ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS)

View Author Information
Dipartimento di Ingegneria Chimica, dell'Ambiente e delle Materie Prime, Università di Trieste, Piazzale Europa 1, I-34127 Trieste TS, Italy
Istituto di Impianti Chimici, Università di Padova, via Marzolo 9, I-35131 Padova PD, Italy
Cite this: Ind. Eng. Chem. Res. 1997, 36, 12, 5507–5515
Publication Date (Web):December 1, 1997
https://doi.org/10.1021/ie970376u
Copyright © 1997 American Chemical Society

    Article Views

    1284

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Supercritical fluids are being increasingly used as media for fine particles formation:  the most important techniques are the rapid expansion of a supercritical solution process (RESS), the particles from gas-saturated solutions process (PGSS), and the supercritical antisolvent recrystallization process (SAS). To verify the feasibility of such processes, and to optimize the choice of operative variables, it is important to understand the phase behavior of the systems involved. To perform a thermodynamic analysis, an equation of state has to be used to take into account the effects of pressure; moreover, a solid phase is involved, and the heavy component is usually a high molecular weight and poorly characterized compound. In this work the Peng−Robinson equation of state with classical mixing rules and one or two binary interaction parameters are used. The fugacity of the heavy component in the solid phase is calculated by means of a subcooled liquid reference state:  only heat of fusion and melting temperature of the heavy component are needed. The aim of this work is to develop a thermodynamic model which allows to calculate solid−liquid−vapor (S−L−V) equilibria of binary (RESS and PGSS) and ternary (SAS) systems. In regard to binary systems, the knowledge of PUCEP and TUCEP allows the calculation of binary interaction parameters:  then the PT trace of S−L−V equilibrium and the solubility of the heavy component in the light supercritical fluid can be reasonably well predicted. For ternary systems available S−L−V and S−L1−L2−V equilibrium data are well correlated, so that an analysis on the effect of operating variables (P and T) on the SAS process can be performed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Author to whom correspondence should be addressed. Tel:  +39 (0)40 6763433. Fax:  +39 (0)40 569823. E-mail:  [email protected].

     Abstract published in Advance ACS Abstracts, October 15, 1997.

    Cited By

    This article is cited by 129 publications.

    1. Raj Kumar, Sameer V. Dalvi, Prem Felix Siril. Nanoparticle-Based Drugs and Formulations: Current Status and Emerging Applications. ACS Applied Nano Materials 2020, 3 (6) , 4944-4961. https://doi.org/10.1021/acsanm.0c00606
    2. Ilias K. Nikolaidis, Varvara S. Samoili, Epaminondas C. Voutsas, Ioannis G. Economou. Solid–Liquid–Gas Equilibrium of Methane–n-Alkane Binary Mixtures. Industrial & Engineering Chemistry Research 2018, 57 (25) , 8566-8583. https://doi.org/10.1021/acs.iecr.8b01339
    3. Francisco J. Verónico-Sánchez, Octavio Elizalde-Solis, Abel Zúñiga-Moreno, Luis E. Camacho-Camacho, and Christian Bouchot . Experimental Procedure for Measuring Solid–Liquid–Gas Equilibrium in Carbon Dioxide + Solute. Journal of Chemical & Engineering Data 2016, 61 (10) , 3448-3456. https://doi.org/10.1021/acs.jced.6b00348
    4. Daniel E. Rosner and Manuel Arias-Zugasti . Idealized Mathematical Model for Pharmaceutical Powder “Micronization” Using Compressed Gas Antisolvent (Re-)Precipitation (GASP): Predicted Performance for the Model Ternary System: Phenanthrene/Toluene/CO2. Industrial & Engineering Chemistry Research 2015, 54 (42) , 10383-10400. https://doi.org/10.1021/acs.iecr.5b01155
    5. Zihao Yang, Mingyuan Li, Bo Peng, Meiqin Lin, and Zhaoxia Dong . Dispersion Property of CO2 in Oil. 2: Volume Expansion of CO2 + Organic Liquid at Near-Critical and Supercritical Conditions of CO2. Journal of Chemical & Engineering Data 2012, 57 (4) , 1305-1311. https://doi.org/10.1021/je300090z
    6. Zihao Yang, Mingyuan Li, Bo Peng, Meiqing Lin, and Zhaoxia Dong . Dispersion Property of CO2 in Oil. 1. Volume Expansion of CO2 + Alkane at near Critical and Supercritical Condition of CO2. Journal of Chemical & Engineering Data 2012, 57 (3) , 882-889. https://doi.org/10.1021/je201114g
    7. Yueqiang Zhao, Weiwei Liu and Zhengming Wu. Solubility Model of Solid Solute in Supercritical Fluid Solvent Based on UNIFAC. Industrial & Engineering Chemistry Research 2010, 49 (12) , 5952-5957. https://doi.org/10.1021/ie100656v
    8. Hirohisa Uchida and Tetsuo Kamijo . Measurement and Correlation of the Solid−Liquid−Gas Equilibria for Carbon Dioxide + Octadecanoic Acid (Stearic Acid) and Carbon Dioxide + 1-Octadecanol (Stearyl Alcohol) Systems. Journal of Chemical & Engineering Data 2010, 55 (2) , 925-929. https://doi.org/10.1021/je9005272
    9. E. Nemati Lay. Measurement and Correlation of Bubble Point Pressure in (CO2 + C6H6), (CO2 + CH3C6H5), (CO2 + C6H14), and (CO2 + C7H16) at Temperatures from (293.15 to 313.15) K. Journal of Chemical & Engineering Data 2010, 55 (1) , 223-227. https://doi.org/10.1021/je900312z
    10. Jindui Hong, Dan Hua, Xia Wang, Hongtao Wang and Jun Li. Solid−Liquid−Gas Equilibrium of the Ternaries Ibuprofen + Myristic Acid + CO2 and Ibuprofen + Tripalmitin + CO2. Journal of Chemical & Engineering Data 2010, 55 (1) , 297-302. https://doi.org/10.1021/je900342a
    11. Jindui Hong, Hui Chen and Jun Li, Henrique A. Matos and Edmundo Gomes de Azevedo. Calculation of Solid−Liquid−Gas Equilibrium for Binary Systems Containing CO2. Industrial & Engineering Chemistry Research 2009, 48 (9) , 4579-4586. https://doi.org/10.1021/ie801179a
    12. E. Nemati Lay,, V. Taghikhani, and, C. Ghotbi. Measurement and Correlation of CO2 Solubility in the Systems of CO2 + Toluene, CO2 + Benzene, and CO2 + n-Hexane at Near-Critical and Supercritical Conditions. Journal of Chemical & Engineering Data 2006, 51 (6) , 2197-2200. https://doi.org/10.1021/je0602972
    13. Benny Harjo and, Ka Ming Ng, , Christianto Wibowo. Synthesis of Supercritical Crystallization Processes. Industrial & Engineering Chemistry Research 2005, 44 (22) , 8248-8259. https://doi.org/10.1021/ie050791j
    14. Mamata Mukhopadhyay and, Sameer V. Dalvi. New Prediction Method for Ternary Solid−Liquid−Vapor Equilibrium from Binary Data. Journal of Chemical & Engineering Data 2005, 50 (4) , 1283-1289. https://doi.org/10.1021/je050028w
    15. Hirohisa Uchida,, Mio Yoshida,, Yoshiyuki Kojima,, Yohei Yamazoe, and, Masakuni Matsuoka. Measurement and Correlation of the Solid−Liquid−Gas Equilibria for the Carbon Dioxide + S-(+)-Ibuprofen and Carbon Dioxide + RS-(±)-Ibuprofen Systems. Journal of Chemical & Engineering Data 2005, 50 (1) , 11-15. https://doi.org/10.1021/je034228o
    16. Cheng Lin,, Gerhard Muhrer, and, Marco Mazzotti, , Bala Subramaniam. Vapor−Liquid Mass Transfer during Gas Antisolvent Recrystallization:  Modeling and Experiments. Industrial & Engineering Chemistry Research 2003, 42 (10) , 2171-2182. https://doi.org/10.1021/ie020784k
    17. Gerhard Muhrer,, Cheng Lin, and, Marco Mazzotti. Modeling the Gas Antisolvent Recrystallization Process. Industrial & Engineering Chemistry Research 2002, 41 (15) , 3566-3579. https://doi.org/10.1021/ie020070+
    18. Nora Ventosa,, Santiago Sala, and, Jaume Veciana, , Joaquim Torres and, Joan Llibre. Depressurization of an Expanded Liquid Organic Solution (DELOS):  A New Procedure for Obtaining Submicron- or Micron-Sized Crystalline Particles. Crystal Growth & Design 2001, 1 (4) , 299-303. https://doi.org/10.1021/cg0155090
    19. Zhimin Liu,, Guanying Yang,, Lei Ge, and, Buxing Han. Solubility of o- and p-Aminobenzoic Acid in Ethanol + Carbon Dioxide at 308.15 K to 318.15 K and 15 bar to 85 bar. Journal of Chemical & Engineering Data 2000, 45 (6) , 1179-1181. https://doi.org/10.1021/je000186h
    20. Martin Müller and, Ulrich Meier, , Alwin Kessler and, Marco Mazzotti. Experimental Study of the Effect of Process Parameters in the Recrystallization of an Organic Compound Using Compressed Carbon Dioxide as Antisolvent. Industrial & Engineering Chemistry Research 2000, 39 (7) , 2260-2268. https://doi.org/10.1021/ie990828y
    21. Michele Lora,, Alberto Bertucco, and, Ireneo Kikic. Simulation of the Semicontinuous Supercritical Antisolvent Recrystallization Process. Industrial & Engineering Chemistry Research 2000, 39 (5) , 1487-1496. https://doi.org/10.1021/ie990685f
    22. Amandeep Kaur Braich, Gurkirat Kaur. Nanostructured materials for the development of bio-based plastics for food applications. 2024, 23-50. https://doi.org/10.1016/B978-0-443-18967-8.00005-0
    23. Gholamhossein Sodeifian, Chieh-Ming Hsieh, Amirmuhammad Tabibzadeh, Hsu-Chen Wang, Maryam Arbab Nooshabadi. Solubility of palbociclib in supercritical carbon dioxide from experimental measurement and Peng–Robinson equation of state. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-29228-1
    24. Mehvish Habib, Kulsum Jan, Khalid Bashir. Fortification of Bioactive Components for the Development of Functional Foods. 2023, 381-401. https://doi.org/10.1007/978-981-19-2366-1_22
    25. Balaganesan Mariappan, S. Prakash, Ambika Binesh. Probiotic nanoparticles for food. 2023, 307-338. https://doi.org/10.1016/B978-0-323-90261-8.00008-0
    26. Nadia Esfandiari, Seyed Ali Sajadian. CO2 utilization as gas antisolvent for the pharmaceutical micro and nanoparticle production: A review. Arabian Journal of Chemistry 2022, 15 (10) , 104164. https://doi.org/10.1016/j.arabjc.2022.104164
    27. Gholamhossein Sodeifian, Chieh-Ming Hsieh, Reza Derakhsheshpour, Yu-Ming Chen, Fariba Razmimanesh. Measurement and modeling of metoclopramide hydrochloride (anti-emetic drug) solubility in supercritical carbon dioxide. Arabian Journal of Chemistry 2022, 15 (7) , 103876. https://doi.org/10.1016/j.arabjc.2022.103876
    28. Michael Türk. Particle synthesis by rapid expansion of supercritical solutions (RESS): Current state, further perspectives and needs. Journal of Aerosol Science 2022, 161 , 105950. https://doi.org/10.1016/j.jaerosci.2021.105950
    29. Rakshita Chaudhary, Nisha Gaur, Batul Diwan. Nanoencapsulation for production of fermented foods and pigments. 2022, 237-251. https://doi.org/10.1016/B978-0-323-91229-7.00013-1
    30. Mirko D’Auria, Miriam Willger, David Piña, Nora Ventosa, Andreas S. Braeuer. Pressure drop particle precipitation from a quasi-incompressible, ternary and liquid mixture. The Journal of Supercritical Fluids 2021, 175 , 105301. https://doi.org/10.1016/j.supflu.2021.105301
    31. Vassilis Koulocheris, Anthoula Plakia, Vasiliki Louli, Eleni Panteli, Epaminondas Voutsas. Calculating the chemical and phase equilibria of mercury in natural gas. Fluid Phase Equilibria 2021, 544-545 , 113089. https://doi.org/10.1016/j.fluid.2021.113089
    32. Shin-Wei Wang, Shih-Yu Chang, Chieh-Ming Hsieh. Measurement and modeling of solubility of gliclazide (hypoglycemic drug) and captopril (antihypertension drug) in supercritical carbon dioxide. The Journal of Supercritical Fluids 2021, 174 , 105244. https://doi.org/10.1016/j.supflu.2021.105244
    33. Harsh Kumar, Kanchan Bhardwaj, Natália Cruz-Martins, Eugenie Nepovimova, Patrik Oleksak, Daljeet Singh Dhanjal, Sonali Bhardwaj, Reena Singh, Chirag Chopra, Rachna Verma, Prem Parkash Chauhan, Dinesh Kumar, Kamil Kuča. Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review. Molecules 2021, 26 (11) , 3447. https://doi.org/10.3390/molecules26113447
    34. Gholamhossein Sodeifian, Seyed Mojtaba Hazaveie, Fatemeh Sodeifian. Determination of Galantamine solubility (an anti-alzheimer drug) in supercritical carbon dioxide (CO2): Experimental correlation and thermodynamic modeling. Journal of Molecular Liquids 2021, 330 , 115695. https://doi.org/10.1016/j.molliq.2021.115695
    35. Maria Eugenia Villegas, Victor Aredo, Kayque Julio Egg Asevedo, Rodrigo Vinicius Lourenço, Reinaldo Camino Bazito, Alessandra Lopes Oliveira. Commercial Starch Behavior When Impregnated with Food Additives by Moderate Temperature Supercritical CO 2 Processing. Starch - Stärke 2020, 72 (11-12) https://doi.org/10.1002/star.201900231
    36. Zong-Zhe Cai, Hsin-Hao Liang, Wei-Lin Chen, Shiang-Tai Lin, Chieh-Ming Hsieh. First-principles prediction of solid solute solubility in supercritical carbon dioxide using PR+COSMOSAC EOS. Fluid Phase Equilibria 2020, 522 , 112755. https://doi.org/10.1016/j.fluid.2020.112755
    37. Luis C.S. Nobre, Samuel Santos, António M.F. Palavra, Mário J.F. Calvete, Carlos A. Nieto de Castro, Beatriz P. Nobre. Supercritical antisolvent precipitation of calcium acetate from eggshells. The Journal of Supercritical Fluids 2020, 163 , 104862. https://doi.org/10.1016/j.supflu.2020.104862
    38. Zong-Zhe Cai, Chieh-Ming Hsieh. Prediction of solid solute solubility in supercritical carbon dioxide with and without organic cosolvents from PSRK EOS. The Journal of Supercritical Fluids 2020, 158 , 104735. https://doi.org/10.1016/j.supflu.2019.104735
    39. Yueqiang Zhao, Weibing Wang, Weiwei Liu, Jing Zhu, Xiaoqin Pei. Density-based UNIFAC model for solubility prediction of solid solutes in supercritical fluids. Fluid Phase Equilibria 2020, 506 , 112376. https://doi.org/10.1016/j.fluid.2019.112376
    40. Željko Knez, Milica Pantić, Darija Cör, Zoran Novak, Maša Knez Hrnčič. Are supercritical fluids solvents for the future?. Chemical Engineering and Processing - Process Intensification 2019, 141 , 107532. https://doi.org/10.1016/j.cep.2019.107532
    41. Luís Padrela, Miguel A. Rodrigues, Andreia Duarte, Ana M.A. Dias, Mara E.M. Braga, Hermínio C. de Sousa. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – A comprehensive review. Advanced Drug Delivery Reviews 2018, 131 , 22-78. https://doi.org/10.1016/j.addr.2018.07.010
    42. Chong-Yi Chen, Li-Hsin Wang, Chieh-Ming Hsieh, Shiang-Tai Lin. Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide + organic compounds from approaches based on the COSMO-SAC model. The Journal of Supercritical Fluids 2018, 133 , 318-329. https://doi.org/10.1016/j.supflu.2017.08.008
    43. Chen Ye, Hong Chi. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Materials Science and Engineering: C 2018, 83 , 233-246. https://doi.org/10.1016/j.msec.2017.10.003
    44. Tomasz Blicharski, Anna Oniszczuk. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chemistry 2017, 15 (1) , 34-45. https://doi.org/10.1515/chem-2017-0005
    45. Yi-Hsiu Ting, Chieh-Ming Hsieh. Prediction of solid solute solubility in supercritical carbon dioxide with organic cosolvents from the PR+COSMOSAC equation of state. Fluid Phase Equilibria 2017, 431 , 48-57. https://doi.org/10.1016/j.fluid.2016.10.008
    46. Ángel Martín, María José Cocero. Supercritical Fluids. 2016, 1-28. https://doi.org/10.1002/0471238961.1921160504092415.a01.pub3
    47. Eva Brglez Mojzer, Maša Knez Hrnčič, Mojca Škerget, Željko Knez, Urban Bren. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21 (7) , 901. https://doi.org/10.3390/molecules21070901
    48. Cristina Gutiérrez, Juan Francisco Rodríguez, Ignacio Gracia, Antonio de Lucas, M. Teresa García. Optimization of a High Pressure CO 2 Antisolvent Process for the Recycling of Polystyrene Wastes. Polymer-Plastics Technology and Engineering 2016, 55 (4) , 335-342. https://doi.org/10.1080/03602559.2015.1098676
    49. José Sierra-Pallares, Ashwin Raghavan, Ahmed F. Ghoniem. Computational study of organic solvent–CO2 mixing in convective supercritical environment under laminar conditions: Impact of enthalpy of mixing. The Journal of Supercritical Fluids 2016, 109 , 109-123. https://doi.org/10.1016/j.supflu.2015.11.007
    50. Kenji Mishima, Masatoshi Honjo, Tanjina Sharmin, Shota Ito, Ryo Kawakami, Takafumi Kato, Makoto Misumi, Tadashi Suetsugu, Hideaki Orii, Hiroyuki Kawano, Keiichi Irie, Kazunori Sano, Kenichi Mishima, Takunori Harada, Mikio Ouchi. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide. Pharmaceutical Development and Technology 2016, 20 , 1-12. https://doi.org/10.3109/10837450.2015.1049707
    51. Tiziana Fornari, Roumiana P. Stateva. Thermophysical Properties of Pure Substances in the Context of Sustainable High Pressure Food Processes Modelling. 2015, 117-152. https://doi.org/10.1007/978-3-319-10611-3_4
    52. Zihao Yang, Mingyuan Li, Bo Peng, Meiqin Lin, Zhaoxia Dong, Yong Ling. Interfacial Tension of CO2 and Organic Liquid under High Pressure and Temperature. Chinese Journal of Chemical Engineering 2014, 22 (11-12) , 1302-1306. https://doi.org/10.1016/j.cjche.2014.09.042
    53. A. Tabernero, S.A.B. Vieira de Melo, R. Mammucari, E.M. Martín del Valle, N.R. Foster. Modelling solubility of solid active principle ingredients in sc-CO2 with and without cosolvents: A comparative assessment of semiempirical models based on Chrastil's equation and its modifications. The Journal of Supercritical Fluids 2014, 93 , 91-102. https://doi.org/10.1016/j.supflu.2013.11.017
    54. Scott M. Paap, Kurt Frey, Gregory R. Johnson, Jefferson W. Tester. Solubility of benzyl methacrylate/methacrylic acid copolymers in carbon dioxide-expanded acetone and correlation with the PC-SAFT equation of state. Fluid Phase Equilibria 2014, 375 , 115-123. https://doi.org/10.1016/j.fluid.2014.05.001
    55. C. Gutiérrez, J.F. Rodríguez, I. Gracia, A. de Lucas, M.T. García. Determination of the high-pressure phase equilibria of Polystyrene/p-Cymene in presence of CO2. The Journal of Supercritical Fluids 2014, 92 , 288-298. https://doi.org/10.1016/j.supflu.2014.05.022
    56. James R. Falconer, Jingyuan Wen, Sara Zargar-Shoshtari, John J. Chen, Mohammed Farid, Stephen J. Tallon, Raid G. Alany. Preparation and characterization of progesterone dispersions using supercritical carbon dioxide. Drug Development and Industrial Pharmacy 2014, 40 (4) , 458-469. https://doi.org/10.3109/03639045.2013.768630
    57. Hadi Baseri, Mohammad Nader Lotfollahi. Effects of expansion parameters on characteristics of gemfibrozil powder produced by rapid expansion of supercritical solution process. Powder Technology 2014, 253 , 744-750. https://doi.org/10.1016/j.powtec.2013.12.046
    58. Yoshihiro Takebayashi, Kiwamu Sue, Takeshi Furuya, Yukiya Hakuta, Satoshi Yoda. Near-infrared spectroscopic solubility measurement for thermodynamic analysis of melting point depressions of biphenyl and naphthalene under high-pressure CO2. The Journal of Supercritical Fluids 2014, 86 , 91-99. https://doi.org/10.1016/j.supflu.2013.12.007
    59. Zihao Yang, Mingyuan Li, Bo Peng, Meiqin Lin, Zhaoxia Dong. Aggregation of CO 2 and Organic Liquid Molecules at Near Critical and Supercritical Condition of CO 2. Journal of Dispersion Science and Technology 2014, 35 (2) , 168-174. https://doi.org/10.1080/01932691.2013.778781
    60. Zihao Yang, Mingyuan Li, Bo Peng, Meiqin Lin, Zhaoxia Dong. Dispersion Property of CO 2 in Oil. Part 3: Aggregation of CO 2 Molecule in Organic Liquid at Near Critical and Supercritical Condition of CO 2. Journal of Dispersion Science and Technology 2014, 35 (1) , 143-149. https://doi.org/10.1080/01932691.2012.737743
    61. C. Anandharamakrishnan. Liquid-Based Nanoencapsulation Techniques. 2014, 29-41. https://doi.org/10.1007/978-1-4614-9387-7_4
    62. Ž. Knez, M. Škerget, M. Knez Hrnčič, D. Čuček. Particle Formation Using Sub- and Supercritical Fluids. 2014, 31-67. https://doi.org/10.1016/B978-0-444-62696-7.00002-2
    63. Giorgia De Guido, Stefano Langè, Stefania Moioli, Laura A. Pellegrini. Thermodynamic method for the prediction of solid CO2 formation from multicomponent mixtures. Process Safety and Environmental Protection 2014, 92 (1) , 70-79. https://doi.org/10.1016/j.psep.2013.08.001
    64. Li-Hsin Wang, Shiang-Tai Lin. A predictive method for the solubility of drug in supercritical carbon dioxide. The Journal of Supercritical Fluids 2014, 85 , 81-88. https://doi.org/10.1016/j.supflu.2013.10.019
    65. Zihao Yang, Mingyuan Li, Bo Peng, Meiqin Lin, Zhaoxia Dong. Volume expansion of CO2+oil at near critical and supercritical conditions of CO2. Fuel 2013, 112 , 283-288. https://doi.org/10.1016/j.fuel.2013.04.037
    66. P. N. Ezhilarasi, P. Karthik, N. Chhanwal, C. Anandharamakrishnan. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food and Bioprocess Technology 2013, 6 (3) , 628-647. https://doi.org/10.1007/s11947-012-0944-0
    67. Zhaoxia Dong, Yi Li, Meiqin Lin, Mingyuan Li. A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions. Petroleum Science 2013, 10 (1) , 91-96. https://doi.org/10.1007/s12182-013-0254-9
    68. Antonio Tabernero, Eva M. Martín del Valle, Miguel A. Galán. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chemical Engineering and Processing: Process Intensification 2012, 60 , 9-25. https://doi.org/10.1016/j.cep.2012.06.004
    69. . References. 2012, 265-307. https://doi.org/10.1002/9781118243350.refs
    70. José Sierra‐Pallares, Daniele L. Marchisio, María Teresa Parra‐Santos, Juan García‐Serna, Francisco Castro, María José Cocero. A computational fluid dynamics study of supercritical antisolvent precipitation: Mixing effects on particle size. AIChE Journal 2012, 58 (2) , 385-398. https://doi.org/10.1002/aic.12594
    71. Antonio Tabernero, Eva M. Martín del Valle, Miguel A. Galán. Precipitation of tretinoin and acetaminophen with solution enhanced dispersion by supercritical fluids (SEDS). Role of phase equilibria to optimize particle diameter. Powder Technology 2012, 217 , 177-188. https://doi.org/10.1016/j.powtec.2011.10.025
    72. I. Rodríguez-Meizoso, O. Werner, C. Quan, Z. Knez, C. Turner. Phase-behavior of alkyl ketene dimmer (AKD) in supercritical carbon dioxide. The implications of using different solubility measurement methods. The Journal of Supercritical Fluids 2012, 61 , 25-33. https://doi.org/10.1016/j.supflu.2011.09.010
    73. Georgia D. Pappa, Vasiliki Louli, Katerina Dedousi, Epaminondas C. Voutsas. Phase equilibria of mixtures containing CO2 and organic acids using the UMR-PRU model. The Journal of Supercritical Fluids 2011, 58 (3) , 321-329. https://doi.org/10.1016/j.supflu.2011.07.013
    74. Michael Türk, Marlene Crone, Gerd Upper. Effect of gas pressure on the phase behaviour of organometallic compounds. The Journal of Supercritical Fluids 2011, 58 (1) , 1-6. https://doi.org/10.1016/j.supflu.2011.05.016
    75. Franciele M. Ferreira, Luiz P. Ramos, Papa M. Ndiaye, Marcos L. Corazza. Phase behavior of (CO2+methanol+lauric acid) system. The Journal of Chemical Thermodynamics 2011, 43 (7) , 1074-1082. https://doi.org/10.1016/j.jct.2011.02.017
    76. R. Alinia, E. Nemati Lay. CO<inf>2</inf> solubility modeling in the binary systems at high pressures. 2011, 1-6. https://doi.org/10.1109/ICMSAO.2011.5775544
    77. Dan Hua, Jingdui Hong, Jun Li. Solid–liquid–gas equilibrium for binary systems containing N2: Measurement and modeling. Fluid Phase Equilibria 2011, 302 (1-2) , 190-194. https://doi.org/10.1016/j.fluid.2010.08.012
    78. Helena Sovová, Roumiana P. Stateva. Supercritical fluid extraction from vegetable materials. Reviews in Chemical Engineering 2011, 27 (3-4) https://doi.org/10.1515/REVCE.2011.002
    79. Dan Hua, Jindui Hong, Xiaohui Hu, Yanzhen Hong, Jun Li. Solid–liquid–gas equilibrium of the naphthalene–biphenyl–CO2 system: Measurement and modeling. Fluid Phase Equilibria 2010, 299 (1) , 109-115. https://doi.org/10.1016/j.fluid.2010.09.006
    80. Ulrich Hintermair, Walter Leitner, Philip Jessop. Expanded Liquid Phases in Catalysis: Gas‐expanded Liquids and Liquid–Supercritical Fluid Biphasic Systems. 2010, 101-187. https://doi.org/10.1002/9783527628698.hgc037
    81. Sibele R. Rosso Comim, Elton Franceschi, Gustavo R. Borges, Marcos L. Corazza, J. Vladimir Oliveira, Sandra R.S. Ferreira. Phase equilibrium measurements and modelling of ternary system (carbon dioxide+ethanol+palmitic acid). The Journal of Chemical Thermodynamics 2010, 42 (3) , 348-354. https://doi.org/10.1016/j.jct.2009.09.004
    82. Hirohisa Uchida, Tetsuo Kamijo. Measurement and correlation of the solid–liquid–gas equilibria for carbon dioxide + normal chain saturated aliphatic hydrocarbon systems. The Journal of Supercritical Fluids 2009, 51 (2) , 136-141. https://doi.org/10.1016/j.supflu.2009.08.007
    83. G.H. Chong, S.Y. Spotar, R. Yunus. Numerical Modeling of Mass Transfer for Solvent-Carbon Dioxide System at Supercritical (Miscible) Conditions. Journal of Applied Sciences 2009, 9 (17) , 3055-3061. https://doi.org/10.3923/jas.2009.3055.3061
    84. Fernando Montañés, Tiziana Fornari, Roumiana P. Stateva, Agustín Olano, Elena Ibáñez. Solubility of carbohydrates in supercritical carbon dioxide with (ethanol + water) cosolvent. The Journal of Supercritical Fluids 2009, 49 (1) , 16-22. https://doi.org/10.1016/j.supflu.2008.11.014
    85. Michael Türk. Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes. The Journal of Supercritical Fluids 2009, 47 (3) , 537-545. https://doi.org/10.1016/j.supflu.2008.09.008
    86. K. Vezzù, A. Bertucco, F. P. Lucien. Solid–liquid equilibria of multicomponent lipid mixtures under CO 2 pressure: Measurement and thermodynamic modeling. AIChE Journal 2008, 54 (9) , 2487-2494. https://doi.org/10.1002/aic.11543
    87. F. Miguel, A. Martín, F. Mattea, M.J. Cocero. Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification 2008, 47 (9-10) , 1594-1602. https://doi.org/10.1016/j.cep.2007.07.008
    88. R. Favareto, V.F. Cabral, M.L. Corazza, L. Cardozo-Filho. Vapor–liquid and solid–fluid equilibrium for progesterone+CO2, progesterone+propane, and progesterone+n-butane systems at elevated pressures. The Journal of Supercritical Fluids 2008, 45 (2) , 161-170. https://doi.org/10.1016/j.supflu.2008.02.004
    89. A. Tenorio, M.D. Gordillo, C.M. Pereyra, E.J. Martínez de la Ossa. Screening design of experiment applied to supercritical antisolvent precipitation of amoxicillin. The Journal of Supercritical Fluids 2008, 44 (2) , 230-237. https://doi.org/10.1016/j.supflu.2007.10.009
    90. A. Martín, M.J. Cocero. Micronization processes with supercritical fluids: Fundamentals and mechanisms. Advanced Drug Delivery Reviews 2008, 60 (3) , 339-350. https://doi.org/10.1016/j.addr.2007.06.019
    91. M. L. Corazza, F. C. Corazza, L. Cardozo Filho, C. Dariva. A subdivision algorithm for phase equilibrium calculations at high pressures. Brazilian Journal of Chemical Engineering 2007, 24 (4) , 611-622. https://doi.org/10.1590/S0104-66322007000400013
    92. Renata Adami, Libero Sesti Osséo, Rainer Huopalahti, Ernesto Reverchon. Supercritical AntiSolvent micronization of PVA by semi-continuous and batch processing. The Journal of Supercritical Fluids 2007, 42 (2) , 288-298. https://doi.org/10.1016/j.supflu.2007.04.002
    93. Evangelos Bertakis, Ilias Lemonis, Stelios Katsoufis, Epaminondas Voutsas, Ralf Dohrn, Kostis Magoulas, Dimitrios Tassios. Measurement and thermodynamic modeling of solid–liquid–gas equilibrium of some organic compounds in the presence of CO2. The Journal of Supercritical Fluids 2007, 41 (2) , 238-245. https://doi.org/10.1016/j.supflu.2006.10.003
    94. R. Dohrn, E. Bertakis, O. Behrend, E. Voutsas, D. Tassios. Melting point depression by using supercritical CO2 for a novel melt dispersion micronization process. Journal of Molecular Liquids 2007, 131-132 , 53-59. https://doi.org/10.1016/j.molliq.2006.08.026
    95. A. Martín, M.J. Cocero. Separation of enantiomers by diastereomeric salt formation and precipitation in supercritical carbon dioxide. The Journal of Supercritical Fluids 2007, 40 (1) , 67-73. https://doi.org/10.1016/j.supflu.2006.03.018
    96. Michael Türk, Gerd Upper, Peter Hils. Formation of composite drug–polymer particles by co-precipitation during the rapid expansion of supercritical fluids. The Journal of Supercritical Fluids 2006, 39 (2) , 253-263. https://doi.org/10.1016/j.supflu.2006.04.004
    97. Kiyoshi Matsuyama, Kenji Mishima. Phase behavior of CO2+polyethylene glycol+ethanol at pressures up to 20MPa. Fluid Phase Equilibria 2006, 249 (1-2) , 173-178. https://doi.org/10.1016/j.fluid.2006.09.023
    98. Sara Colussi, Nicola Elvassore, Ireneo Kikic. A comparison between semi-empirical and molecular-based equations of state for describing the thermodynamic of supercritical micronization processes. The Journal of Supercritical Fluids 2006, 39 (1) , 118-126. https://doi.org/10.1016/j.supflu.2006.01.012
    99. Zhuoyang Lian, Scott A. Epstein, Christopher W. Blenk, Annette D. Shine. Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers. The Journal of Supercritical Fluids 2006, 39 (1) , 107-117. https://doi.org/10.1016/j.supflu.2006.02.001
    100. Sara Colussi, Nicola Elvassore, Ireneo Kikic. A comparison between semi-empirical and molecular-based equations of state for describing the thermodynamic of supercritical micronization processes. The Journal of Supercritical Fluids 2006, 38 (1) , 18-26. https://doi.org/10.1016/j.supflu.2005.03.008
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect