ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Nonaxisymmetric and Axisymmetric Convection in Propagating Reaction-Diffusion Fronts

Cite this: J. Phys. Chem. 1994, 98, 26, 6505–6508
Publication Date (Print):June 1, 1994
https://doi.org/10.1021/j100077a014
    ACS Legacy Archive

    Article Views

    131

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (1 MB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 83 publications.

    1. Masaki Itatani, Qing Fang, Kei Unoura, and Hideki Nabika . Role of Nuclei in Liesegang Pattern Formation: Insights from Experiment and Reaction-Diffusion Simulation. The Journal of Physical Chemistry C 2018, 122 (6) , 3669-3676. https://doi.org/10.1021/acs.jpcc.7b12688
    2. Miyu Arai, Kazuhiro Takahashi, Mika Hattori, Takahiko Hasegawa, Mami Sato, Kei Unoura, and Hideki Nabika . One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel. The Journal of Physical Chemistry B 2016, 120 (20) , 4654-4660. https://doi.org/10.1021/acs.jpcb.6b02850
    3. Tamás Rica, Dezsö Horváth and Ágota Tóth. Viscosity-Change-Induced Density Fingering in Polyelectrolytes. The Journal of Physical Chemistry B 2008, 112 (46) , 14593-14596. https://doi.org/10.1021/jp802450r
    4. Melanie M. Britton. Nuclear Magnetic Resonance Studies of Convection in the 1,4-Cyclohexanedione−Bromate−Acid Reaction. The Journal of Physical Chemistry A 2006, 110 (15) , 5075-5080. https://doi.org/10.1021/jp0564851
    5. Hiroyuki Kitahata,, Ryoichi Aihara,, Yoshihito Mori, and, Kenichi Yoshikawa. Slowing and Stopping of Chemical Waves in a Narrowing Canal. The Journal of Physical Chemistry B 2004, 108 (49) , 18956-18959. https://doi.org/10.1021/jp048003b
    6. A. J. Pons,, F. Sagués,, M. A. Bees, and, P. Graae Sørensen. Pattern Formation in the Methylene-Blue−Glucose System. The Journal of Physical Chemistry B 2000, 104 (10) , 2251-2259. https://doi.org/10.1021/jp9935788
    7. Andrea Komlósi,, István Péter Nagy, and, György Bazsa, , John A. Pojman. Convective Chemical Fronts in the 1,4-Cyclohexanedione−Bromate−Sulfuric Acid−Ferroin System. The Journal of Physical Chemistry A 1998, 102 (46) , 9136-9141. https://doi.org/10.1021/jp981557s
    8. Shuko Fujieda,, Yoshihiro Mogamia,, Atsuko Furuya,, Wei Zhang, and, Tsunehisa Araiso. Effect of Microgravity on the Spatial Oscillation Behavior of Belousov−Zhabotinsky Reactions Catalyzed by Ferroin. The Journal of Physical Chemistry A 1997, 101 (43) , 7926-7928. https://doi.org/10.1021/jp9702154
    9. B. Legawiec and, A. L. Kawczyński. Influence of the Bénard Rolls on the Traveling Impulse in the Belousov−Zhabotinsky Reaction. The Journal of Physical Chemistry A 1997, 101 (43) , 8063-8069. https://doi.org/10.1021/jp972021u
    10. Gina Bowden,, Marc Garbey,, Victor M. Ilyashenko,, John A. Pojman,, Stanislav E. Solovyov,, Ahmed Taik, and, Vitaly A. Volpert. Effect of Convection on a Propagating Front with a Solid Product:  Comparison of Theory and Experiments. The Journal of Physical Chemistry B 1997, 101 (4) , 678-686. https://doi.org/10.1021/jp962354b
    11. John A. Pojman,, Andrea Komlósi, and, Istvan P. Nagy. Double-Diffusive Convection in Traveling Waves in the Iodate−Sulfite System Explained. The Journal of Physical Chemistry 1996, 100 (40) , 16209-16212. https://doi.org/10.1021/jp9613910
    12. Rodrigo Rivadeneira, Desiderio A. Vasquez. Transitions between convective reaction fronts in a Poiseuille flow. Meccanica 2023, 58 (4) , 699-710. https://doi.org/10.1007/s11012-023-01643-8
    13. Anne-Déborah C. Nguindjel, Pieter J. de Visser, Mitch Winkens, Peter A. Korevaar. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Physical Chemistry Chemical Physics 2022, 24 (39) , 23980-24001. https://doi.org/10.1039/D2CP02542F
    14. S. Mukherjee, M.R. Paul. The fluid dynamics of propagating fronts with solutal and thermal coupling. Journal of Fluid Mechanics 2022, 942 https://doi.org/10.1017/jfm.2022.375
    15. S. Mukherjee, M. R. Paul. Propagating fronts in fluids with solutal feedback. Physical Review E 2020, 101 (3) https://doi.org/10.1103/PhysRevE.101.032214
    16. Johan Llamoza, Desiderio A. Vasquez. Structures and Instabilities in Reaction Fronts Separating Fluids of Different Densities. Mathematical and Computational Applications 2019, 24 (2) , 51. https://doi.org/10.3390/mca24020051
    17. C. Rana, A. De Wit. Reaction-driven oscillating viscous fingering. Chaos: An Interdisciplinary Journal of Nonlinear Science 2019, 29 (4) https://doi.org/10.1063/1.5089028
    18. Osamu Inomoto, Stefan C. Müller, Ryo Kobayashi, Marcus J. B. Hauser. Acceleration of chemical reaction fronts. The European Physical Journal Special Topics 2018, 227 (5-6) , 493-507. https://doi.org/10.1140/epjst/e2018-00074-6
    19. Dan Coroian, Desiderio A. Vasquez. Oscillatory instability in a reaction front separating fluids of different densities. Physical Review E 2018, 98 (2) https://doi.org/10.1103/PhysRevE.98.023102
    20. Roberto Guzman, Desiderio A. Vasquez. Marangoni flow traveling with reaction fronts: Eikonal approximation. Chaos: An Interdisciplinary Journal of Nonlinear Science 2017, 27 (10) https://doi.org/10.1063/1.5008891
    21. David R. A. Ruelas Paredes, Desiderio A. Vasquez. Convection induced by thermal gradients on thin reaction fronts. Physical Review E 2017, 96 (3) https://doi.org/10.1103/PhysRevE.96.033116
    22. P.M. Vilela, Desiderio A. Vasquez. The effects of fluid motion on oscillatory and chaotic fronts. The European Physical Journal Special Topics 2016, 225 (13-14) , 2563-2572. https://doi.org/10.1140/epjst/e2016-60003-5
    23. Roberto Guzman, Desiderio A. Vasquez. Surface tension driven flow on a thin reaction front. The European Physical Journal Special Topics 2016, 225 (13-14) , 2573-2580. https://doi.org/10.1140/epjst/e2016-60026-4
    24. P. M. Vilela, Desiderio A. Vasquez. Stability of Kuramoto-Sivashinsky fronts in moving fluid. The European Physical Journal Special Topics 2014, 223 (13) , 3001-3010. https://doi.org/10.1140/epjst/e2014-02313-9
    25. Éva Pópity-Tóth, Gábor Pótári, István Erdős, Dezső Horváth, Ágota Tóth. Marangoni instability in the iodate–arsenous acid reaction front. The Journal of Chemical Physics 2014, 141 (4) https://doi.org/10.1063/1.4890727
    26. P. M. Vilela, Desiderio A. Vasquez. Rayleigh-Taylor instability of steady fronts described by the Kuramoto-Sivashinsky equation. Chaos: An Interdisciplinary Journal of Nonlinear Science 2014, 24 (2) https://doi.org/10.1063/1.4883500
    27. Dezső Horváth, Marcello A. Budroni, Péter Bába, Laurence Rongy, Anne De Wit, Kerstin Eckert, Marcus J. B. Hauser, Ágota Tóth. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys. Chem. Chem. Phys. 2014, 16 (47) , 26279-26287. https://doi.org/10.1039/C4CP02480J
    28. Tamás Rica, Gábor Schuszter, Dezső Horváth, Ágota Tóth. Tuning density fingering by changing stoichiometry in the chlorite–tetrathionate reaction. Chemical Physics Letters 2013, 585 , 80-83. https://doi.org/10.1016/j.cplett.2013.09.001
    29. Hideki Nabika, Mami Sato, Kei Unoura. Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes. Phys. Chem. Chem. Phys. 2013, 15 (1) , 154-158. https://doi.org/10.1039/C2CP43153J
    30. Michael C. Rogers, Stephen W. Morris. The heads and tails of buoyant autocatalytic balls. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22 (3) https://doi.org/10.1063/1.4745209
    31. L. Rongy, P. Assemat, A. De Wit. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22 (3) https://doi.org/10.1063/1.4747711
    32. D. Levitán, A. D'Onofrio. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22 (3) https://doi.org/10.1063/1.4753924
    33. A. De Wit, K. Eckert, S. Kalliadasis. Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22 (3) https://doi.org/10.1063/1.4756930
    34. L. Šebestíková, M. J. B. Hauser. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves. Physical Review E 2012, 85 (3) https://doi.org/10.1103/PhysRevE.85.036303
    35. Drew Elliott, Desiderio A. Vasquez. Convection in stable and unstable fronts. Physical Review E 2012, 85 (1) https://doi.org/10.1103/PhysRevE.85.016207
    36. Hideki Nabika, Mami Sato, Kei Unoura. pH-Wave Propagation in the Microchannel Modified with pH-Responsive Molecule. e-Journal of Surface Science and Nanotechnology 2012, 10 (0) , 50-54. https://doi.org/10.1380/ejssnt.2012.50
    37. T. Gérard, A. De Wit. Stability of exothermic autocatalytic fronts with regard to buoyancy-driven instabilities in presence of heat losses. Wave Motion 2011, 48 (8) , 814-823. https://doi.org/10.1016/j.wavemoti.2011.04.018
    38. Desiderio A. Vasquez, Dan I. Coroian. Stability of convective patterns in reaction fronts: A comparison of three models. Chaos: An Interdisciplinary Journal of Nonlinear Science 2010, 20 (3) https://doi.org/10.1063/1.3467858
    39. J. D’Hernoncourt, A. De Wit. Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts. Physica D: Nonlinear Phenomena 2010, 239 (11) , 819-830. https://doi.org/10.1016/j.physd.2009.07.004
    40. N. Jarrige, I. Bou Malham, J. Martin, N. Rakotomalala, D. Salin, L. Talon. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. Physical Review E 2010, 81 (6) https://doi.org/10.1103/PhysRevE.81.066311
    41. J. D’Hernoncourt, J. H. Merkin, A. De Wit. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis. The Journal of Chemical Physics 2009, 130 (11) https://doi.org/10.1063/1.3077180
    42. Tamara Tóth, Dezsö Horváth, Ágota Tóth. Scaling law of stable single cells in density fingering of chemical fronts. The Journal of Chemical Physics 2008, 128 (14) https://doi.org/10.1063/1.2905814
    43. Desiderio A. Vasquez. Convective chemical fronts in a Poiseuille flow. Physical Review E 2007, 76 (5) https://doi.org/10.1103/PhysRevE.76.056308
    44. L. Rongy, N. Goyal, E. Meiburg, A. De Wit. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. The Journal of Chemical Physics 2007, 127 (11) https://doi.org/10.1063/1.2766956
    45. Tamara Tóth, Dezső Horváth, Ágota Tóth. Thermal effects in the density fingering of the chlorite–tetrathionate reaction. Chemical Physics Letters 2007, 442 (4-6) , 289-292. https://doi.org/10.1016/j.cplett.2007.05.085
    46. Gustavo García Casado, Lorena Tofaletti, Darío Müller, Alejandro D’Onofrio. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. The Journal of Chemical Physics 2007, 126 (11) https://doi.org/10.1063/1.2709884
    47. J. D’Hernoncourt, A. Zebib, A. De Wit. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts. Chaos: An Interdisciplinary Journal of Nonlinear Science 2007, 17 (1) https://doi.org/10.1063/1.2405129
    48. L. Šebestíková, J. D’Hernoncourt, M. J. B. Hauser, S. C. Müller, A. De Wit. Flow-field development during finger splitting at an exothermic chemical reaction front. Physical Review E 2007, 75 (2) https://doi.org/10.1103/PhysRevE.75.026309
    49. D. Horváth, S. Tóth, Á. Tóth. Periodic Heterogeneity-Driven Resonance Amplification in Density Fingering. Physical Review Letters 2006, 97 (19) https://doi.org/10.1103/PhysRevLett.97.194501
    50. D. Lima, A. D’Onofrio, A. De Wit. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: Self-similar scaling and influence of differential diffusion. The Journal of Chemical Physics 2006, 124 (1) https://doi.org/10.1063/1.2145746
    51. J. D’Hernoncourt, S. Kalliadasis, A. De Wit. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls. The Journal of Chemical Physics 2005, 123 (23) https://doi.org/10.1063/1.2136881
    52. Aleš Zadražil, Hana Ševčíková. Influence of an electric field on the buoyancy-driven instabilities. The Journal of Chemical Physics 2005, 123 (17) https://doi.org/10.1063/1.2102809
    53. Tamás Rica, Dezső Horváth, Ágota Tóth. Density fingering in acidity fronts: Effect of viscosity. Chemical Physics Letters 2005, 408 (4-6) , 422-425. https://doi.org/10.1016/j.cplett.2005.04.083
    54. A. Zadražil, I. Z. Kiss, J. D’Hernoncourt, H. Ševčíková, J. H. Merkin, A. De Wit. Effects of constant electric fields on the buoyant stability of reaction fronts. Physical Review E 2005, 71 (2) https://doi.org/10.1103/PhysRevE.71.026224
    55. Tamás Bánsági, Dezsö Horváth, Ágota Tóth. Nonlinear interactions in the density fingering of an acidity front. The Journal of Chemical Physics 2004, 121 (23) , 11912-11915. https://doi.org/10.1063/1.1814078
    56. Desiderio A. Vasquez. Chemical Instability Induced by a Shear Flow. Physical Review Letters 2004, 93 (10) https://doi.org/10.1103/PhysRevLett.93.104501
    57. S. Kalliadasis, J. Yang, A. De Wit. Fingering instabilities of exothermic reaction-diffusion fronts in porous media. Physics of Fluids 2004, 16 (5) , 1395-1409. https://doi.org/10.1063/1.1689912
    58. Tamás Bánsági, Dezső Horváth, Ágota Tóth. Multicomponent convection in the chlorite–tetrathionate reaction. Chemical Physics Letters 2004, 384 (1-3) , 153-156. https://doi.org/10.1016/j.cplett.2003.12.018
    59. A. De Wit. Miscible density fingering of chemical fronts in porous media: Nonlinear simulations. Physics of Fluids 2004, 16 (1) , 163-175. https://doi.org/10.1063/1.1630576
    60. A. De Wit, P. De Kepper, K. Benyaich, G. Dewel, P. Borckmans. Hydrodynamical instability of spatially extended bistable chemical systems. Chemical Engineering Science 2003, 58 (21) , 4823-4831. https://doi.org/10.1016/j.ces.2002.11.003
    61. Dan I. Coroian, Desiderio A. Vasquez. The effect of the order of autocatalysis for reaction fronts in vertical slabs. The Journal of Chemical Physics 2003, 119 (6) , 3354-3359. https://doi.org/10.1063/1.1590955
    62. Tamás Bánsági, Dezső Horváth, Ágota Tóth. Convective instability of an acidity front in Hele-Shaw cells. Physical Review E 2003, 68 (2) https://doi.org/10.1103/PhysRevE.68.026303
    63. J. Yang, A. D’Onofrio, S. Kalliadasis, A. De Wit. Rayleigh–Taylor instability of reaction-diffusion acidity fronts. The Journal of Chemical Physics 2002, 117 (20) , 9395-9408. https://doi.org/10.1063/1.1516595
    64. Dezső Horváth, Tamás Bánsági, Ágota Tóth. Orientation-dependent density fingering in an acidity front. The Journal of Chemical Physics 2002, 117 (9) , 4399-4402. https://doi.org/10.1063/1.1497163
    65. Desiderio A. Vasquez, Erik Thoreson. Convection in chemical fronts with quadratic and cubic autocatalysis. Chaos: An Interdisciplinary Journal of Nonlinear Science 2002, 12 (1) , 49-55. https://doi.org/10.1063/1.1436500
    66. Martin Böckmann, Stefan C. Müller. Growth Rates of the Buoyancy-Driven Instability of an Autocatalytic Reaction Front in a Narrow Cell. Physical Review Letters 2000, 85 (12) , 2506-2509. https://doi.org/10.1103/PhysRevLett.85.2506
    67. Vicente Pérez-Villar, Alberto P. Muñuzuri, Vicente Pérez-Muñuzuri. Convective structures in a two-layer gel-liquid excitable medium. Physical Review E 2000, 61 (4) , 3771-3776. https://doi.org/10.1103/PhysRevE.61.3771
    68. Nadia Marchettini, Mauro Rustici. Effect of medium viscosity in a closed unstirred Belousov–Zhabotinsky system. Chemical Physics Letters 2000, 317 (6) , 647-651. https://doi.org/10.1016/S0009-2614(99)01411-6
    69. Hana Ševčíková, Stefan C. Müller. Electric-field-induced front deformation of Belousov-Zhabotinsky waves. Physical Review E 1999, 60 (1) , 532-538. https://doi.org/10.1103/PhysRevE.60.532
    70. A. De Wit, G. M. Homsy. Viscous fingering in reaction-diffusion systems. The Journal of Chemical Physics 1999, 110 (17) , 8663-8675. https://doi.org/10.1063/1.478774
    71. Desiderio A. Vasquez, Casey Lengacher. Linear stability analysis of convective chemical fronts in a vertical slab. Physical Review E 1998, 58 (5) , 6865-6868. https://doi.org/10.1103/PhysRevE.58.6865
    72. B. McCaughey, J. A. Pojman, C. Simmons, V. A. Volpert. The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments. Chaos: An Interdisciplinary Journal of Nonlinear Science 1998, 8 (2) , 520-529. https://doi.org/10.1063/1.166333
    73. K. A. Cliffe, S. J. Tavener, H. Wilke. Convective effects on a propagating reaction front. Physics of Fluids 1998, 10 (3) , 730-741. https://doi.org/10.1063/1.869597
    74. Desiderio A. Vasquez. Linear stability analysis of convective chemical fronts. Physical Review E 1997, 56 (6) , 6767-6773. https://doi.org/10.1103/PhysRevE.56.6767
    75. Matthew Marlow, Yuji Sasaki, Desiderio A. Vasquez. Spatiotemporal behavior of convective Turing patterns in porous media. The Journal of Chemical Physics 1997, 107 (13) , 5205-5211. https://doi.org/10.1063/1.474883
    76. Joseph Wilder, Desiderio Vasquez, Boyd Edwards. Nonlinear front evolution of hydrodynamic chemical waves in vertical cylinders. Physical Review E 1997, 56 (3) , 3016-3020. https://doi.org/10.1103/PhysRevE.56.3016
    77. Michael A. Allen, John Brindley, John H. Merkin, Michael J. Pilling. Autocatalysis in a shear flow. Physical Review E 1996, 54 (2) , 2140-2142. https://doi.org/10.1103/PhysRevE.54.2140
    78. Kai Matthiessen, Hermann Wilke, Stefan C. Müller. Influence of surface tension changes on hydrodynamic flow induced by traveling chemical waves. Physical Review E 1996, 53 (6) , 6056-6060. https://doi.org/10.1103/PhysRevE.53.6056
    79. Joseph W. Wilder, Desiderio A. Vasquez, Boyd F. Edwards. Simulation of nonlinear front evolution equations for two dimensional chemical waves involving convection. Physica D: Nonlinear Phenomena 1996, 90 (1-2) , 170-178. https://doi.org/10.1016/0167-2789(95)00224-3
    80. Yunqing Wu, Desiderio A. Vasquez, Boyd F. Edwards, Joseph W. Wilder. Transitions between convective patterns in chemical fronts. Physical Review E 1995, 52 (6) , 6175-6182. https://doi.org/10.1103/PhysRevE.52.6175
    81. Osamu Inomoto, Takayuki Ariyoshi, Seiji Inanaga, Shoichi Kai. Depth Dependence of the Big Wave in Belousov-Zhabotinsky Reaction. Journal of the Physical Society of Japan 1995, 64 (10) , 3602-3605. https://doi.org/10.1143/JPSJ.64.3602
    82. Hermann Wilke. Interaction of traveling chemical waves with density driven hydrodynamic flows. Physica D: Nonlinear Phenomena 1995, 86 (3) , 508-513. https://doi.org/10.1016/0167-2789(95)00183-5
    83. Yunqing Wu, Desiderio A. Vasquez, Boyd F. Edwards, Joseph W. Wilder. Convective chemical-wave propagation in the Belousov-Zhabotinsky reaction. Physical Review E 1995, 51 (2) , 1119-1127. https://doi.org/10.1103/PhysRevE.51.1119

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect