Nonaxisymmetric and Axisymmetric Convection in Propagating Reaction-Diffusion Fronts
Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 83 publications.
- Masaki Itatani, Qing Fang, Kei Unoura, and Hideki Nabika . Role of Nuclei in Liesegang Pattern Formation: Insights from Experiment and Reaction-Diffusion Simulation. The Journal of Physical Chemistry C 2018, 122
(6)
, 3669-3676. https://doi.org/10.1021/acs.jpcc.7b12688
- Miyu Arai, Kazuhiro Takahashi, Mika Hattori, Takahiko Hasegawa, Mami Sato, Kei Unoura, and Hideki Nabika . One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel. The Journal of Physical Chemistry B 2016, 120
(20)
, 4654-4660. https://doi.org/10.1021/acs.jpcb.6b02850
- Tamás Rica, Dezsö Horváth and Ágota Tóth. Viscosity-Change-Induced Density Fingering in Polyelectrolytes. The Journal of Physical Chemistry B 2008, 112
(46)
, 14593-14596. https://doi.org/10.1021/jp802450r
- Melanie M. Britton. Nuclear Magnetic Resonance Studies of Convection in the 1,4-Cyclohexanedione−Bromate−Acid Reaction. The Journal of Physical Chemistry A 2006, 110
(15)
, 5075-5080. https://doi.org/10.1021/jp0564851
- Hiroyuki Kitahata,, Ryoichi Aihara,, Yoshihito Mori, and, Kenichi Yoshikawa. Slowing and Stopping of Chemical Waves in a Narrowing Canal. The Journal of Physical Chemistry B 2004, 108
(49)
, 18956-18959. https://doi.org/10.1021/jp048003b
- A. J. Pons,, F. Sagués,, M. A. Bees, and, P. Graae Sørensen. Pattern Formation in the Methylene-Blue−Glucose System. The Journal of Physical Chemistry B 2000, 104
(10)
, 2251-2259. https://doi.org/10.1021/jp9935788
- Andrea Komlósi,, István Péter Nagy, and, György Bazsa, , John A. Pojman. Convective Chemical Fronts in the 1,4-Cyclohexanedione−Bromate−Sulfuric Acid−Ferroin System. The Journal of Physical Chemistry A 1998, 102
(46)
, 9136-9141. https://doi.org/10.1021/jp981557s
- Shuko Fujieda,, Yoshihiro Mogamia,, Atsuko Furuya,, Wei Zhang, and, Tsunehisa Araiso. Effect of Microgravity on the Spatial Oscillation Behavior of Belousov−Zhabotinsky Reactions Catalyzed by Ferroin. The Journal of Physical Chemistry A 1997, 101
(43)
, 7926-7928. https://doi.org/10.1021/jp9702154
- B. Legawiec and, A. L. Kawczyński. Influence of the Bénard Rolls on the Traveling Impulse in the Belousov−Zhabotinsky Reaction. The Journal of Physical Chemistry A 1997, 101
(43)
, 8063-8069. https://doi.org/10.1021/jp972021u
- Gina Bowden,, Marc Garbey,, Victor M. Ilyashenko,, John A. Pojman,, Stanislav E. Solovyov,, Ahmed Taik, and, Vitaly A. Volpert. Effect of Convection on a Propagating Front with a Solid Product: Comparison of Theory and Experiments. The Journal of Physical Chemistry B 1997, 101
(4)
, 678-686. https://doi.org/10.1021/jp962354b
- John A. Pojman,, Andrea Komlósi, and, Istvan P. Nagy. Double-Diffusive Convection in Traveling Waves in the Iodate−Sulfite System Explained. The Journal of Physical Chemistry 1996, 100
(40)
, 16209-16212. https://doi.org/10.1021/jp9613910
- Rodrigo Rivadeneira, Desiderio A. Vasquez. Transitions between convective reaction fronts in a Poiseuille flow. Meccanica 2023, 58
(4)
, 699-710. https://doi.org/10.1007/s11012-023-01643-8
- Anne-Déborah C. Nguindjel, Pieter J. de Visser, Mitch Winkens, Peter A. Korevaar. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Physical Chemistry Chemical Physics 2022, 24
(39)
, 23980-24001. https://doi.org/10.1039/D2CP02542F
- S. Mukherjee, M.R. Paul. The fluid dynamics of propagating fronts with solutal and thermal coupling. Journal of Fluid Mechanics 2022, 942 https://doi.org/10.1017/jfm.2022.375
- S. Mukherjee, M. R. Paul. Propagating fronts in fluids with solutal feedback. Physical Review E 2020, 101
(3)
https://doi.org/10.1103/PhysRevE.101.032214
- Johan Llamoza, Desiderio A. Vasquez. Structures and Instabilities in Reaction Fronts Separating Fluids of Different Densities. Mathematical and Computational Applications 2019, 24
(2)
, 51. https://doi.org/10.3390/mca24020051
- C. Rana, A. De Wit. Reaction-driven oscillating viscous fingering. Chaos: An Interdisciplinary Journal of Nonlinear Science 2019, 29
(4)
https://doi.org/10.1063/1.5089028
- Osamu Inomoto, Stefan C. Müller, Ryo Kobayashi, Marcus J. B. Hauser. Acceleration of chemical reaction fronts. The European Physical Journal Special Topics 2018, 227
(5-6)
, 493-507. https://doi.org/10.1140/epjst/e2018-00074-6
- Dan Coroian, Desiderio A. Vasquez. Oscillatory instability in a reaction front separating fluids of different densities. Physical Review E 2018, 98
(2)
https://doi.org/10.1103/PhysRevE.98.023102
- Roberto Guzman, Desiderio A. Vasquez. Marangoni flow traveling with reaction fronts: Eikonal approximation. Chaos: An Interdisciplinary Journal of Nonlinear Science 2017, 27
(10)
https://doi.org/10.1063/1.5008891
- David R. A. Ruelas Paredes, Desiderio A. Vasquez. Convection induced by thermal gradients on thin reaction fronts. Physical Review E 2017, 96
(3)
https://doi.org/10.1103/PhysRevE.96.033116
- P.M. Vilela, Desiderio A. Vasquez. The effects of fluid motion on oscillatory and chaotic fronts. The European Physical Journal Special Topics 2016, 225
(13-14)
, 2563-2572. https://doi.org/10.1140/epjst/e2016-60003-5
- Roberto Guzman, Desiderio A. Vasquez. Surface tension driven flow on a thin reaction front. The European Physical Journal Special Topics 2016, 225
(13-14)
, 2573-2580. https://doi.org/10.1140/epjst/e2016-60026-4
- P. M. Vilela, Desiderio A. Vasquez. Stability of Kuramoto-Sivashinsky fronts in moving fluid. The European Physical Journal Special Topics 2014, 223
(13)
, 3001-3010. https://doi.org/10.1140/epjst/e2014-02313-9
- Éva Pópity-Tóth, Gábor Pótári, István Erdős, Dezső Horváth, Ágota Tóth. Marangoni instability in the iodate–arsenous acid reaction front. The Journal of Chemical Physics 2014, 141
(4)
https://doi.org/10.1063/1.4890727
- P. M. Vilela, Desiderio A. Vasquez. Rayleigh-Taylor instability of steady fronts described by the Kuramoto-Sivashinsky equation. Chaos: An Interdisciplinary Journal of Nonlinear Science 2014, 24
(2)
https://doi.org/10.1063/1.4883500
- Dezső Horváth, Marcello A. Budroni, Péter Bába, Laurence Rongy, Anne De Wit, Kerstin Eckert, Marcus J. B. Hauser, Ágota Tóth. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys. Chem. Chem. Phys. 2014, 16
(47)
, 26279-26287. https://doi.org/10.1039/C4CP02480J
- Tamás Rica, Gábor Schuszter, Dezső Horváth, Ágota Tóth. Tuning density fingering by changing stoichiometry in the chlorite–tetrathionate reaction. Chemical Physics Letters 2013, 585 , 80-83. https://doi.org/10.1016/j.cplett.2013.09.001
- Hideki Nabika, Mami Sato, Kei Unoura. Microchannel-induced change of chemical wave propagation dynamics: importance of ratio between the inlet and the channel sizes. Phys. Chem. Chem. Phys. 2013, 15
(1)
, 154-158. https://doi.org/10.1039/C2CP43153J
- Michael C. Rogers, Stephen W. Morris. The heads and tails of buoyant autocatalytic balls. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22
(3)
https://doi.org/10.1063/1.4745209
- L. Rongy, P. Assemat, A. De Wit. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22
(3)
https://doi.org/10.1063/1.4747711
- D. Levitán, A. D'Onofrio. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22
(3)
https://doi.org/10.1063/1.4753924
- A. De Wit, K. Eckert, S. Kalliadasis. Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities. Chaos: An Interdisciplinary Journal of Nonlinear Science 2012, 22
(3)
https://doi.org/10.1063/1.4756930
- L. Šebestíková, M. J. B. Hauser. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves. Physical Review E 2012, 85
(3)
https://doi.org/10.1103/PhysRevE.85.036303
- Drew Elliott, Desiderio A. Vasquez. Convection in stable and unstable fronts. Physical Review E 2012, 85
(1)
https://doi.org/10.1103/PhysRevE.85.016207
- Hideki Nabika, Mami Sato, Kei Unoura. pH-Wave Propagation in the Microchannel Modified with pH-Responsive Molecule. e-Journal of Surface Science and Nanotechnology 2012, 10
(0)
, 50-54. https://doi.org/10.1380/ejssnt.2012.50
- T. Gérard, A. De Wit. Stability of exothermic autocatalytic fronts with regard to buoyancy-driven instabilities in presence of heat losses. Wave Motion 2011, 48
(8)
, 814-823. https://doi.org/10.1016/j.wavemoti.2011.04.018
- Desiderio A. Vasquez, Dan I. Coroian. Stability of convective patterns in reaction fronts: A comparison of three models. Chaos: An Interdisciplinary Journal of Nonlinear Science 2010, 20
(3)
https://doi.org/10.1063/1.3467858
- J. D’Hernoncourt, A. De Wit. Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts. Physica D: Nonlinear Phenomena 2010, 239
(11)
, 819-830. https://doi.org/10.1016/j.physd.2009.07.004
- N. Jarrige, I. Bou Malham, J. Martin, N. Rakotomalala, D. Salin, L. Talon. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. Physical Review E 2010, 81
(6)
https://doi.org/10.1103/PhysRevE.81.066311
- J. D’Hernoncourt, J. H. Merkin, A. De Wit. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis. The Journal of Chemical Physics 2009, 130
(11)
https://doi.org/10.1063/1.3077180
- Tamara Tóth, Dezsö Horváth, Ágota Tóth. Scaling law of stable single cells in density fingering of chemical fronts. The Journal of Chemical Physics 2008, 128
(14)
https://doi.org/10.1063/1.2905814
- Desiderio A. Vasquez. Convective chemical fronts in a Poiseuille flow. Physical Review E 2007, 76
(5)
https://doi.org/10.1103/PhysRevE.76.056308
- L. Rongy, N. Goyal, E. Meiburg, A. De Wit. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. The Journal of Chemical Physics 2007, 127
(11)
https://doi.org/10.1063/1.2766956
- Tamara Tóth, Dezső Horváth, Ágota Tóth. Thermal effects in the density fingering of the chlorite–tetrathionate reaction. Chemical Physics Letters 2007, 442
(4-6)
, 289-292. https://doi.org/10.1016/j.cplett.2007.05.085
- Gustavo García Casado, Lorena Tofaletti, Darío Müller, Alejandro D’Onofrio. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. The Journal of Chemical Physics 2007, 126
(11)
https://doi.org/10.1063/1.2709884
- J. D’Hernoncourt, A. Zebib, A. De Wit. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts. Chaos: An Interdisciplinary Journal of Nonlinear Science 2007, 17
(1)
https://doi.org/10.1063/1.2405129
- L. Šebestíková, J. D’Hernoncourt, M. J. B. Hauser, S. C. Müller, A. De Wit. Flow-field development during finger splitting at an exothermic chemical reaction front. Physical Review E 2007, 75
(2)
https://doi.org/10.1103/PhysRevE.75.026309
- D. Horváth, S. Tóth, Á. Tóth. Periodic Heterogeneity-Driven Resonance Amplification in Density Fingering. Physical Review Letters 2006, 97
(19)
https://doi.org/10.1103/PhysRevLett.97.194501
- D. Lima, A. D’Onofrio, A. De Wit. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: Self-similar scaling and influence of differential diffusion. The Journal of Chemical Physics 2006, 124
(1)
https://doi.org/10.1063/1.2145746
- J. D’Hernoncourt, S. Kalliadasis, A. De Wit. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls. The Journal of Chemical Physics 2005, 123
(23)
https://doi.org/10.1063/1.2136881
- Aleš Zadražil, Hana Ševčíková. Influence of an electric field on the buoyancy-driven instabilities. The Journal of Chemical Physics 2005, 123
(17)
https://doi.org/10.1063/1.2102809
- Tamás Rica, Dezső Horváth, Ágota Tóth. Density fingering in acidity fronts: Effect of viscosity. Chemical Physics Letters 2005, 408
(4-6)
, 422-425. https://doi.org/10.1016/j.cplett.2005.04.083
- A. Zadražil, I. Z. Kiss, J. D’Hernoncourt, H. Ševčíková, J. H. Merkin, A. De Wit. Effects of constant electric fields on the buoyant stability of reaction fronts. Physical Review E 2005, 71
(2)
https://doi.org/10.1103/PhysRevE.71.026224
- Tamás Bánsági, Dezsö Horváth, Ágota Tóth. Nonlinear interactions in the density fingering of an acidity front. The Journal of Chemical Physics 2004, 121
(23)
, 11912-11915. https://doi.org/10.1063/1.1814078
- Desiderio A. Vasquez. Chemical Instability Induced by a Shear Flow. Physical Review Letters 2004, 93
(10)
https://doi.org/10.1103/PhysRevLett.93.104501
- S. Kalliadasis, J. Yang, A. De Wit. Fingering instabilities of exothermic reaction-diffusion fronts in porous media. Physics of Fluids 2004, 16
(5)
, 1395-1409. https://doi.org/10.1063/1.1689912
- Tamás Bánsági, Dezső Horváth, Ágota Tóth. Multicomponent convection in the chlorite–tetrathionate reaction. Chemical Physics Letters 2004, 384
(1-3)
, 153-156. https://doi.org/10.1016/j.cplett.2003.12.018
- A. De Wit. Miscible density fingering of chemical fronts in porous media: Nonlinear simulations. Physics of Fluids 2004, 16
(1)
, 163-175. https://doi.org/10.1063/1.1630576
- A. De Wit, P. De Kepper, K. Benyaich, G. Dewel, P. Borckmans. Hydrodynamical instability of spatially extended bistable chemical systems. Chemical Engineering Science 2003, 58
(21)
, 4823-4831. https://doi.org/10.1016/j.ces.2002.11.003
- Dan I. Coroian, Desiderio A. Vasquez. The effect of the order of autocatalysis for reaction fronts in vertical slabs. The Journal of Chemical Physics 2003, 119
(6)
, 3354-3359. https://doi.org/10.1063/1.1590955
- Tamás Bánsági, Dezső Horváth, Ágota Tóth. Convective instability of an acidity front in Hele-Shaw cells. Physical Review E 2003, 68
(2)
https://doi.org/10.1103/PhysRevE.68.026303
- J. Yang, A. D’Onofrio, S. Kalliadasis, A. De Wit. Rayleigh–Taylor instability of reaction-diffusion acidity fronts. The Journal of Chemical Physics 2002, 117
(20)
, 9395-9408. https://doi.org/10.1063/1.1516595
- Dezső Horváth, Tamás Bánsági, Ágota Tóth. Orientation-dependent density fingering in an acidity front. The Journal of Chemical Physics 2002, 117
(9)
, 4399-4402. https://doi.org/10.1063/1.1497163
- Desiderio A. Vasquez, Erik Thoreson. Convection in chemical fronts with quadratic and cubic autocatalysis. Chaos: An Interdisciplinary Journal of Nonlinear Science 2002, 12
(1)
, 49-55. https://doi.org/10.1063/1.1436500
- Martin Böckmann, Stefan C. Müller. Growth Rates of the Buoyancy-Driven Instability of an Autocatalytic Reaction Front in a Narrow Cell. Physical Review Letters 2000, 85
(12)
, 2506-2509. https://doi.org/10.1103/PhysRevLett.85.2506
- Vicente Pérez-Villar, Alberto P. Muñuzuri, Vicente Pérez-Muñuzuri. Convective structures in a two-layer gel-liquid excitable medium. Physical Review E 2000, 61
(4)
, 3771-3776. https://doi.org/10.1103/PhysRevE.61.3771
- Nadia Marchettini, Mauro Rustici. Effect of medium viscosity in a closed unstirred Belousov–Zhabotinsky system. Chemical Physics Letters 2000, 317
(6)
, 647-651. https://doi.org/10.1016/S0009-2614(99)01411-6
- Hana Ševčíková, Stefan C. Müller. Electric-field-induced front deformation of Belousov-Zhabotinsky waves. Physical Review E 1999, 60
(1)
, 532-538. https://doi.org/10.1103/PhysRevE.60.532
- A. De Wit, G. M. Homsy. Viscous fingering in reaction-diffusion systems. The Journal of Chemical Physics 1999, 110
(17)
, 8663-8675. https://doi.org/10.1063/1.478774
- Desiderio A. Vasquez, Casey Lengacher. Linear stability analysis of convective chemical fronts in a vertical slab. Physical Review E 1998, 58
(5)
, 6865-6868. https://doi.org/10.1103/PhysRevE.58.6865
- B. McCaughey, J. A. Pojman, C. Simmons, V. A. Volpert. The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments. Chaos: An Interdisciplinary Journal of Nonlinear Science 1998, 8
(2)
, 520-529. https://doi.org/10.1063/1.166333
- K. A. Cliffe, S. J. Tavener, H. Wilke. Convective effects on a propagating reaction front. Physics of Fluids 1998, 10
(3)
, 730-741. https://doi.org/10.1063/1.869597
- Desiderio A. Vasquez. Linear stability analysis of convective chemical fronts. Physical Review E 1997, 56
(6)
, 6767-6773. https://doi.org/10.1103/PhysRevE.56.6767
- Matthew Marlow, Yuji Sasaki, Desiderio A. Vasquez. Spatiotemporal behavior of convective Turing patterns in porous media. The Journal of Chemical Physics 1997, 107
(13)
, 5205-5211. https://doi.org/10.1063/1.474883
- Joseph Wilder, Desiderio Vasquez, Boyd Edwards. Nonlinear front evolution of hydrodynamic chemical waves in vertical cylinders. Physical Review E 1997, 56
(3)
, 3016-3020. https://doi.org/10.1103/PhysRevE.56.3016
- Michael A. Allen, John Brindley, John H. Merkin, Michael J. Pilling. Autocatalysis in a shear flow. Physical Review E 1996, 54
(2)
, 2140-2142. https://doi.org/10.1103/PhysRevE.54.2140
- Kai Matthiessen, Hermann Wilke, Stefan C. Müller. Influence of surface tension changes on hydrodynamic flow induced by traveling chemical waves. Physical Review E 1996, 53
(6)
, 6056-6060. https://doi.org/10.1103/PhysRevE.53.6056
- Joseph W. Wilder, Desiderio A. Vasquez, Boyd F. Edwards. Simulation of nonlinear front evolution equations for two dimensional chemical waves involving convection. Physica D: Nonlinear Phenomena 1996, 90
(1-2)
, 170-178. https://doi.org/10.1016/0167-2789(95)00224-3
- Yunqing Wu, Desiderio A. Vasquez, Boyd F. Edwards, Joseph W. Wilder. Transitions between convective patterns in chemical fronts. Physical Review E 1995, 52
(6)
, 6175-6182. https://doi.org/10.1103/PhysRevE.52.6175
- Osamu Inomoto, Takayuki Ariyoshi, Seiji Inanaga, Shoichi Kai. Depth Dependence of the Big Wave in Belousov-Zhabotinsky Reaction. Journal of the Physical Society of Japan 1995, 64
(10)
, 3602-3605. https://doi.org/10.1143/JPSJ.64.3602
- Hermann Wilke. Interaction of traveling chemical waves with density driven hydrodynamic flows. Physica D: Nonlinear Phenomena 1995, 86
(3)
, 508-513. https://doi.org/10.1016/0167-2789(95)00183-5
- Yunqing Wu, Desiderio A. Vasquez, Boyd F. Edwards, Joseph W. Wilder. Convective chemical-wave propagation in the Belousov-Zhabotinsky reaction. Physical Review E 1995, 51
(2)
, 1119-1127. https://doi.org/10.1103/PhysRevE.51.1119