ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A discharge flow-photoionization mass spectrometric study of hydroxymethyl radicals (H2COH and H2COD): photoionization spectrum and ionization energy

Cite this: J. Phys. Chem. 1992, 96, 1, 104–107
Publication Date (Print):January 1, 1992
https://doi.org/10.1021/j100180a023
ACS Legacy Archive

Article Views

126

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (504 KB)

Note: In lieu of an abstract, this is the article's first page.

Free first page

Cited By

This article is cited by 47 publications.

  1. Anna Kristina Schnack-Petersen, Torsha Moitra, Sarai Dery Folkestad, Sonia Coriani. New Implementation of an Equation-of-Motion Coupled-Cluster Damped-Response Framework with Illustrative Applications to Resonant Inelastic X-ray Scattering. The Journal of Physical Chemistry A 2023, 127 (7) , 1775-1793. https://doi.org/10.1021/acs.jpca.2c08181
  2. Younes Valadbeigi, Tim Causon. Significance of Competitive Reactions in an Atmospheric Pressure Chemical Ionization Ion Source: Effect of Solvent. Journal of the American Society for Mass Spectrometry 2022, 33 (6) , 961-973. https://doi.org/10.1021/jasms.2c00034
  3. Steven D. Chambreau, Denisia M. Popolan-Vaida, Oleg Kostko, Jae Kyoo Lee, Zhenpeng Zhou, Timothy A. Brown, Paul Jones, Kuanliang Shao, Jingsong Zhang, Ghanshyam L. Vaghjiani, Richard N. Zare, Stephen R. Leone. Thermal and Catalytic Decomposition of 2-Hydroxyethylhydrazine and 2-Hydroxyethylhydrazinium Nitrate Ionic Liquid. The Journal of Physical Chemistry A 2022, 126 (3) , 373-394. https://doi.org/10.1021/acs.jpca.1c07408
  4. David H. Bross, Hua-Gen Yu, Lawrence B. Harding, Branko Ruscic. Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited. The Journal of Physical Chemistry A 2019, 123 (19) , 4212-4231. https://doi.org/10.1021/acs.jpca.9b02295
  5. Paul J. Jones, Blake Riser, and Jingsong Zhang . Flash Pyrolysis of t-Butyl Hydroperoxide and Di-t-butyl Peroxide: Evidence of Roaming in the Decomposition of Organic Hydroperoxides. The Journal of Physical Chemistry A 2017, 121 (41) , 7846-7853. https://doi.org/10.1021/acs.jpca.7b07359
  6. Branko Ruscic . Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry. The Journal of Physical Chemistry A 2015, 119 (28) , 7810-7837. https://doi.org/10.1021/acs.jpca.5b01346
  7. Oliver Welz, Judit Zádor, John D. Savee, Leonid Sheps, David L. Osborn, and Craig A. Taatjes . Low-Temperature Combustion Chemistry of n-Butanol: Principal Oxidation Pathways of Hydroxybutyl Radicals. The Journal of Physical Chemistry A 2013, 117 (46) , 11983-12001. https://doi.org/10.1021/jp403792t
  8. Sydney Leach . Size Effects on Cation Heats of Formation. II. Methyl Substitutions in Oxygen Compounds. The Journal of Physical Chemistry A 2013, 117 (39) , 10058-10067. https://doi.org/10.1021/jp400736y
  9. Boris Karpichev, Hanna Reisler, Anna I. Krylov and Kadir Diri. Effect of Hyperconjugation on Ionization Energies of Hydroxyalkyl Radicals. The Journal of Physical Chemistry A 2008, 112 (40) , 9965-9969. https://doi.org/10.1021/jp805250t
  10. Feng Dong,, Scott Heinbuch,, Yan Xie,, Jorge J. Rocca,, Elliot R. Bernstein,, Zhe-Chen Wang,, Ke Deng, and, Sheng-Gui He. Experimental and Theoretical Study of the Reactions between Neutral Vanadium Oxide Clusters and Ethane, Ethylene, and Acetylene. Journal of the American Chemical Society 2008, 130 (6) , 1932-1943. https://doi.org/10.1021/ja076007z
  11. Myrna H. Matus,, Minh Tho Nguyen, and, David A. Dixon. Theoretical Prediction of the Heats of Formation of C2H5O• Radicals Derived from Ethanol and of the Kinetics of β-C−C Scission in the Ethoxy Radical. The Journal of Physical Chemistry A 2007, 111 (1) , 113-126. https://doi.org/10.1021/jp064086f
  12. Michel Sablier and, Toshihiro Fujii. Mass Spectrometry of Free Radicals. Chemical Reviews 2002, 102 (9) , 2855-2924. https://doi.org/10.1021/cr010295e
  13. Bailin Zhang,, Yong Cai,, Xiaolan Mu,, Nanquan Lou, and, Xiuyan Wang. Ab Initio Calculation and Multiphoton Ionization Studies of Pyrimidine−(Methanol)n Clusters. The Journal of Physical Chemistry A 2001, 105 (48) , 10800-10806. https://doi.org/10.1021/jp012799m
  14. R. Bruce Klemm, , R. Peyton Thorn, Jr. and, Louis J. Stief, , Thomas J. Buckley and, Russell D. Johnson, III. Heat of Formation of OBrO:  Experimental Photoionization Study. The Journal of Physical Chemistry A 2001, 105 (9) , 1638-1642. https://doi.org/10.1021/jp002397z
  15. R. Peyton Thorn, Jr. and, Louis J. Stief, , Thomas J. Buckley and, Russell D. Johnson, III, , Paul S. Monks, , R. Bruce Klemm. Photoionization Efficiency Spectrum and Ionization Energy of OBrO. The Journal of Physical Chemistry A 1999, 103 (42) , 8384-8388. https://doi.org/10.1021/jp991555n
  16. R. Peyton Thorn, Jr. and, Louis J. Stief, , Szu-Cherng Kuo and, R. Bruce Klemm. Photoionization Mass Spectrometric Study of HOCl:  Photoionization Efficiency Spectrum and Ionization Energy. The Journal of Physical Chemistry A 1999, 103 (7) , 812-815. https://doi.org/10.1021/jp9834053
  17. Szu-Cherng Kuo,, Zhengyu Zhang,, Stuart K. Ross, and, R. Bruce Klemm, , Russell D. Johnson, III, , Paul S. Monks,, R. Peyton Thorn, Jr., and, Louis J. Stief. Discharge Flow-Photoionization Mass Spectrometric Study of HNO:  Photoionization Efficiency Spectrum and Ionization Energy and Proton Affinity of NO. The Journal of Physical Chemistry A 1997, 101 (22) , 4035-4041. https://doi.org/10.1021/jp9705941
  18. Zhengyu Zhang, , Paul S. Monks and, Louis J. Stief, , Joel F. Liebman, , Robert E. Huie, , Szu-Cherng Kuo and, R. Bruce Klemm. Experimental Determination of the Ionization Energy of IO(X2Π3/2) and Estimations of ΔfH°0(IO+) and PA(IO). The Journal of Physical Chemistry 1996, 100 (1) , 63-68. https://doi.org/10.1021/jp952405p
  19. Dwight C. Tardy, , Szu-Cherng Kuo,, Zhengyu Zhang, and, R. Bruce Klemm. Ionization Energy of tert-Butyl-d9 Alcohol and the Appearance Energy of Protonated Acetone:  A Nonequilibrium Dissociation. The Journal of Physical Chemistry 1996, 100 (20) , 8144-8150. https://doi.org/10.1021/jp953219m
  20. R. Peyton Thorn, Jr.,, Paul S. Monks, and, Louis J. Stief, , Szu-Cherng Kuo,, Zhengyu Zhang, and, R. Bruce Klemm. Photoionization Efficiency Spectrum, Ionization Energy, and Heat of Formation of Br2O. The Journal of Physical Chemistry 1996, 100 (30) , 12199-12203. https://doi.org/10.1021/jp960405z
  21. R. Peyton Thorn, Jr. and, Louis J. Stief, , Szu-Cherng Kuo and, R. Bruce Klemm. Ionization Energy of Cl2O and ClO, Appearance Energy of ClO+ (Cl2O), and Heat of Formation of Cl2O. The Journal of Physical Chemistry 1996, 100 (33) , 14178-14183. https://doi.org/10.1021/jp961262j
  22. S. Dóbé,, T. Bérces,, T. Turányi, and, F. Márta, , J. Grussdorf,, F. Temps, and, H. Gg. Wagner. Direct Kinetic Studies of the Reactions Br + CH3OH and CH2OH + HBr:  The Heat of Formation of CH2OH. The Journal of Physical Chemistry 1996, 100 (51) , 19864-19873. https://doi.org/10.1021/jp961398h
