Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 37 publications.
- Pascal Böwer, Thomas Teusch, Suresh Ramsuroop, Jürgen Rarey, and Deresh Ramjugernath . Development of a Computational Tool for the Analysis and Synthesis of Crystallization Processes. Organic Process Research & Development 2018, 22
(2)
, 219-227. https://doi.org/10.1021/acs.oprd.7b00364
- Xiaoyan Ji,, Xin Feng,, Xiaohua Lu,, Luzheng Zhang,, Yanru Wang, and, Jun Shi, , Yunda Liu. A Generalized Method for the Solid−Liquid Equilibrium Stage and Its Application in Process Simulation. Industrial & Engineering Chemistry Research 2002, 41
(8)
, 2040-2046. https://doi.org/10.1021/ie0004545
- Gautham Parthasarathy and, Russell F. Dunn, , Mahmoud M. El-Halwagi. Development of Heat-Integrated Evaporation and Crystallization Networks for Ternary Wastewater Systems. 1. Design of the Separation System. Industrial & Engineering Chemistry Research 2001, 40
(13)
, 2827-2841. https://doi.org/10.1021/ie000831d
- Gautham Parthasarathy, , Russell F. Dunn, , Mahmoud M. El-Halwagi. Development of Heat-Integrated Evaporation and Crystallization Networks for Ternary Wastewater Systems. 2. Interception Task Identification for the Separation and Allocation Network. Industrial & Engineering Chemistry Research 2001, 40
(13)
, 2842-2856. https://doi.org/10.1021/ie0008934
- Marcos A. B. Cesar and, Ka M. Ng. Improving Product Recovery in Fractional Crystallization Processes: Retrofit of an Adipic Acid Plant. Industrial & Engineering Chemistry Research 1999, 38
(3)
, 823-832. https://doi.org/10.1021/ie9803671
- Luis A. Cisternas, , Ross E. Swaney. Separation System Synthesis for Fractional Crystallization from Solution Using a Network Flow Model. Industrial & Engineering Chemistry Research 1998, 37
(7)
, 2761-2769. https://doi.org/10.1021/ie970335y
- Caleb Stetson, Denis Prodius, Hyeonseok Lee, Christopher Orme, Byron White, Harry Rollins, Daniel Ginosar, Ikenna C. Nlebedim, Aaron D. Wilson. Solvent-driven fractional crystallization for atom-efficient separation of metal salts from permanent magnet leachates. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-31499-7
- Victoria Muñoz-Iglesias, Laura J. Bonales, Olga Prieto-Ballesteros. pH and Salinity Evolution of Europa's Brines: Raman Spectroscopy Study of Fractional Precipitation at 1 and 300 Bar. Astrobiology 2013, 13
(8)
, 693-702. https://doi.org/10.1089/ast.2012.0900
- Mirko Skiborowski, Andreas Harwardt, Wolfgang Marquardt. Conceptual Design of Distillation-Based Hybrid Separation Processes. Annual Review of Chemical and Biomolecular Engineering 2013, 4
(1)
, 45-68. https://doi.org/10.1146/annurev-chembioeng-061010-114129
- Sattar Ghader, Seyed Soheil Mansouri, Vahid Shadravan, Ali Farsi. Representation of Material Balance for Fractional Crystallization of Reciprocal
Salt Pair Systems: KNO3 Production Case Study. Journal of Applied Sciences 2010, 10
(23)
, 2989-2997. https://doi.org/10.3923/jas.2010.2989.2997
- Richard Lakerveld, Herman J.M. Kramer, Peter J. Jansens, Johan Grievink. The application of a task-based concept for the design of innovative industrial crystallizers. Computers & Chemical Engineering 2009, 33
(10)
, 1692-1700. https://doi.org/10.1016/j.compchemeng.2009.01.008
- Jorge A. Lovera, Teófilo A. Graber, Héctor R. Galleguillos. Correlation of solubilities for the system with the Pitzer model at 15, 25, 50, and. Calphad 2009, 33
(2)
, 388-392. https://doi.org/10.1016/j.calphad.2008.11.002
- Chang Liu, Yuanhui Ji, Yang Bai, Fangqin Cheng, Xiaohua Lu. Formation of porous crystals by coupling of dissolution and nucleation process in fractional crystallization. Fluid Phase Equilibria 2007, 261
(1-2)
, 300-305. https://doi.org/10.1016/j.fluid.2007.07.052
- Luis A. Cisternas, Cristian M. Vásquez, Ross E. Swaney. On the design of crystallization‐based separation processes: Review and extension. AIChE Journal 2006, 52
(5)
, 1754-1769. https://doi.org/10.1002/aic.10768
- Carlos Alberto Guerrero Fajardo, Sandra Escobar C, Diego Ramírez N. Managing salinity in water associated with petrol industry production. Ingeniería e Investigación 2005, 25
(3)
, 27-33. https://doi.org/10.15446/ing.investig.v25n3.14669
- Gautham Parthasarathy, Russell F Dunn. Graphical strategies for design of evaporation crystallization networks for environmental wastewater applications. Advances in Environmental Research 2004, 8
(2)
, 247-265. https://doi.org/10.1016/S1093-0191(02)00128-4
- Luis A. Cisternas, Mauricio A. Torres, María J. Godoy, Ross E. Swaney. Design of separation schemes for fractional crystallization of metathetical salts. AIChE Journal 2003, 49
(7)
, 1731-1742. https://doi.org/10.1002/aic.690490712
- Irene Papaeconomou, Sten Bay Jørgensen, Rafiqul Gani, Joan Cordiner. Synthesis, design and operational modelling of batch processes: An integrated approach. 2003, 245-250. https://doi.org/10.1016/S1570-7946(03)80122-0
- Kiyoteru Takano, Rafiqul Gani, Takeshi Ishikawa, Petr Kolar. Conceptual design and analysis methodology for crystallization processes with electrolyte systems. Fluid Phase Equilibria 2002, 194-197 , 783-803. https://doi.org/10.1016/S0378-3812(01)00705-1
- Richard C. Bennett. Crystallizer selection and design. 2002, 115-140. https://doi.org/10.1016/B978-075067012-8/50007-0
- . References. 2001, 536-575. https://doi.org/10.1016/B978-075064833-2/50013-9
- Ketan D. Samant, David A. Berry, Ka M. Ng. Representation of high‐dimensional, molecular solid‐liquid phase diagrams. AIChE Journal 2000, 46
(12)
, 2435-2455. https://doi.org/10.1002/aic.690461212
- Christianto Wibowo, Ka M. Ng. Unified approach for synthesizing crystallization‐based separation processes. AIChE Journal 2000, 46
(7)
, 1400-1421. https://doi.org/10.1002/aic.690460713
- Kiyoteru Takano, Rafiqul Gani, Takeshi Ishikawa, Petr Kolar. Computer aided design and analysis of separation processes with electrolyte systems. Computers & Chemical Engineering 2000, 24
(2-7)
, 645-651. https://doi.org/10.1016/S0098-1354(00)00383-5
- K. Takano, R. Gani, T. Ishikawa, P. Kolar. Integrated System for Design and Analysis of Separation Processes with Electrolyte Systems. Chemical Engineering Research and Design 2000, 78
(5)
, 763-772. https://doi.org/10.1205/026387600527770
- Luis A. Cisternas. Optimal design of crystallization‐based separation schemes. AIChE Journal 1999, 45
(7)
, 1477-1487. https://doi.org/10.1002/aic.690450711
- Kiyoteru Takano, Rafiqul Gani, Takeshi Ishikawa, Petr Kolar. Integrated system for design and analysis of industrial processes with electrolyte system. Computers & Chemical Engineering 1999, 23 , S121-S124. https://doi.org/10.1016/S0098-1354(99)80031-3
- L.A. Cisternas. On the synthesis of inorganic chemical and metallurgical processes, review and extension. Minerals Engineering 1999, 12
(1)
, 15-41. https://doi.org/10.1016/S0892-6875(98)00117-4
- Kaj Thomsen, Peter Rasmussen, Rafiqul Gani. Simulation and optimization of fractional crystallization processes. Chemical Engineering Science 1998, 53
(8)
, 1551-1564. https://doi.org/10.1016/S0009-2509(97)00447-8
- David A. Berry, Ka M. Ng. Separation of quaternary conjugate salt systems by fractional crystallization. AIChE Journal 1996, 42
(8)
, 2162-2174. https://doi.org/10.1002/aic.690420808
- Susan R. Dye, Ka M. Ng. Fractional crystallization: Design alternatives and tradeoffs. AIChE Journal 1995, 41
(11)
, 2427-2438. https://doi.org/10.1002/aic.690411109
- Phillip C. Wankat. Crystallization and Precipitation from Solution-Equilibrium Analysis. 1994, 19-79. https://doi.org/10.1007/978-94-011-1342-7_2
- Henrik Nicolaisen, Peter Rasmussen, Jens M. Sørensen. Correlation and prediction of mineral solubilities in the reciprocal salt system (Na+, K+)(Cl−, SO2−4)−H2O at 0–100°C. Chemical Engineering Science 1993, 48
(18)
, 3149-3158. https://doi.org/10.1016/0009-2509(93)80201-Z
- S. Rajagopal, K.M. Ng, J.M. Douglas. A hierarchical procedure for the conceptual design of solids processes. Computers & Chemical Engineering 1992, 16
(7)
, 675-689. https://doi.org/10.1016/0098-1354(92)80016-3
- Phillip C. Wankat. Crystallization and Precipitation from Solution-Equilibrium Analysis. 1990, 19-79. https://doi.org/10.1007/978-94-010-9724-6_2
- H. A. Correa, J. H. Vera. On the thermodynamics of concentrated strong electrolytes aqueous solutions the system NaNO
3
—NaCl—H
2
O. The Canadian Journal of Chemical Engineering 1975, 53
(2)
, 204-210. https://doi.org/10.1002/cjce.5450530209
- C. Liu, Y. Ji, Q. Shao, X. Feng, X. Lu. Thermodynamic Analysis for Synthesis of Advanced Materials. , 193-270. https://doi.org/10.1007/978-3-540-69116-7_5