ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Potential Energy Surface and Vibrational Frequencies of Carbonic Acid

Cite this: J. Phys. Chem. 1995, 99, 32, 12125–12130
Publication Date (Print):August 1, 1995
https://doi.org/10.1021/j100032a012
    ACS Legacy Archive

    Article Views

    553

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 67 publications.

    1. Keisuke Kanayama, Hisashi Nakamura, Kaoru Maruta, Andras Bodi, Patrick Hemberger. Conformer-Specific Photoelectron Spectroscopy of Carbonic Acid: H2CO3. The Journal of Physical Chemistry Letters 2024, 15 (10) , 2658-2664. https://doi.org/10.1021/acs.jpclett.4c00343
    2. Daniela Polino, Emanuele Grifoni, Roger Rousseau, Michele Parrinello, Vassiliki-Alexandra Glezakou. How Collective Phenomena Impact CO2 Reactivity and Speciation in Different Media. The Journal of Physical Chemistry A 2020, 124 (20) , 3963-3975. https://doi.org/10.1021/acs.jpca.9b11744
    3. Kanagasabai Balamurugan, Muthuramalingam Prakash, Venkatesan Subramanian. Theoretical Insights into the Role of Water Molecules in the Guanidinium-Based Protein Denaturation Process in Specific to Aromatic Amino Acids. The Journal of Physical Chemistry B 2019, 123 (10) , 2191-2202. https://doi.org/10.1021/acs.jpcb.8b08968
    4. Sourav Ghoshal and Montu K. Hazra . Impact of OH Radical-Initiated H2CO3 Degradation in the Earth’s Atmosphere via Proton-Coupled Electron Transfer Mechanism. The Journal of Physical Chemistry A 2016, 120 (4) , 562-575. https://doi.org/10.1021/acs.jpca.5b08805
    5. Sourav Ghoshal and Montu K. Hazra . Autocatalytic Isomerizations of the Two Most Stable Conformers of Carbonic Acid in Vapor Phase: Double Hydrogen Transfer in Carbonic Acid Homodimers. The Journal of Physical Chemistry A 2014, 118 (26) , 4620-4630. https://doi.org/10.1021/jp5024873
    6. Mirza Galib and Gabriel Hanna . The Role of Hydrogen Bonding in the Decomposition of H2CO3 in Water: Mechanistic Insights from Ab Initio Metadynamics Studies of Aqueous Clusters. The Journal of Physical Chemistry B 2014, 118 (22) , 5983-5993. https://doi.org/10.1021/jp5029195
    7. Jürgen Bernard, Roland G. Huber, Klaus R. Liedl, Hinrich Grothe, and Thomas Loerting . Matrix Isolation Studies of Carbonic Acid—The Vapor Phase above the β-Polymorph. Journal of the American Chemical Society 2013, 135 (20) , 7732-7737. https://doi.org/10.1021/ja4020925
    8. Mirza Galib and Gabriel Hanna . Mechanistic Insights into the Dissociation and Decomposition of Carbonic Acid in Water via the Hydroxide Route: An Ab Initio Metadynamics Study. The Journal of Physical Chemistry B 2011, 115 (50) , 15024-15035. https://doi.org/10.1021/jp207752m
    9. Christine A. Schwerdtfeger and David A. Mazziotti . Populations of Carbonic Acid Isomers at 210 K from a Fast Two-Electron Reduced-Density Matrix Theory. The Journal of Physical Chemistry A 2011, 115 (43) , 12011-12016. https://doi.org/10.1021/jp2057805
    10. András Stirling and Imre Pápai. H2CO3 Forms via HCO3− in Water. The Journal of Physical Chemistry B 2010, 114 (50) , 16854-16859. https://doi.org/10.1021/jp1099909
    11. M. Prakash, V. Subramanian and Shridhar R. Gadre . Stepwise Hydration of Protonated Carbonic Acid: A Theoretical Study. The Journal of Physical Chemistry A 2009, 113 (44) , 12260-12275. https://doi.org/10.1021/jp904576u
    12. J. A. Tossell. H2CO3(s): A New Candidate for CO2 Capture and Sequestration. Environmental Science & Technology 2009, 43 (7) , 2575-2580. https://doi.org/10.1021/es802393s
    13. P. Padma Kumar, Andrey G. Kalinichev and R. James Kirkpatrick. Hydrogen-Bonding Structure and Dynamics of Aqueous Carbonate Species from Car−Parrinello Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2009, 113 (3) , 794-802. https://doi.org/10.1021/jp809069g
    14. Minh Tho Nguyen, Myrna H. Matus, Virgil E. Jackson, Vu Thi Ngan, James R. Rustad and David A. Dixon . Mechanism of the Hydration of Carbon Dioxide: Direct Participation of H2O versus Microsolvation. The Journal of Physical Chemistry A 2008, 112 (41) , 10386-10398. https://doi.org/10.1021/jp804715j
    15. Katrin Winkel,, Wolfgang Hage,, Thomas Loerting,, Sarah L. Price, and, Erwin Mayer. Carbonic Acid:  From Polyamorphism to Polymorphism. Journal of the American Chemical Society 2007, 129 (45) , 13863-13871. https://doi.org/10.1021/ja073594f
    16. Claudette M. Rosado-Reyes and, Joseph S. Francisco. Atmospheric Oxidation Pathways of Acetic Acid. The Journal of Physical Chemistry A 2006, 110 (13) , 4419-4433. https://doi.org/10.1021/jp0567974
    17. Daniela Belli Dell'Amico,, Fausto Calderazzo,, Luca Labella,, Fabio Marchetti, and, Guido Pampaloni. Converting Carbon Dioxide into Carbamato Derivatives. Chemical Reviews 2003, 103 (10) , 3857-3898. https://doi.org/10.1021/cr940266m
    18. Musstafa Al-Shemali and, Alexander I. Boldyrev. Search for Ionic Orthocarbonates:  Ab Initio Study of Na4CO4. The Journal of Physical Chemistry A 2002, 106 (38) , 8951-8954. https://doi.org/10.1021/jp020207+
    19. Michael Peschke,, Arthur T. Blades, and, Paul Kebarle. Metalloion−Ligand Binding Energies and Biological Function of Metalloenzymes Such as Carbonic Anhydrase. A Study Based on ab Initio Calculations and Experimental Ion−Ligand Equilibria in the Gas Phase. Journal of the American Chemical Society 2000, 122 (7) , 1492-1505. https://doi.org/10.1021/ja992406l
    20. B. Montanari,, P. Ballone, and, R. O. Jones. Density Functional Study of Polycarbonate. 2. Crystalline Analogs, Cyclic Oligomers, and Their Fragments. Macromolecules 1999, 32 (10) , 3396-3404. https://doi.org/10.1021/ma981649f
    21. Minh Tho Nguyen,, Greet Raspoet, and, Luc G. Vanquickenborne, , Piet Th. Van Duijnen. How Many Water Molecules Are Actively Involved in the Neutral Hydration of Carbon Dioxide?. The Journal of Physical Chemistry A 1997, 101 (40) , 7379-7388. https://doi.org/10.1021/jp9701045
    22. Klaus R. Liedl,, Sanja Sekušak, and, Erwin Mayer. Has the Dimer of Carbonic Acid a Lower Energy Than Its Constituents Water and Carbon Dioxide?. Journal of the American Chemical Society 1997, 119 (16) , 3782-3784. https://doi.org/10.1021/ja961802q
    23. Pakuna Panbo, Apirak Payaka, Rusrina Salaeh, Rathawat Daengngern. Proton exchange of carbonic acid and methylamine complex accelerated by a single-water molecule via intermolecular hydrogen bonding: A theoretical investigation. Chemical Physics Impact 2023, 80 , 100451. https://doi.org/10.1016/j.chphi.2023.100451
    24. Hitoshi Kusama, Masanori Kodera, Koichi Yamashita, Kazuhiro Sayama. Insights into the carbonate effect on water oxidation over metal oxide photocatalysts/photoanodes. Physical Chemistry Chemical Physics 2022, 24 (10) , 5894-5902. https://doi.org/10.1039/D1CP05797A
    25. Apostolos Kalemos. An ab initio study on the bonding in H 2 CO 3 and related species. Molecular Physics 2021, 119 (14) https://doi.org/10.1080/00268976.2021.1952327
    26. Xianwei Wang, Thomas Bürgi. Observation of Carbonic Acid Formation from Interaction between Carbon Dioxide and Ice by Using In Situ Modulation Excitation IR Spectroscopy. Angewandte Chemie 2021, 133 (14) , 7939-7944. https://doi.org/10.1002/ange.202015520
    27. Xianwei Wang, Thomas Bürgi. Observation of Carbonic Acid Formation from Interaction between Carbon Dioxide and Ice by Using In Situ Modulation Excitation IR Spectroscopy. Angewandte Chemie International Edition 2021, 60 (14) , 7860-7865. https://doi.org/10.1002/anie.202015520
    28. Bernard Denegri, Mirela Matić, Olga Kronja. The Role of Negative Hyperconjugation in Decomposition of Bicarbonate and Organic Carbonate Anions. ChemistrySelect 2016, 1 (16) , 5250-5259. https://doi.org/10.1002/slct.201601357
    29. J. Philipp Wagner, Hans Peter Reisenauer, Viivi Hirvonen, Chia-Hua Wu, Joseph L. Tyberg, Wesley D. Allen, Peter R. Schreiner. Tunnelling in carbonic acid. Chemical Communications 2016, 52 (50) , 7858-7861. https://doi.org/10.1039/C6CC01756H
    30. Ryan M. Capobianco, Miroslaw S. Gruszkiewicz, Robert J. Bodnar, J. Donald Rimstidt. Conductivity Measurements on H2O-Bearing CO2-Rich Fluids. Journal of Solution Chemistry 2015, 44 (5) , 934-962. https://doi.org/10.1007/s10953-014-0219-7
    31. Sandeep K. Reddy, Sundaram Balasubramanian. Carbonic acid: molecule, crystal and aqueous solution. Chem. Commun. 2014, 50 (5) , 503-514. https://doi.org/10.1039/C3CC45174G
    32. Mirza Galib, Gabriel Hanna. Molecular dynamics simulations predict an accelerated dissociation of H 2 CO 3 at the air–water interface. Phys. Chem. Chem. Phys. 2014, 16 (46) , 25573-25582. https://doi.org/10.1039/C4CP03302G
    33. Qian Cao, Slawomir Berski, Zdzislaw Latajka, Markku Räsänen, Leonid Khriachtchev. Reaction of atomic hydrogen with formic acid. Physical Chemistry Chemical Physics 2014, 16 (13) , 5993. https://doi.org/10.1039/c3cp55265a
    34. Sven A. de Marothy. Autocatalytic decomposition of carbonic acid. International Journal of Quantum Chemistry 2013, 113 (20) , 2306-2311. https://doi.org/10.1002/qua.24452
    35. Stefan E. Huber, Silvia Dalnodar, Wolfgang Kausch, Stefan Kimeswenger, Michael Probst. Carbonic acid revisited: Vibrational spectra, energetics and the possibility of detecting an elusive molecule. AIP Advances 2012, 2 (3) https://doi.org/10.1063/1.4755786
    36. Huanwen Wu, Ning Zhang, Zhiji Cao, Hongming Wang, Sanguo Hong. The adsorption of CO 2 , H 2 CO 3 , HCO 3 − and CO 3 2− on Cu 2 O (111) surface: First‐principles study. International Journal of Quantum Chemistry 2012, 112 (12) , 2532-2540. https://doi.org/10.1002/qua.23250
    37. S.X. Chong, Habibah A. Wahab, Hassan H. Abdallah. Theoretical investigation into the likely reaction mechanisms of benzyl alcohol with dimethyl carbonate over a faujasite zeolite catalyst. Computational Materials Science 2012, 55 , 217-227. https://doi.org/10.1016/j.commatsci.2011.12.004
    38. Yvonne Dienes, Walter Leitner, Merlin G. J. Müller, Willem K. Offermans, Tobias Reier, Alexander Reinholdt, Thomas E. Weirich, Thomas E. Müller. Hybrid sol–gel double metal cyanide catalysts for the copolymerisation of styrene oxide and CO2. Green Chemistry 2012, 14 (4) , 1168. https://doi.org/10.1039/c2gc16485j
    39. Yu-Jong Wu, C.Y. Robert Wu, Mao-Chang Liang. Quantum chemical calculation on the potential energy surface of H2CO3 and its implication for martian chemistry. Icarus 2011, 214 (1) , 228-235. https://doi.org/10.1016/j.icarus.2011.05.009
    40. Sandeep Kumar Reddy, Chidambar H. Kulkarni, Sundaram Balasubramanian. Theoretical investigations of candidate crystal structures for β-carbonic acid. The Journal of Chemical Physics 2011, 134 (12) https://doi.org/10.1063/1.3567307
    41. Jürgen Bernard, Markus Seidl, Ingrid Kohl, Klaus R. Liedl, Erwin Mayer, Óscar Gálvez, Hinrich Grothe, Thomas Loerting. Spektroskopische Beobachtung von matrixisolierter Kohlensäure, abgeschieden aus der Gasphase. Angewandte Chemie 2011, 123 (8) , 1981-1985. https://doi.org/10.1002/ange.201004729
    42. Jürgen Bernard, Markus Seidl, Ingrid Kohl, Klaus R. Liedl, Erwin Mayer, Óscar Gálvez, Hinrich Grothe, Thomas Loerting. Spectroscopic Observation of Matrix‐Isolated Carbonic Acid Trapped from the Gas Phase. Angewandte Chemie International Edition 2011, 50 (8) , 1939-1943. https://doi.org/10.1002/anie.201004729
    43. Tetsuya Mori, Kohsuke Suma, Yoshihiro Sumiyoshi, Yasuki Endo. Spectroscopic detection of the most stable carbonic acid, cis-cis H2CO3. The Journal of Chemical Physics 2011, 134 (4) https://doi.org/10.1063/1.3532084
    44. Julian D. Gale, Paolo Raiteri, Adri C. T. van Duin. A reactive force field for aqueous-calcium carbonate systems. Physical Chemistry Chemical Physics 2011, 13 (37) , 16666. https://doi.org/10.1039/c1cp21034c
    45. Thomas Loerting, Juergen Bernard. Aqueous Carbonic Acid (H 2 CO 3 ). ChemPhysChem 2010, 11 (11) , 2305-2309. https://doi.org/10.1002/cphc.201000220
    46. Juliana Murillo, Jorge David, Albeiro Restrepo. Insights into the structure and stability of the carbonic acid dimer. Physical Chemistry Chemical Physics 2010, 12 (36) , 10963. https://doi.org/10.1039/c003520c
    47. Katrin Adamczyk, Mirabelle Prémont-Schwarz, Dina Pines, Ehud Pines, Erik T. J. Nibbering. Real-Time Observation of Carbonic Acid Formation in Aqueous Solution. Science 2009, 326 (5960) , 1690-1694. https://doi.org/10.1126/science.1180060
    48. Tetsuya Mori, Kohsuke Suma, Yoshihiro Sumiyoshi, Yasuki Endo. Spectroscopic detection of isolated carbonic acid. The Journal of Chemical Physics 2009, 130 (20) https://doi.org/10.1063/1.3141405
    49. Ingrid Kohl, Katrin Winkel, Marion Bauer, Klaus R. Liedl, Thomas Loerting, Erwin Mayer. Raman‐spektroskopische Studie der Phasenumwandlung von amorpher in kristalline β‐Kohlensäure. Angewandte Chemie 2009, 121 (15) , 2728-2732. https://doi.org/10.1002/ange.200805300
    50. Ingrid Kohl, Katrin Winkel, Marion Bauer, Klaus R. Liedl, Thomas Loerting, Erwin Mayer. Raman Spectroscopic Study of the Phase Transition of Amorphous to Crystalline β‐Carbonic Acid. Angewandte Chemie International Edition 2009, 48 (15) , 2690-2694. https://doi.org/10.1002/anie.200805300
    51. Xiang-xiang Wang, Hui Fu, Dong-mei Du, Zheng-yu Zhou, An-guo Zhang, Chun-fang Su, Ke-sheng Ma. The comparison of pKa determination between carbonic acid and formic acid and its application to prediction of the hydration numbers. Chemical Physics Letters 2008, 460 (1-3) , 339-342. https://doi.org/10.1016/j.cplett.2008.05.074
    52. J.A. Altmann, T.A. Ford. Ab initio calculations of some weakly bound dimers and complexes: II. The complexes of carbon dioxide with water and hydrogen sulphide. Journal of Molecular Structure: THEOCHEM 2007, 818 (1-3) , 85-92. https://doi.org/10.1016/j.theochem.2007.05.010
    53. Rubén D. Parra, Anthony Arena, Sudha Sankisa. Conformational preferences of carbonic acid and its sulfur derivatives, H2C(X)O2−nSn(X=O/S; n=0–2). Journal of Molecular Structure: THEOCHEM 2007, 815 (1-3) , 31-40. https://doi.org/10.1016/j.theochem.2007.03.015
    54. Horia‐Sorin Andrei, Sergey A. Nizkorodov, Otto Dopfer. IR Spectra of Protonated Carbonic Acid and Its Isomeric H 3 O + ⋅CO 2 Complex. Angewandte Chemie 2007, 119 (25) , 4838-4840. https://doi.org/10.1002/ange.200700750
    55. Horia‐Sorin Andrei, Sergey A. Nizkorodov, Otto Dopfer. IR Spectra of Protonated Carbonic Acid and Its Isomeric H 3 O + ⋅CO 2 Complex. Angewandte Chemie International Edition 2007, 46 (25) , 4754-4756. https://doi.org/10.1002/anie.200700750
    56. P. Padma Kumar, Andrey G. Kalinichev, R. James Kirkpatrick. Dissociation of carbonic acid: Gas phase energetics and mechanism from ab initio metadynamics simulations. The Journal of Chemical Physics 2007, 126 (20) https://doi.org/10.1063/1.2741552
    57. Angela Dibenedetto, Michele Aresta, Potenzo Giannoccaro, Carlo Pastore, Imre Pápai, Gábor Schubert. On the Existence of the Elusive Monomethyl Ester of Carbonic Acid [CH 3 OC(O)OH] at 300 K: 1 H‐ and 13 C NMR Measurements and DFT Calculations. European Journal of Inorganic Chemistry 2006, 2006 (5) , 908-913. https://doi.org/10.1002/ejic.200500622
    58. J.A. Tossell. Boric acid, “carbonic” acid, and N-containing oxyacids in aqueous solution: Ab initio studies of structure, pKa, NMR shifts, and isotopic fractionations. Geochimica et Cosmochimica Acta 2005, 69 (24) , 5647-5658. https://doi.org/10.1016/j.gca.2005.08.004
    59. Rubén D. Parra, Satya Bulusu, X. C. Zeng. Cooperative effects in two-dimensional ring-like networks of three-center hydrogen bonding interactions. The Journal of Chemical Physics 2005, 122 (18) https://doi.org/10.1063/1.1895713
    60. Chiu‐Ling Lin, San‐Yan Chu. Comparative Study between Carbonic and Sulfurous Acids for Dissociation Reaction. Journal of the Chinese Chemical Society 2002, 49 (5) , 777-781. https://doi.org/10.1002/jccs.200200111
    61. Christofer S. Tautermann, Andreas F. Voegele, Thomas Loerting, Ingrid Kohl, Andreas Hallbrucker, Erwin Mayer, Klaus R. Liedl. Towards the Experimental Decomposition Rate of Carbonic Acid (H2CO3) in Aqueous Solution. Chemistry - A European Journal 2002, 8 (1) , 66-73. https://doi.org/10.1002/1521-3765(20020104)8:1<66::AID-CHEM66>3.0.CO;2-F
    62. Michael Peschke, Arthur T. Blades, Paul Kebarle. 3 Determination of sequential metal ion-ligand binding energies by gas phase equilibria and theoretical calculations: Application of results to biochemical pr. 2001, 77-119. https://doi.org/10.1016/S1075-1629(01)80005-1
    63. P. Ballone, B. Montanari, R. O. Jones. Density functional study of carbonic acid clusters. The Journal of Chemical Physics 2000, 112 (15) , 6571-6575. https://doi.org/10.1063/1.481229
    64. Thomas Loerting, Christofer Tautermann, Romano T. Kroemer, Ingrid Kohl, Andreas Hallbrucker, Erwin Mayer, Klaus R. Liedl. Zur überraschenden kinetischen Stabilität von Kohlensäure (H2CO3). Angewandte Chemie 2000, 112 (5) , 919-922. https://doi.org/10.1002/(SICI)1521-3757(20000303)112:5<919::AID-ANGE919>3.0.CO;2-Y
    65. Wolfgang Hage, Klaus R. Liedl, Andreas Hallbrucker, Erwin Mayer. Carbonic Acid in the Gas Phase and Its Astrophysical Relevance. Science 1998, 279 (5355) , 1332-1335. https://doi.org/10.1126/science.279.5355.1332
    66. Wolfgang Hage, Andreas Hallbrucker, Erwin Mayer. Metastable intermediates from glassy solutions. Part 3.—FTIR spectra of α-carbonic acid and its 2 H and 13 C isotopic forms, isolated from methanolic solution. J. Chem. Soc., Faraday Trans. 1996, 92 (17) , 3183-3195. https://doi.org/10.1039/FT9969203183
    67. Wolfgang Hage, Andreas Hallbrucker, Erwin Mayer. Metastable intermediates from glassy solutions. Part 4.—FTIR spectra of β-carbonic acid and its 2 H and 13 C isotopic forms, isolated from aqueous solution. J. Chem. Soc., Faraday Trans. 1996, 92 (17) , 3197-3209. https://doi.org/10.1039/FT9969203197

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect