35. Phillip C. Wankat. Crystallization and Precipitation from Solution-Equilibrium Analysis. 1990, 19-79. https://doi.org/10.1007/978-94-010-9724-6_2
    36. H. A. Correa, J. H. Vera. On the thermodynamics of concentrated strong electrolytes aqueous solutions the system NaNO 3 —NaCl—H 2 O. The Canadian Journal of Chemical Engineering 1975, 53 (2) , 204-210. https://doi.org/10.1002/cjce.5450530209
    37. C. Liu, Y. Ji, Q. Shao, X. Feng, X. Lu. Thermodynamic Analysis for Synthesis of Advanced Materials. , 193-270. https://doi.org/10.1007/978-3-540-69116-7_5

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect