ACS Publications. Most Trusted. Most Cited. Most Read
Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li-Ne)
My Activity
    article

    Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li-Ne)
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1989, 93, 9, 3410–3418
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100346a008
    Published May 1, 1989

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 77 publications.

    1. A. A. Sycheva, G. G. Balint-Kurti, and A. P. Palov . Collision Cross Sections for O + Ar+ Collisions in the Energy Range 0.03–500 eV. The Journal of Physical Chemistry A 2016, 120 (27) , 4655-4663. https://doi.org/10.1021/acs.jpca.5b09151
    2. Ranajit Saha, Sudip Pan, Gabriel Merino, and Pratim K. Chattaraj . Comparative Study on the Noble-Gas Binding Ability of BeX Clusters (X = SO4, CO3, O). The Journal of Physical Chemistry A 2015, 119 (25) , 6746-6752. https://doi.org/10.1021/acs.jpca.5b03888
    3. Stefano Borocci, Maria Giordani, and Felice Grandinetti . Bonding Motifs of Noble-Gas Compounds As Described by the Local Electron Energy Density. The Journal of Physical Chemistry A 2015, 119 (24) , 6528-6541. https://doi.org/10.1021/acs.jpca.5b03043
    4. Joe P. Harris, Adrian M. Gardner, and Timothy G. Wright , W. H. Breckenridge , Larry A. Viehland . Interactions in the B+–RG Complexes and Comparison with Be+–RG (RG = He–Rn): Evidence for Chemical Bonding. The Journal of Physical Chemistry A 2012, 116 (20) , 4995-5007. https://doi.org/10.1021/jp303057x
    5. Adrian M. Gardner, Carolyn D. Withers, Jack B. Graneek and Timothy G. Wright, Larry A. Viehland, W. H. Breckenridge. Theoretical Study of M+−RG and M2+−RG Complexes and Transport of M+ through RG (M = Be and Mg, RG = He−Rn). The Journal of Physical Chemistry A 2010, 114 (28) , 7631-7641. https://doi.org/10.1021/jp103836t
    6. Corey J. Evans, Timothy G. Wright and Adrian M. Gardner . Geometries and Bond Energies of the He−MX, Ne−MX, and Ar−MX (M = Cu, Ag, Au; X = F, Cl) Complexes. The Journal of Physical Chemistry A 2010, 114 (12) , 4446-4454. https://doi.org/10.1021/jp912027y
    7. D. Bellert and, W. H. Breckenridge. Bonding in Ground-State and Excited-State A+·Rg van der Waals Ions (A = Atom, Rg = Rare-Gas Atom):  A Model-Potential Analysis. Chemical Reviews 2002, 102 (5) , 1595-1622. https://doi.org/10.1021/cr980090e
    8. A. A. Pupyshev. Singly Charged Argide ArM+ Ions in Inductively Coupled Plasma–Mass Spectrometry. Journal of Analytical Chemistry 2023, 78 (9) , 1125-1145. https://doi.org/10.1134/S1061934823090113
    9. A. A. Pupyshev. Singly Charged Argide ArM+ Ions in Inductively Coupled Plasma–Mass Spectrometry. Журнал аналитической химии 2023, 78 (9) , 783-806. https://doi.org/10.31857/S0044450223090116
    10. Guilherme Carlos Carvalho de Jesus, Caio Vinícius Sousa Costa, Luiz Guilherme Machado de Macedo, Pedro Henrique de Oliveira Neto, Fernando Pirani, Ricardo Gargano. Electronic and dynamical properties of non-covalent diatomic aggregates formed by He with neutral and ionic Li and Be. Journal of Molecular Modeling 2023, 29 (6) https://doi.org/10.1007/s00894-023-05512-9
    11. Maxim A. Maltsev, Svetlana A. Aksenova, Igor V. Morozov, Yury Minenkov, Evgenia L. Osina. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN +. Journal of Computational Chemistry 2023, 44 (12) , 1189-1198. https://doi.org/10.1002/jcc.27078
    12. Maxim A. Maltsev, Svetlana A. Aksenova, Evgenya E. Osina, Yury V. Minenkov, Igor V. Morozov. Ab Initio Interaction Potentials and Thermodynamic Functions of Arn And Arn+. SSRN Electronic Journal 2022, 93 https://doi.org/10.2139/ssrn.4187008
    13. Sam Armenta Butt, Stephen D. Price. Bond-forming and electron-transfer reactivity between Ar 2+ and N 2. Physical Chemistry Chemical Physics 2021, 23 (19) , 11287-11299. https://doi.org/10.1039/D1CP00918D
    14. D. Koulentianos, S. Carniato, R. Püttner, J. B. Martins, O. Travnikova, T. Marchenko, L. Journel, R. Guillemin, I. Ismail, D. Céolin, M. N. Piancastelli, R. Feifel, M. Simon. The O K −2 V spectrum of CO: the influence of the second core-hole. Physical Chemistry Chemical Physics 2021, 23 (18) , 10780-10790. https://doi.org/10.1039/D1CP00607J
    15. Zhiling Liu, Jing He, Ya Li, Yan Bai, Qingyang Lin, Yurong Guo, Fuqiang Zhang, Haishun Wu, Jianfeng Jia. Dative versus electron-sharing bonding in the isoelectronic argon compounds ArR + (R = CH 3 , NH 2 , OH, and F). New Journal of Chemistry 2021, 45 (3) , 1363-1372. https://doi.org/10.1039/D0NJ05326K
    16. Marco Grotti, José-Luis Todolí. Nitric acid effect in inductively coupled plasma mass spectrometry: new insights on possible causes and correction. Journal of Analytical Atomic Spectrometry 2020, 35 (9) , 1959-1968. https://doi.org/10.1039/D0JA00130A
    17. Stefano Borocci, Felice Grandinetti, Francesca Nunzi, Nico Sanna. Classifying the chemical bonds involving the noble-gas atoms. New Journal of Chemistry 2020, 44 (34) , 14536-14550. https://doi.org/10.1039/D0NJ01927E
    18. Francesca Nunzi, Giacomo Pannacci, Francesco Tarantelli, Leonardo Belpassi, David Cappelletti, Stefano Falcinelli, Fernando Pirani. Leading Interaction Components in the Structure and Reactivity of Noble Gases Compounds. Molecules 2020, 25 (10) , 2367. https://doi.org/10.3390/molecules25102367
    19. Sam Armenta Butt, Stephen D. Price. Bond-forming and electron-transfer reactivity between Ar 2+ and O 2. Physical Chemistry Chemical Physics 2020, 22 (16) , 8391-8400. https://doi.org/10.1039/D0CP01194K
    20. M. A. Maltsev, I. V. Morozov, E. L. Osina. Thermodynamic Functions of ArO and ArO+. High Temperature 2020, 58 (2) , 184-189. https://doi.org/10.1134/S0018151X20020133
    21. Elfi Kraka, Dieter Cremer. Dieter Cremer's contribution to the field of theoretical chemistry. International Journal of Quantum Chemistry 2019, 119 (6) https://doi.org/10.1002/qua.25849
    22. . References. 2018, 273-335. https://doi.org/10.1002/9783527803552.refs
    23. J. Dhiflaoui, M. Bejaoui, M. Farjallah, H. Berriche. Investigation of the electronic structure of Be 2+ He and Be + He, and static dipole polarisabilities of the helium atom. Molecular Physics 2018, 116 (10) , 1347-1357. https://doi.org/10.1080/00268976.2018.1429686
    24. J. Philipp Wagner, David C. McDonald, Michael A. Duncan. An Argon–Oxygen Covalent Bond in the ArOH + Molecular Ion. Angewandte Chemie 2018, 130 (18) , 5175-5179. https://doi.org/10.1002/ange.201802093
    25. J. Philipp Wagner, David C. McDonald, Michael A. Duncan. An Argon–Oxygen Covalent Bond in the ArOH + Molecular Ion. Angewandte Chemie International Edition 2018, 57 (18) , 5081-5085. https://doi.org/10.1002/anie.201802093
    26. William D. Tuttle, Rebecca L. Thorington, Larry A. Viehland, W. H. Breckenridge, Timothy G.  Wright. Interactions of C + ( 2 P J ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018, 376 (2115) , 20170156. https://doi.org/10.1098/rsta.2017.0156
    27. Ranajit Saha, Bijoya Mandal, Pratim K. Chattaraj. HNgBeF 3 (Ng = Ar‐Rn): Superhalogen‐supported noble gas insertion compounds. International Journal of Quantum Chemistry 2018, 118 (5) https://doi.org/10.1002/qua.25499
    28. W.-Q. Pang, Y. Xu. Synthesis and Purification at Low Temperatures. 2017, 45-71. https://doi.org/10.1016/B978-0-444-63591-4.00003-3
    29. Jiaye Jin, Wei Li, Yuhong Liu, Guanjun Wang, Mingfei Zhou. Preparation and characterization of chemically bonded argon–boroxol ring cation complexes. Chemical Science 2017, 8 (9) , 6594-6600. https://doi.org/10.1039/C7SC02472J
    30. Ranajit Saha, Sudip Pan, Subhajit Mandal, Mesías Orozco, Gabriel Merino, Pratim K. Chattaraj. Noble gas supported B 3 + cluster: formation of strong covalent noble gas–boron bonds. RSC Advances 2016, 6 (82) , 78611-78620. https://doi.org/10.1039/C6RA16188J
    31. A A Sycheva, A P Palov. Elastic scattering process for argon ions and oxygen atoms in 10-500 eV range of relative kinetic energies. Journal of Physics: Conference Series 2015, 635 (2) , 022029. https://doi.org/10.1088/1742-6596/635/2/022029
    32. Xianghong Niu, Zunlue Zhu, Shijun Yuan. Ground and excited states of [Be–Xe]+: A multireference configuration interaction study. Chemical Physics Letters 2015, 635 , 63-68. https://doi.org/10.1016/j.cplett.2015.06.025
    33. Brent R. Wilson, Katheryn Shi, Angela K. Wilson. Theoretical prediction of FKrOH. Chemical Physics Letters 2012, 537 , 6-10. https://doi.org/10.1016/j.cplett.2012.04.003
    34. Sally M. McIntyre, Jill Wisnewski Ferguson, R.S. Houk. Determination of dissociation temperature for ArO+ in inductively coupled plasma-mass spectrometry: Effects of excited electronic states and dissociation pathways. Spectrochimica Acta Part B: Atomic Spectroscopy 2011, 66 (8) , 581-587. https://doi.org/10.1016/j.sab.2011.06.002
    35. Henry A. Bent, Joel F. Liebman. Paradigms and paradoxes: the weak bonds in elemental halogens, peroxides, disulfides, interhalogens, noble gas monohalide cations, and isoelectronic species. Structural Chemistry 2011, 22 (2) , 371-372. https://doi.org/10.1007/s11224-010-9726-3
    36. Sally M. McIntyre, Jill Wisnewski Ferguson, Travis M. Witte, R.S. Houk. Measurement of gas kinetic temperatures for polyatomic ions in inductively coupled plasma-mass spectrometry: Validation and refinements. Spectrochimica Acta Part B: Atomic Spectroscopy 2011, 66 (3-4) , 248-254. https://doi.org/10.1016/j.sab.2011.02.003
    37. Wenqin Pang. Synthesis and Purification at Low Temperature. 2011, 39-62. https://doi.org/10.1016/B978-0-444-53599-3.10003-4
    38. Fernando Ruette, Morella Sánchez, Rafael Añez, Aleida Bermúdez, Anibal Sierraalta. Diatomic molecule data for parametric methods. I. Journal of Molecular Structure: THEOCHEM 2005, 729 (1-2) , 19-37. https://doi.org/10.1016/j.theochem.2005.04.024
    39. Xinping Bu, Chongli Zhong. Ab initio analysis of geometric structures of BeHen+(n=1–12) clusters. Chemical Physics Letters 2004, 392 (1-3) , 181-186. https://doi.org/10.1016/j.cplett.2004.05.079
    40. R.B. Gerber. FORMATION OF NOVEL RARE-GAS MOLECULES IN LOW-TEMPERATURE MATRICES. Annual Review of Physical Chemistry 2004, 55 (1) , 55-78. https://doi.org/10.1146/annurev.physchem.55.091602.094420
    41. Alicia Palacios, Fernando Martín, Otilia Mó, Manuel Yáñez, Zvonimir B. Maksić. Stable Doubly Charged Positive Molecular Ions Formed by Direct Attachment of Alpha Particles to HCN and HNC. Physical Review Letters 2004, 92 (13) https://doi.org/10.1103/PhysRevLett.92.133001
    42. T.-K. HA, P. RUPPER, A. WÜEST, F. MERKT. The lowest electronic states of Ne 2 + , Ar 2 + and Kr 2 + : comparison of theory and experiment. Molecular Physics 2003, 101 (6) , 827-838. https://doi.org/10.1080/0026897031000075624
    43. Daniela Ascenzi, Pietro Franceschi, Paolo Tosi, Davide Bassi, Malgorzata Kaczorowska, Jeremy N. Harvey. Bond-forming reactions of dications: Production of ArO+ and ArO2+ in the reaction of Ar2+ with O2. The Journal of Chemical Physics 2003, 118 (5) , 2159-2163. https://doi.org/10.1063/1.1533751
    44. E.Hywel Evans, Les Ebdon, Linda Rowley. Comparative study of the determination of equilibrium dissociation temperature in inductively coupled plasma-mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2002, 57 (4) , 741-754. https://doi.org/10.1016/S0584-8547(02)00003-4
    45. Alan Carrington, David I. Gammie, Josephine C. Page, Andrew M. Shaw, Jeremy M. Hutson. Microwave electronic spectrum of the Ne⋯Ne+ long-range complex: The interaction potential. The Journal of Chemical Physics 2002, 116 (9) , 3662-3669. https://doi.org/10.1063/1.1436111
    46. R.S. Houk, Narong Praphairaksit. Dissociation of polyatomic ions in the inductively coupled plasma. Spectrochimica Acta Part B: Atomic Spectroscopy 2001, 56 (7) , 1069-1096. https://doi.org/10.1016/S0584-8547(01)00236-1
    47. Jan Lundell, Galina M Chaban, R Benny Gerber. Combined ab initio and anharmonic vibrational spectroscopy calculations for rare gas containing fluorohydrides, HRgF. Chemical Physics Letters 2000, 331 (2-4) , 308-316. https://doi.org/10.1016/S0009-2614(00)01180-5
    48. Leonid Khriachtchev, Mika Pettersson, Nino Runeberg, Jan Lundell, Markku Räsänen. A stable argon compound. Nature 2000, 406 (6798) , 874-876. https://doi.org/10.1038/35022551
    49. Wenyun Lu, Paolo Tosi, Davide Bassi. Bond-forming reactions of molecular dications with rare gas atoms: Production of ArC2+ in the reaction CO2++Ar. The Journal of Chemical Physics 2000, 112 (10) , 4648-4651. https://doi.org/10.1063/1.481020
    50. Paolo Tosi, Raffaele Correale, Wenyun Lu, Davide Bassi. Production of ArN+ ions in the reactions Ar++N2 and N2++Ar. The Journal of Chemical Physics 1999, 110 (9) , 4276-4279. https://doi.org/10.1063/1.478311
    51. Carol A. Deakyne, Joel F. Liebman. Isoelectronic Isogyric Reactions. 1998https://doi.org/10.1002/0470845015.cia008
    52. G.E. Froudakis, G.S. Fanourgakis, S.C. Farantos, S.S. Xantheas. Binding energies and structures of C+Arn (n=1–5), clusters from first principles. Chemical Physics Letters 1998, 294 (1-3) , 109-116. https://doi.org/10.1016/S0009-2614(98)00844-6
    53. M. O. BULANIN. Collision-induced shift of the ionization continuum and interaction polarizabilities of rare-gas atoms. Molecular Physics 1997, 92 (5) , 929-940. https://doi.org/10.1080/002689797169862
    54. Christian Lüder, Dimitris Prekas, Anna Vourhotaki, Michalis Velegrakis. Photodissociation spectrum of Sr+Ne. Chemical Physics Letters 1997, 267 (1-2) , 149-154. https://doi.org/10.1016/S0009-2614(97)00081-X
    55. Jozef M�?ik, J�n Urban, Pavel Mach, Ivan Huba?. Applicability of multireference many-body perturbation theory to the Ne2+ molecule. International Journal of Quantum Chemistry 1997, 63 (2) , 333-343. https://doi.org/10.1002/(SICI)1097-461X(1997)63:2<333::AID-QUA5>3.0.CO;2-X
    56. Ch. Lüder, E. Georgiou, M. Velegrakis. Studies on the production and stability of large CN+ and Mx+RN (M = C, Si, Ge and R = Ar, Kr) clusters. International Journal of Mass Spectrometry and Ion Processes 1996, 153 (2-3) , 129-138. https://doi.org/10.1016/0168-1176(96)04365-0
    57. C. M. Barshick, D. H. Smith, E. Johnson, F. L. King, T. Bastug, B. Fricke. Periodic Nature of Metal-Noble Gas Adduct Ions in Glow Discharge Mass Spectrometry. Applied Spectroscopy 1995, 49 (7) , 885-889. https://doi.org/10.1366/0003702953964840
    58. Joanna Sadlej, W. Daniel Edwards. Ab initio study of the ground and first excited state of LiAr. International Journal of Quantum Chemistry 1995, 53 (6) , 607-615. https://doi.org/10.1002/qua.560530604
    59. Naoko S. Nonose, Naoki Matsuda, Noriko Fudagawa, Masaaki Kubota. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 1994, 49 (10) , 955-974. https://doi.org/10.1016/0584-8547(94)80084-7
    60. Z. Chen, I. Ben-Itzhak, C. D. Lin, W. Koch, G. Frenking, I. Gertner, B. Rosner. Mean-lifetime calculations of the metastable doubly charged NeAr 2 + rare-gas dimer. Physical Review A 1994, 49 (5) , 3472-3478. https://doi.org/10.1103/PhysRevA.49.3472
    61. Thomas Onak, Jürgen Faust. The System Boron-Noble Gases. 1994, 1-8. https://doi.org/10.1007/978-3-662-06144-2_1
    62. Alberto Gobbi, Gernot Frenking. The Lowest Lying Singlet and Triplet States of the Halonitrenium Ions NX2+ and NHX+ and a Comparison with the Carbon Analogues CX2 and CHX (X = F, Cl, Br, I). A Theoretical Study. Bulletin of the Chemical Society of Japan 1993, 66 (11) , 3153-3165. https://doi.org/10.1246/bcsj.66.3153
    63. M. Bogey, M. Cordonnier, C. Demuynck, J.L. Destombes. The millimeter- and submillimeter-wave spectrum of ArF+. Journal of Molecular Spectroscopy 1992, 155 (1) , 217-219. https://doi.org/10.1016/0022-2852(92)90562-3
    64. R. Marx. Dynamics of ion/molecule reactions. International Journal of Mass Spectrometry and Ion Processes 1992, 118-119 , 661-681. https://doi.org/10.1016/0168-1176(92)85080-J
    65. Carol A. Deakyne, Kristin K. Brown, Carrie S. Pacini, David C. Pohlman, Danielle N. Gray, Joel F. Liebman. A comparative study of isoelectronic and isogyric reactions.. Journal of Molecular Structure: THEOCHEM 1992, 260 , 395-418. https://doi.org/10.1016/0166-1280(92)87056-6
    66. Eluvathingal D. Jemmis, Ming Wah Wong, Hans-Beat Bürgi, Leo Radom. Helides of carbon and silicon: an ab initio study of their geometric and electronic structures. Journal of Molecular Structure: THEOCHEM 1992, 261 , 385-401. https://doi.org/10.1016/0166-1280(92)87088-H
    67. G. D. Flesch, C. Y. Ng. Absolute state-selected and state-to-state total cross sections for the Ar+(2 P 3/2,1/2)+CO2 reactions. The Journal of Chemical Physics 1992, 97 (1) , 162-172. https://doi.org/10.1063/1.463616
    68. Cheuk‐Yiu Ng. State‐Selected and State‐to‐State Ion‐Molecular Reaction Dynamics by Photoionization and Differential Reactivity Methods. 1992, 401-500. https://doi.org/10.1002/9780470141397.ch6
    69. R. Marx. Dynamics of ion/molecule reactions. 1992, 661-681. https://doi.org/10.1016/B978-0-444-88871-6.50034-9
    70. G. D. Flesch, S. Nourbakhsh, C. Y. Ng. Absolute state-selected and state-to-state total cross sections for the Ar+(2 P 3/2,1/2)+CO reactions. The Journal of Chemical Physics 1991, 95 (5) , 3381-3386. https://doi.org/10.1063/1.460843
    71. Kenzo Hiraoka, Ichiro Kudaka, Shinichi Yamabe. A charge transfer complex CH+3—Ar in the gas phase. Chemical Physics Letters 1991, 178 (1) , 103-108. https://doi.org/10.1016/0009-2614(91)85060-A
    72. L. Broström, M. Larsson, S. Mannervik, D. Sonnek. The visible photoabsorption spectrum and potential curves of ArN+. The Journal of Chemical Physics 1991, 94 (4) , 2734-2740. https://doi.org/10.1063/1.459850
    73. L. Broström, M. Larsson, S. Mannervik, R. T. Short, D. Sonnek. Photodissociation of Ne+2. J. Chem. Soc., Faraday Trans. 1991, 87 (6) , 797-802. https://doi.org/10.1039/FT9918700797
    74. Kirk A. Peterson, R. Claude Woods. An a b   i n i t i o investigation of the spectroscopic properties of ClF, ArF+, SF−, and ClO− in their ground electronic states. The Journal of Chemical Physics 1990, 92 (12) , 7412-7417. https://doi.org/10.1063/1.458226
    75. Wolfram Koch, Bowen Liu, Gernot Frenking. Theoretical investigations of small multiply charged cations. III. NeN2+. The Journal of Chemical Physics 1990, 92 (4) , 2464-2468. https://doi.org/10.1063/1.457989
    76. Gernot Frenking, Dieter Cremer. The chemistry of the noble gas elements helium, neon, and argon — Experimental facts and theoretical predictions. 1990, 17-95. https://doi.org/10.1007/3-540-52124-0_2
    77. G. FRENKING, W. KOCH, D. CREMER, J. GAUSS, J. F. LIEBMAN. ChemInform Abstract: Neon and Argon Bonding in First‐Row Cations NeX+ and ArX+ (X: Li‐Ne).. ChemInform 1989, 20 (31) https://doi.org/10.1002/chin.198931002

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1989, 93, 9, 3410–3418
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100346a008
    Published May 1, 1989

    Article Views

    266

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.