ACS Publications. Most Trusted. Most Cited. Most Read
Thermodynamics of hydrogen-bonded fluids: effects of bond cooperativity
My Activity

Figure 1Loading Img
    Letter

    Thermodynamics of hydrogen-bonded fluids: effects of bond cooperativity
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1993, 97, 28, 7144–7146
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100130a006
    Published July 1, 1993

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 32 publications.

    1. Cédric Carteret. Mid- and Near-Infrared Study of Hydroxyl Groups at a Silica Surface: H-Bond Effect. The Journal of Physical Chemistry C 2009, 113 (30) , 13300-13308. https://doi.org/10.1021/jp9008724
    2. Adam Moroz. A Variational Framework for Nonlinear Chemical Thermodynamics Employing the Maximum Energy Dissipation Principle. The Journal of Physical Chemistry B 2009, 113 (23) , 8086-8090. https://doi.org/10.1021/jp9015646
    3. Hai-Jun Wang,, Xiao-Zhong Hong, and, Xin-Wu Ba. Sol−Gel Transition in Nonlinear Hydrogen Bonding Solutions. Macromolecules 2007, 40 (15) , 5593-5598. https://doi.org/10.1021/ma0702804
    4. Kasia Aeberhardt,, Quang D. Bui, and, Valéry Normand. Using Low-Field NMR To Infer the Physical Properties of Glassy Oligosaccharide/Water Mixtures. Biomacromolecules 2007, 8 (3) , 1038-1046. https://doi.org/10.1021/bm061054p
    5. Shiao-Wei Kuo,, Shih-Chi Chan,, Hew-Der Wu, and, Feng-Chih Chang. An Unusual, Completely Miscible, Ternary Hydrogen-Bonded Polymer Blend of Phenoxy, Phenolic, and PCL. Macromolecules 2005, 38 (11) , 4729-4736. https://doi.org/10.1021/ma047371a
    6. Stephen J. Barlow,, Galina V. Bondarenko,, Yuri E. Gorbaty,, Toshio Yamaguchi, and, Martyn Poliakoff . An IR Study of Hydrogen Bonding in Liquid and Supercritical Alcohols. The Journal of Physical Chemistry A 2002, 106 (43) , 10452-10460. https://doi.org/10.1021/jp0135095
    7. Boris A. Veytsman. Absence of Phase Transitions in the Hydrogen Bond Subsystem of Associated Fluids. The Journal of Physical Chemistry B 2000, 104 (47) , 11283-11285. https://doi.org/10.1021/jp002670x
    8. Amadeu K. Sum and, Stanley I. Sandler. Ab Initio Calculations of Cooperativity Effects on Clusters of Methanol, Ethanol, 1-Propanol, and Methanethiol. The Journal of Physical Chemistry A 2000, 104 (6) , 1121-1129. https://doi.org/10.1021/jp993094b
    9. Boris Veytsman. Equation of State for Hydrogen-Bonded Systems. The Journal of Physical Chemistry B 1998, 102 (39) , 7515-7517. https://doi.org/10.1021/jp981782+
    10. Doukeni Missopolinou and, Costas Panayiotou. Hydrogen-Bonding Cooperativity and Competing Inter- and Intramolecular Associations:  A Unified Approach. The Journal of Physical Chemistry A 1998, 102 (20) , 3574-3581. https://doi.org/10.1021/jp980211e
    11. Gust Popelier, Gilles Dossche, Sphurti Prakash Kulkarni, Florence Vermeire, Maarten Sabbe, Kevin M. Van Geem. A critical review of the Influence of Supercritical Water on the Pyrolysis of Plastic Waste: Modelling Approaches and Process Effects. Journal of Analytical and Applied Pyrolysis 2024, 44 , 106805. https://doi.org/10.1016/j.jaap.2024.106805
    12. Rafael de P. Soares, Paula B. Staudt. Unraveling order and entropy with modern quasi-chemical models. Fluid Phase Equilibria 2024, 583 , 114113. https://doi.org/10.1016/j.fluid.2024.114113
    13. P. Wieth, M. Vogel. Dynamical and structural properties of monohydroxy alcohols exhibiting a Debye process. The Journal of Chemical Physics 2014, 140 (14) https://doi.org/10.1063/1.4870654
    14. Bennett D. Marshall, Walter G. Chapman. Resummed thermodynamic perturbation theory for bond cooperativity in associating fluids. The Journal of Chemical Physics 2013, 139 (21) https://doi.org/10.1063/1.4834637
    15. Hai-Jun Wang, Xiao-Zhong Hong, Xin-Wu Ba. The geometrical phase transition in non-linear hydrogen bonding systems. Chemical Physics Letters 2005, 413 (1-3) , 221-225. https://doi.org/10.1016/j.cplett.2005.07.089
    16. Wang Hai-Jun, Hong Xiao-Zhong, Ba Xin-Wu. Statistics and Dynamics for the A a -D d Type hydrogen Bonding System. Chinese Physics Letters 2003, 20 (7) , 1158-1160. https://doi.org/10.1088/0256-307X/20/7/354
    17. Costas Panayiotou. Hydrogen Bonding in Solutions. 2002https://doi.org/10.1201/9781420040944.ch2
    18. Poongunran Muthukumaran, Ray L. Brinkley, Ram B. Gupta. Lattice‐fluid equation of state with hydrogen‐bond cooperativity. AIChE Journal 2002, 48 (2) , 386-392. https://doi.org/10.1002/aic.690480221
    19. Hun Yong Shin, Masashi Haruki, Ki-Pung Yoo, Yoshio Iwai, Yasuhiko Arai. Phase behavior of water + hydrocarbon binary systems by using multi-fluid nonrandom lattice hydrogen bonding theory. Fluid Phase Equilibria 2001, 189 (1-2) , 49-61. https://doi.org/10.1016/S0378-3812(01)00563-5
    20. C.S. Lee, K.-P. Yoo, B.H. Park, J.W. Kang. On the Veytsman statistics as applied to non-random lattice fluid equations of state. Fluid Phase Equilibria 2001, 187-188 , 433-441. https://doi.org/10.1016/S0378-3812(01)00555-6
    21. Hai-jun Wang, Xin-wu Ba, Min Zhao, Ze-Sheng Li. The scaling study for the hydrogen bonding networks. Chemical Physics Letters 2001, 342 (3-4) , 347-352. https://doi.org/10.1016/S0009-2614(01)00589-9
    22. Wang Hai-Jun, Hong Xiao-Zhong, Zhao Min, Ba Xin-Wu. Statistical Parameters for Hydrogen Bonding Networks: One Component Case. Chinese Physics Letters 2001, 18 (6) , 764-766. https://doi.org/10.1088/0256-307X/18/6/317
    23. Ki-Pung Yoo, Chul Soo Lee. Rediscovering the lattice-fluid theory for phase equilibria of complex mixtures. Korean Journal of Chemical Engineering 2000, 17 (3) , 257-261. https://doi.org/10.1007/BF02699036
    24. Hai-Jun Wang, Xin-Wu Ba, Min Zhao, Ze-Sheng Li. A Statistical Theory for Hydrogen Bonding Networks: One Component Case. Chinese Physics Letters 2000, 17 (1) , 16-18. https://doi.org/10.1088/0256-307X/17/1/006
    25. S. J. Suresh, V. M. Naik. A multilayer theory for interfacial properties of systems containing hydrogen bonding molecules. The Journal of Chemical Physics 1998, 109 (14) , 6021-6042. https://doi.org/10.1063/1.477228
    26. Ram B. Gupta, Ray L. Brinkley. Hydrogen‐bond cooperativity in 1‐alkanol + n ‐alkane binary mixtures. AIChE Journal 1998, 44 (1) , 207-213. https://doi.org/10.1002/aic.690440122
    27. Richard P. Sear, George Jackson. Thermodynamic perturbation theory for association with bond cooperativity. The Journal of Chemical Physics 1996, 105 (3) , 1113-1120. https://doi.org/10.1063/1.471955
    28. Boris A. Veytsman. Theory of nematic phases in solutions of rodlike molecules with hydrogen bonds. The Journal of Chemical Physics 1995, 103 (6) , 2237-2246. https://doi.org/10.1063/1.469699
    29. Bretta F. King, Frank Weinhold. Structure and spectroscopy of (HCN) n clusters: Cooperative and electronic delocalization effects in C–H⋅⋅⋅N hydrogen bonding. The Journal of Chemical Physics 1995, 103 (1) , 333-347. https://doi.org/10.1063/1.469645
    30. Boris A. Veytsman. Liquid crystalline order in fluids with hydrogen bonds. Liquid Crystals 1995, 18 (4) , 595-600. https://doi.org/10.1080/02678299508036662
    31. Michael M. Coleman, Paul C. Painter. Hydrogen bonded polymer blends. Progress in Polymer Science 1995, 20 (1) , 1-59. https://doi.org/10.1016/0079-6700(94)00038-4
    32. Baudilio Coto, Albertina Cabañas, Concepción Pando, Carlos Menduiña, Ramón G. Rubio, Juan A. R. Renuncio. Bulk and surface properties of the highly non-ideal associated mixtures formed by methanol and propanal. J. Chem. Soc., Faraday Trans. 1995, 91 (17) , 2779-2787. https://doi.org/10.1039/FT9959102779

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1993, 97, 28, 7144–7146
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100130a006
    Published July 1, 1993

    Article Views

    129

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.