  23. Russell D. Johnson III and, Jeffrey W. Hudgens. Structural and Thermochemical Properties of Hydroxymethyl (CH2OH) Radicals and Cations Derived from Observations of B̃ 2A‘(3p) ← X̃ 2A‘‘ Electronic Spectra and from ab Initio Calculations. The Journal of Physical Chemistry 1996, 100 (51) , 19874-19890. https://doi.org/10.1021/jp961399+
  24. Mincong Zhu, Mingqiang Huang, Tingting Lu, Shunyou Cai, Xiaobin Shan, Liusi Sheng, Weixiong Zhao, Xuejun Gu, Weijun Zhang. Experimental study on the imidazoles of aqueous secondary organic aerosol formed from reaction of methylglyoxal and ammonium sulphate. Atmospheric Pollution Research 2022, 13 (9) , 101535. https://doi.org/10.1016/j.apr.2022.101535
  25. Lorenzo Tinacci, Stefano Pantaleone, Andrea Maranzana, Nadia Balucani, Cecilia Ceccarelli, Piero Ugliengo. Structures and Properties of Known and Postulated Interstellar Cations. The Astrophysical Journal Supplement Series 2021, 256 (2) , 35. https://doi.org/10.3847/1538-4365/ac194c
  26. N. Fabian Kleimeier, André K. Eckhardt, Ralf I. Kaiser. A Mechanistic Study on the Formation of Acetic Acid (CH 3 COOH) in Polar Interstellar Analog Ices Exploiting Photoionization Reflectron Time-of-flight Mass Spectrometry. The Astrophysical Journal 2020, 901 (1) , 84. https://doi.org/10.3847/1538-4357/abafa4
  27. Xiaofeng Tang, Xiaoxiao Lin, Gustavo A. Garcia, Jean-Christophe Loison, Christa Fittschen, Xuejun Gu, Weijun Zhang, Laurent Nahon. Threshold photoelectron spectroscopy of the methoxy radical. The Journal of Chemical Physics 2020, 153 (3) , 031101. https://doi.org/10.1063/5.0016146
  28. Heejune Park, Giovanni Meloni. Capturing Volatile Organic Compounds Employing Superalkali Species. ChemPhysChem 2018, 19 (17) , 2266-2271. https://doi.org/10.1002/cphc.201800176
  29. Dominic Bernhard, Christof Holzer, Fabian Dietrich, Anke Stamm, Wim Klopper, Markus Gerhards. The Structure of Diphenyl Ether-Methanol in the Electronically Excited and Ionic Ground States: A Combined IR/UV Spectroscopic and Theoretical Study. ChemPhysChem 2017, 18 (24) , 3634-3641. https://doi.org/10.1002/cphc.201700722
  30. M. Goulart, F. Zappa, A. M. Ellis, P. Bartl, S. Ralser, P. Scheier. Electron ionization of helium droplets containing C 60 and alcohol clusters. Physical Chemistry Chemical Physics 2017, 19 (35) , 24197-24201. https://doi.org/10.1039/C7CP02994B
  31. Mohamed Elshakre. Dissociative ionization of methanol in medium intense femtosecond laser field using time-of-flight mass spectrometry. Radiation Physics and Chemistry 2015, 112 , 49-55. https://doi.org/10.1016/j.radphyschem.2015.03.016
  32. Shi Yin, Zhechen Wang, Elliot R. Bernstein. Formaldehyde and methanol formation from reaction of carbon monoxide and hydrogen on neutral Fe2S2 clusters in the gas phase. Physical Chemistry Chemical Physics 2013, 15 (13) , 4699. https://doi.org/10.1039/c3cp50183c
  33. Thomas Hellman Morton, Kevin H. Weber, Jingsong Zhang. Thermal decomposition of t-amyl methyl ether (TAME) studied by flash pyrolysis/supersonic expansion/vacuum ultraviolet photoionization time-of-flight mass spectrometry. International Journal of Mass Spectrometry 2011, 306 (2-3) , 210-218. https://doi.org/10.1016/j.ijms.2010.11.003
  34. Sampada Borkar, Bálint Sztáray, Andras Bodi. Dissociative photoionization mechanism of methanol isotopologues (CH3OH, CD3OH, CH3OD and CD3OD) by iPEPICO: energetics, statistical and non-statistical kinetics and isotope effects. Physical Chemistry Chemical Physics 2011, 13 (28) , 13009. https://doi.org/10.1039/c1cp21015g
  35. Giulia de Petris, Anna Troiani, Marzio Rosi, Giancarlo Angelini, Ornella Ursini. Methane Activation by Metal-Free Radical Cations: Experimental Insight into the Reaction Intermediate. Chemistry - A European Journal 2009, 15 (17) , 4248-4252. https://doi.org/10.1002/chem.200802581
  36. Fu-Der Mai, Hsiu-Feng Lu, Feng-Yin Li, Sheng-Hsien Lin. Fragmentations of Hydroxymethyl Radical Cation: An Ab Initio Study. Journal of the Chinese Chemical Society 2007, 54 (2) , 285-292. https://doi.org/10.1002/jccs.200700042
  37. T. Hatamoto, M. Okunishi, M. Matsumoto, T. Lischke, K. Shimada, G. Prümper, F. Kong, K. Ueda. Dissociative ionization of methanol in moderate intense laser fields. Chemical Physics Letters 2007, 434 (4-6) , 205-209. https://doi.org/10.1016/j.cplett.2006.12.028
  38. Y. J. Hu, H. B. Fu, E. R. Bernstein. Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic methanol monomers and clusters: New experimental results. The Journal of Chemical Physics 2006, 125 (15) , 154306. https://doi.org/10.1063/1.2357953
  39. James P. Kercher, Bálint Sztáray, Tomas Baer. On the dissociation of the 2-pentanone ion studied by threshold photoelectron photoion coincidence spectroscopy. International Journal of Mass Spectrometry 2006, 249-250 , 403-411. https://doi.org/10.1016/j.ijms.2005.11.016
  40. H. B. Fu, Y. J. Hu, E. R. Bernstein. IR+vacuum ultraviolet (118 nm) nonresonant ionization spectroscopy of methanol monomers and clusters: Neutral cluster distribution and size-specific detection of the OH stretch vibrations. The Journal of Chemical Physics 2006, 124 (2) , 024302. https://doi.org/10.1063/1.2141951
  41. Bailin Zhang, Yong Cai, XaoLan Mou, Nanquan Lou, Xiuyan Wang. Density functional and multiphoton ionization studies of N,N-dimethylformamide–(methanol)n clusters. Chemical Physics 2002, 280 (3) , 229-238. https://doi.org/10.1016/S0301-0104(02)00560-8
  42. Shang-Ting Tsai, Jyh-Chiang Jiang, Yuan T. Lee, A. H. Kung, S. H. Lin, Chi-Kung Ni. Photoionization of methanol dimer using a tunable vacuum ultraviolet laser. The Journal of Chemical Physics 1999, 111 (8) , 3434-3440. https://doi.org/10.1063/1.479628
  43. John C. Traeger, Barbara M. Kompe. Thermochemical Data for Free Radicals from Studies of Ions. 1996, 59-109. https://doi.org/10.1007/978-94-009-0099-8_3
  44. J. Baker, J.M. Dyke, A.R. Ellis, A. Morris. Primary products of the reactions of fluorine atoms with CH3OH, CH3SH and CH3OCH3 studied with ultraviolet photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 1995, 73 (2) , 125-138. https://doi.org/10.1016/0368-2048(94)02253-4
  45. Zhengyu Zhang, Szu-Cherng Kuo, R.Bruce Klemm, Paul S. Monks, Louis J. Stief. A discharge flow-photoionization mass spectrometric study of the FO(X 2Πi) radical. Chemical Physics Letters 1994, 229 (4-5) , 377-382. https://doi.org/10.1016/0009-2614(94)01064-1
  46. P. S. Monks, L. J. Stief, M. Krauss, S. C. Kuo, R. B. Klemm. A discharge flow‐photoionization mass spectrometric study of HOBr( X   1 A ’): Photoion yield spectrum, ionization energy, and thermochemistry. The Journal of Chemical Physics 1994, 100 (3) , 1902-1907. https://doi.org/10.1063/1.466543
  47. P.S. Monks, L.J. Stief, M. Krauss, S.C. Kuo, R.B. Klemm. A discharge-flow photoionization mass-spectrometric study of the BrO (X 2Π) radical. Photoionization spectrum and ionization energy. Chemical Physics Letters 1993, 211 (4-5) , 416-420. https://doi.org/10.1016/0009-2614(93)87083-F

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect