ACS Publications. Most Trusted. Most Cited. Most Read
Photoelectron-photoion coincidence study of the ionization and fragment appearance potentials of bromo- and iodomethanes
My Activity
    Research Article

    Photoelectron-photoion coincidence study of the ionization and fragment appearance potentials of bromo- and iodomethanes
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1975, 79, 6, 570–574
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100573a006
    Published March 1, 1975

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 88 publications.

    1. David H. Bross, George B. Bacskay, Kirk A. Peterson, Branko Ruscic. Active Thermochemical Tables: Enthalpies of Formation of Bromo- and Iodo-Methanes, Ethenes and Ethynes. The Journal of Physical Chemistry A 2023, 127 (3) , 704-723. https://doi.org/10.1021/acs.jpca.2c07897
    2. David V. Chicharro, Helgi Rafn Hrodmarsson, Aymen Bouallagui, Alexandre Zanchet, Jean-Christophe Loison, Gustavo A. García, Alberto García-Vela, Luis Bañares, Sonia Marggi Poullain. Threshold Photoelectron Spectroscopy of the CH2I, CHI, and CI Radicals. The Journal of Physical Chemistry A 2021, 125 (28) , 6122-6130. https://doi.org/10.1021/acs.jpca.1c03874
    3. Antonella Cartoni, Anna Rita Casavola, Paola Bolognesi, Stefano Borocci, and Lorenzo Avaldi . VUV Photofragmentation of CH2I2: The [CH2I–I]•+ Iso-diiodomethane Intermediate in the I-Loss Channel from [CH2I2]•+. The Journal of Physical Chemistry A 2015, 119 (16) , 3704-3709. https://doi.org/10.1021/jp511067d
    4. Bérenger Gans, Luiz A. Vieira Mendes, Séverine Boyé-Péronne, Stéphane Douin, Gustavo Garcia, Héloïse Soldi-Lose, Barbara K. Cunha de Miranda, Christian Alcaraz, Nathalie Carrasco, Pascal Pernot and Dolores Gauyacq . Determination of the Absolute Photoionization Cross Sections of CH3 and I Produced from a Pyrolysis Source, by Combined Synchrotron and Vacuum Ultraviolet Laser Studies. The Journal of Physical Chemistry A 2010, 114 (9) , 3237-3246. https://doi.org/10.1021/jp909414d
    5. Renhu Ma, Mohua Chen and Mingfei Zhou. Infrared Spectra of the Chloromethyl and Bromomethyl Cations in Solid Argon. The Journal of Physical Chemistry A 2009, 113 (46) , 12926-12931. https://doi.org/10.1021/jp9084266
    6. Nicholas S. Shuman, Linda Ying Zhao, Michael Boles and Tomas Baer, Bálint Sztáray. Heats of Formation of HCCl3, HCCl2Br, HCClBr2, HCBr3, and Their Fragment Ions Studied by Threshold Photoelectron Photoion Coincidence. The Journal of Physical Chemistry A 2008, 112 (42) , 10533-10538. https://doi.org/10.1021/jp8056459
    7. Ines Raabe,, Daniel Himmel, and, Ingo Krossing. Computational Study of the Enthalpies of Formation, ΔfH°, and Mean Bond Enthalpies, mBEs, of H4-nEXn0/- and H3-nEXn+/0 (E = C, B; X = F−I). The Journal of Physical Chemistry A 2007, 111 (50) , 13209-13217. https://doi.org/10.1021/jp073725z
    8. Hong-Wei Xi and, Ming-Bao Huang. Bromine-Loss and Hydrogen-Loss Dissociations in Low-Lying Electronic States of the CH3Br+ Ion Studied Using Multiconfiguration Second-Order Perturbation Theory. The Journal of Physical Chemistry A 2006, 110 (26) , 8167-8173. https://doi.org/10.1021/jp056138r
    9. Alexander N. Tarnovsky,, Villy Sundström,, Eva Åkesson, and, Torbjörn Pascher. Photochemistry of Diiodomethane in Solution Studied by Femtosecond and Nanosecond Laser Photolysis. Formation and Dark Reactions of the CH2I−I Isomer Photoproduct and Its Role in Cyclopropanation of Olefins. The Journal of Physical Chemistry A 2004, 108 (2) , 237-249. https://doi.org/10.1021/jp035406n
    10. Yeu Young Youn, Joong Chul Choe, Myung Soo Kim. Discovery of long-lived excited electronic states of vinylchloride, vinylbromide, vinyliodide, and acrylonitrile cations. Journal of the American Society for Mass Spectrometry 2003, 14 (2) , 110-116. https://doi.org/10.1016/S1044-0305(02)00819-X
    11. Magnus Wall,, Alexander N. Tarnovsky,, Torbjörn Pascher,, Villy Sundström, and, Eva Åkesson. Photodissociation Dynamics of Iodoform in Solution. The Journal of Physical Chemistry A 2003, 107 (2) , 211-217. https://doi.org/10.1021/jp0213856
    12. Fuyi Liu,, Chengxiang Li,, Guohua Wu,, Hui Gao,, Fei Qi,, Luisi Sheng, and, Yunwu Zhang, , Shuqin Yu, , Siu-Hung Chien and, Wai-Kee Li. Experimental and Theoretical Studies of the VUV Photoionization of Chloropropylene Oxide. The Journal of Physical Chemistry A 2001, 105 (13) , 2973-2979. https://doi.org/10.1021/jp0027546
    13. Su-Yu Chiang, , Yu-Chang Lee and, Yuan-Pern Lee. Formation of CH3CFCl+ from Photoionization of CH3CFCl2:  An Application of Threshold Photoelectron Photoion Coincidence (TPEPICO) Technique. The Journal of Physical Chemistry A 2001, 105 (8) , 1226-1231. https://doi.org/10.1021/jp002823g
    14. Fuyi Liu,, Luisi Sheng,, Fei Qi,, Hui Gao,, Chengxiang Li, and, Yunwu Zhang, , Shuqin Yu, , Kai-Chung Lau and, Wai-Kee Li. A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Propylene Oxide in the Photon Energy Region of 10−40 eV. The Journal of Physical Chemistry A 1999, 103 (41) , 8179-8186. https://doi.org/10.1021/jp990635o
    15. Fuyi Liu,, Fei Qi,, Hui Gao,, Liusi Sheng, and, Yunwu Zhang, , Shuqin Yu, , Kai-Chung Lau and, Wai-Kee Li. A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Ethylene Oxide in the Photon Energy Region of 10−40 eV. The Journal of Physical Chemistry A 1999, 103 (21) , 4155-4161. https://doi.org/10.1021/jp984626b
    16. Fei Qi and, Shihe Yang, , Liusi Sheng,, Weiquan Ye,, Hui Gao, and, Yunwu Zhang, , Shuqin Yu. Dissociative Photoionization of Mo(CO)6 in the Photon Energy Range of 8−40 eV. The Journal of Physical Chemistry A 1997, 101 (39) , 7194-7199. https://doi.org/10.1021/jp970884h
    17. Jesús González-Vázquez, Gustavo A. García, David V. Chicharro, Luis Bañares, Sonia Marggi Poullain. Evidencing an elusive conical intersection in the dissociative photoionization of methyl iodide. Chemical Science 2024, 15 (9) , 3203-3213. https://doi.org/10.1039/D3SC04065H
    18. A. Bouallagui, A. Zanchet, L. Bañares, A. García-Vela. An ab initio study of the photodissociation of CH 2 I and CH 2 I +. Physical Chemistry Chemical Physics 2023, 25 (30) , 20365-20372. https://doi.org/10.1039/D3CP01460F
    19. Andras Bodi, Arnar Hafliðason, Ágúst Kvaran. Branching ratios in the dissociative photoionization of iodomethane by photoelectron photoion coincidence. Physical Chemistry Chemical Physics 2023, 25 (10) , 7383-7393. https://doi.org/10.1039/D2CP03339A
    20. Cheng Zhu, Robert Frigge, Andrew M. Turner, Matthew J. Abplanalp, Bing-Jian Sun, Yue-Lin Chen, Agnes H. H. Chang, Ralf I. Kaiser. A vacuum ultraviolet photoionization study on the formation of methanimine (CH 2 NH) and ethylenediamine (NH 2 CH 2 CH 2 NH 2 ) in low temperature interstellar model ices exposed to ionizing radiation. Physical Chemistry Chemical Physics 2019, 21 (4) , 1952-1962. https://doi.org/10.1039/C8CP06002A
    21. Yassine Bouchafra, Avijit Shee, Florent Réal, Valérie Vallet, André Severo Pereira Gomes. Predictive Simulations of Ionization Energies of Solvated Halide Ions with Relativistic Embedded Equation of Motion Coupled Cluster Theory. Physical Review Letters 2018, 121 (26) https://doi.org/10.1103/PhysRevLett.121.266001
    22. Avijit Shee, Trond Saue, Lucas Visscher, André Severo Pereira Gomes. Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states. The Journal of Chemical Physics 2018, 149 (17) https://doi.org/10.1063/1.5053846
    23. Spencer L. Horton, Yusong Liu, Pratip Chakraborty, Philipp Marquetand, Tamás Rozgonyi, Spiridoula Matsika, Thomas Weinacht. Strong-field- versus weak-field-ionization pump-probe spectroscopy. Physical Review A 2018, 98 (5) https://doi.org/10.1103/PhysRevA.98.053416
    24. Weizhan Xiao, Yongjun Hu, Weixing Li, Jiwen Guan, Fuyi Liu, Xiaobin Shan, Liusi Sheng. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation. The Journal of Chemical Physics 2015, 142 (2) https://doi.org/10.1063/1.4905501
    25. Anuvab Mandal, Param Jeet Singh, Aparna Shastri, Vijay Kumar, B.N. Raja Sekhar, B.N. Jagatap. Rydberg and valence excited states of dibromomethane in 35,000–95,000cm−1 region studied using synchrotron radiation. Journal of Quantitative Spectroscopy and Radiative Transfer 2014, 144 , 164-173. https://doi.org/10.1016/j.jqsrt.2014.04.005
    26. Gregory Gitzinger, Vincent Loriot, Luis Bañares, Rebeca de Nalda. Pulse shaping control of CH 3 I multiphoton ionization at 540 nm. Journal of Modern Optics 2014, 61 (10) , 864-871. https://doi.org/10.1080/09500340.2013.861033
    27. Anuvab Mandal, Param Jeet Singh, Aparna Shastri, B. N. Jagatap. Electronic state spectroscopy of diiodomethane (CH2I2): Experimental and computational studies in the 30 000–95 000 cm−1 region. The Journal of Chemical Physics 2014, 140 (19) https://doi.org/10.1063/1.4875578
    28. Antonella Cartoni, Paola Bolognesi, Ettore Fainelli, Lorenzo Avaldi. Photofragmentation spectra of halogenated methanes in the VUV photon energy range. The Journal of Chemical Physics 2014, 140 (18) https://doi.org/10.1063/1.4874114
    29. Xiaofeng Tang, Xiaoguo Zhou, Zhongfa Sun, Shilin Liu, Fuyi Liu, Liusi Sheng, Bing Yan. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging. The Journal of Chemical Physics 2014, 140 (4) https://doi.org/10.1063/1.4862686
    30. Sara H. Gardiner, Tolga N. V. Karsili, M. Laura Lipciuc, Edward Wilman, Michael N. R. Ashfold, Claire Vallance. Fragmentation dynamics of the ethyl bromide and ethyl iodide cations: a velocity-map imaging study. Phys. Chem. Chem. Phys. 2014, 16 (5) , 2167-2178. https://doi.org/10.1039/C3CP53970A
    31. Karl‐Michael Weitzel. Bond‐dissociation energies of cations—Pushing the limits to quantum state resolution. Mass Spectrometry Reviews 2011, 30 (2) , 221-235. https://doi.org/10.1002/mas.20276
    32. R Locht, D Dehareng, K Hottmann, H W Jochims, H Baumgärtel, B Leyh. The photoionization dynamics of methyl iodide (CH 3 I): a joint photoelectron and mass spectrometric investigation. Journal of Physics B: Atomic, Molecular and Optical Physics 2010, 43 (10) , 105101. https://doi.org/10.1088/0953-4075/43/10/105101
    33. Yi-Liang He, Liming Wang. Cations of halogenated methanes: adiabatic ionization energies, potential energy surfaces, and ion fragment appearance energies. Structural Chemistry 2009, 20 (3) , 461-479. https://doi.org/10.1007/s11224-009-9444-x
    34. Valérie Blanchet, Peter C. Samartzis, Alec M. Wodtke. UV photodissociation of methyl bromide and methyl bromide cation studied by velocity map imaging. The Journal of Chemical Physics 2009, 130 (3) https://doi.org/10.1063/1.3058730
    35. Andras Bodi, Nicholas S. Shuman, Tomas Baer. On the ionization and dissociative photoionization of iodomethane: a definitive experimental enthalpy of formation of CH3I. Physical Chemistry Chemical Physics 2009, 11 (46) , 11013. https://doi.org/10.1039/b915400k
    36. Yajun Liu, Hongyan Xiao, Mengtao Sun, Weihai Fang. Spin‐orbit Ab initio investigation of the photodissociation of dibromomethane in the gas and solution phases. Journal of Computational Chemistry 2008, 29 (15) , 2513-2519. https://doi.org/10.1002/jcc.21008
    37. Chuan-Keng Huang, I.-Feng Lin, Su-Yu Chiang. Dissociation of energy-selected CH3CN+ in a region 15.1–16.5eV: Vibrationally enhanced dissociation and mechanisms. Chemical Physics Letters 2007, 440 (1-3) , 51-55. https://doi.org/10.1016/j.cplett.2007.04.010
    38. Pei-Ying Wei, Yuan-Ping Chang, Wei-Bin Lee, Zhengfa Hu, Hong-Yi Huang, King-Chuen Lin, K. T. Chen, A. H. H. Chang. 248 nm photolysis of CH2Br2 by using cavity ring-down absorption spectroscopy: Br2 molecular elimination at room temperature. The Journal of Chemical Physics 2006, 125 (13) https://doi.org/10.1063/1.2218514
    39. Su-Yu Chiang, Yung-Sheng Fang, Chun-Neng Lin. Dissociation of energy-selected c-C3H6S+ studied with threshold photoelectron-photoion coincidence experiments and calculations. Chemical Physics Letters 2006, 422 (4-6) , 475-480. https://doi.org/10.1016/j.cplett.2006.03.020
    40. R. Locht, B. Leyh, D. Dehareng, K. Hottmann, H.W. Jochims, H. Baumgärtel. About the photoionization of methyl bromide (CH3Br). Photoelectron and photoionization mass spectrometric investigation. Chemical Physics 2006, 323 (2-3) , 458-472. https://doi.org/10.1016/j.chemphys.2005.10.006
    41. Yung-Sheng Fang, I-Feng Lin, Yao-Chang Lee, Su-Yu Chiang. Dissociation of energy-selected c-C2H4S+ in a region 10.6–11.8 eV: Threshold photoelectron—photoion coincidence experiments and quantum-chemical calculations. The Journal of Chemical Physics 2005, 123 (5) https://doi.org/10.1063/1.1993589
    42. Su‐Yu Chiang, Yung‐Sheng Fang, Mohammed Bahou, K. Sankaran. Experiments and Calculations on Photoionization and Dissociative Photoionization of CH 2 CO. Journal of the Chinese Chemical Society 2004, 51 (4) , 681-688. https://doi.org/10.1002/jccs.200400103
    43. Su-Yu Chiang, Yung-Sheng Fang, K. Sankaran, Yuan-Pern Lee. Experimental and quantum-chemical studies on photoionization and dissociative photoionization of CH2Br2. The Journal of Chemical Physics 2004, 120 (7) , 3270-3276. https://doi.org/10.1063/1.1641010
    44. Hélène Lefebvre-Brion, Robert W. Field. Simple Spectra and Standard Experimental Techniques. 2004, 1-60. https://doi.org/10.1016/B978-012441455-6/50004-4
    45. Yeu Young Youn, Joong Chul Choe, Myung Soo Kim. Reliability of estimation of recombination energies of molecular radical cations by charge exchange and a test of the exoergicity rule. Rapid Communications in Mass Spectrometry 2003, 17 (4) , 314-319. https://doi.org/10.1002/rcm.904
    46. Jianhua Huang, Dadong Xu, Joseph S. Francisco, William M. Jackson. Photodissociation of bromoform cation at 308, 355, and 610 nm by means of time-of-flight mass spectroscopy and ion velocity imaging. The Journal of Chemical Physics 2003, 118 (7) , 3083-3089. https://doi.org/10.1063/1.1537691
    47. Su-Yu Chiang, Mohammed Bahou, K. Sankaran, Yuan-Pern Lee, Hsiu-Feng Lu, Ming-Der Su. Dissociative photoionization of CH2Cl2 and enthalpy of formation of CHCl+: Experiments and calculations. The Journal of Chemical Physics 2003, 118 (1) , 62-69. https://doi.org/10.1063/1.1524178
    48. Bernhard Urban, Vladimir E. Bondybey. One-color multiphoton threshold photoelectron spectra of methyl bromide, and their comparison with methyl iodide. The Journal of Chemical Physics 2002, 116 (12) , 4938-4947. https://doi.org/10.1063/1.1447219
    49. Jianhua Huang, Dadong Xu, William H. Fink, William M. Jackson. Photodissociation of the dibromomethane cation at 355 nm by means of ion velocity imaging. The Journal of Chemical Physics 2001, 115 (13) , 6012-6017. https://doi.org/10.1063/1.1402993
    50. Jun Chen, Linsen Pei, Jinian Shu, Congxiang Chen, Xingxiao Ma, Liusi Shen, Yunwu Zhang. VUV photoionization of (CH3I) (n=1–4) molecules. Chemical Physics Letters 2001, 345 (1-2) , 57-64. https://doi.org/10.1016/S0009-2614(01)00864-8
    51. Y. Song, X.-M. Qian, K.-C. Lau, C. Y. Ng, Jianbo Liu, Wenwu Chen. High-resolution energy-selected study of the reaction CH3X+→CH3++X: Accurate thermochemistry for the CH3X/CH3X+ (X=Br, I) system. The Journal of Chemical Physics 2001, 115 (9) , 4095-4104. https://doi.org/10.1063/1.1391268
    52. Hari Mohan, Jai P Mittal. Electron-transfer and excited-state properties of radiolytically generated transients of acridine(1,8)dione dyes in an organic matrix. Journal of Photochemistry and Photobiology A: Chemistry 2001, 141 (1) , 25-32. https://doi.org/10.1016/S1010-6030(01)00432-4
    53. Su-Yu Chiang, Chien-I Ma, Der-Jr Shr. Dissociative photoionization of CH3SSCH3 in the region of ∼8–25 eV. The Journal of Chemical Physics 1999, 110 (18) , 9056-9063. https://doi.org/10.1063/1.478826
    54. Zhuangjie Li, Joseph S. Francisco. High level ab initio molecular orbital study of the structures and vibrational spectra of CH2Br and CH2Br+. The Journal of Chemical Physics 1999, 110 (2) , 817-822. https://doi.org/10.1063/1.478049
    55. H. Mohan, J. P. Mittal. Spectral, kinetics, and redox properties of the transients formed on one-electron oxidation of 4,4?-thiodiphenol: A pulse radiolysis study. International Journal of Chemical Kinetics 1999, 31 (9) , 603-610. https://doi.org/10.1002/(SICI)1097-4601(1999)31:9<603::AID-KIN2>3.0.CO;2-B
    56. Terry N Olney, Glyn Cooper, C.E Brion. Quantitative studies of the photoabsorption (4.5–488 eV) and photoionization (9–59.5 eV) of methyl iodide using dipole electron impact techniques. Chemical Physics 1998, 232 (1-2) , 211-237. https://doi.org/10.1016/S0301-0104(97)00368-6
    57. Fei Qi, Shihe Yang, Liusi Sheng, Hui Gao, Yunwu Zhang, Shuqin Yu. Vacuum ultraviolet photoionization and dissociative photoionization of W(CO)6. The Journal of Chemical Physics 1997, 107 (24) , 10391-10398. https://doi.org/10.1063/1.474202
    58. Fei Qi, Xin Yang, Shihe Yang, Hui Gao, Liusi Sheng, Yunwu Zhang, Shuqin Yu. Mass resolved photoionization/fragmentation studies of Cr(CO)6 at photon energies of ∼ 8–40 eV. The Journal of Chemical Physics 1997, 107 (13) , 4911-4918. https://doi.org/10.1063/1.474854
    59. Li‐Hwa Lu, Cheng Chen, Kuang‐Chung Sun. The Generalized Parameterization Procedure for Semiempirical MO Method and Calculation of ionization Potentials for the Fourth‐Period Element Molecules. Journal of the Chinese Chemical Society 1997, 44 (4) , 445-453. https://doi.org/10.1002/jccs.199700068
    60. Terry N. Olney, Glyn Cooper, Wing Fat Chan, Gordon R. Burton, C.E. Brion, K.H. Tan. Absolute photoabsorption and photoionization studies of methyl bromide using dipole electron impact and synchrotron radiation PES techniques. Chemical Physics 1997, 218 (1-2) , 127-149. https://doi.org/10.1016/S0301-0104(97)00066-9
    61. Liusi Sheng, Fei Qi, Hui Gao, Yunwu Zhang, Shuqin Yu, Wai-Kee Li. Experimental and theoretical study of the photoionization and dissociative photoionizations of dichlorodifluoromethane. International Journal of Mass Spectrometry and Ion Processes 1997, 161 (1-3) , 151-159. https://doi.org/10.1016/S0168-1176(96)04506-5
    62. Catherine L. Lugez, Daniel Forney, Marilyn E. Jacox, Karl K. Irikura. The vibrational spectra of molecular ions isolated in solid neon. XIV. CH3F+, CH3Cl+, CH3Br+, and their ylidion isomers. The Journal of Chemical Physics 1997, 106 (2) , 489-503. https://doi.org/10.1063/1.473390
    63. Ken-ichi Saitow, Yukito Naitoh, Keisuke Tominaga, Keitaro Yoshihara. Photo-induced reactions of CH2I2 in solution studied by the ultrafast transient absorption spectroscopy. Chemical Physics Letters 1996, 262 (5) , 621-626. https://doi.org/10.1016/S0009-2614(96)01116-5
    64. Liusi Sheng, Fei Qi, Li Tao, Yunwu Zhang, Shuqin Yu, Chi-Kin Wong, Wai-Kee Li. Experimental and theoretical studies of the photoionization and dissociative photoionizations of vinyl chloride. International Journal of Mass Spectrometry and Ion Processes 1995, 148 (3) , 179-189. https://doi.org/10.1016/0168-1176(95)04263-K
    65. Cheng Chen, Li-Hwa Lu, Kung-Chung Sun, Yeong-Ming Wang. The molecular orbitals and first ionization potentials calculation of iodine compounds. Journal of Molecular Structure 1994, 310 , 219-227. https://doi.org/10.1016/S0022-2860(10)80072-9
    66. Cheng Chen, Li-Hwa Lu, Kung-Chung Sun, Yeong-Ming Wang. The molecular orbitals and first ionization potentials calculation of iodine compounds. Journal of Molecular Structure: THEOCHEM 1994, 310 , 219-227. https://doi.org/10.1016/S0166-1280(09)80100-0
    67. Z.-X. Ma, C.-L. Liao, C. Y. Ng, Ngai Ling Ma, Wai-Kee Li. Adiabatic ionization energy and electron affinity of CH2Br. The Journal of Chemical Physics 1993, 99 (9) , 6470-6473. https://doi.org/10.1063/1.465864
    68. Joachim Opitz, Detlev Bruch. Multiphoton and electron impact ionization of manganese decacarbonyl Mn2(CO)10 at 351, 248 and 193 nm. Wavelength dependent competition between ionization and dissociation. International Journal of Mass Spectrometry and Ion Processes 1993, 124 (2) , 157-169. https://doi.org/10.1016/0168-1176(93)80006-Z
    69. John L. Holmes, F.P. Lossing, R.A. McFarlane. Stabilization energy and positional effects in halogen-substituted alkyl ions. International Journal of Mass Spectrometry and Ion Processes 1988, 86 , 209-215. https://doi.org/10.1016/0168-1176(88)80065-X
    70. M. Tadjeddine, J.P. Flament, C. Teichteil. Spin-orbit calculations of the molecular states of CH3I+, related to photofragmentation experiments. Chemical Physics 1988, 124 (1) , 13-28. https://doi.org/10.1016/0301-0104(88)85078-X
    71. M. Tadjeddine, J.P. Flament, C. Teichteil. Ionization potentials of CH3I: Ab-initio calculations including spin-orbit coupling.. Journal of Molecular Structure: THEOCHEM 1988, 166 , 147-152. https://doi.org/10.1016/0166-1280(88)80428-7
    72. M. Tadjeddine, J.P. Flament, C. Teichteil. Non-empirical spin-orbit calculation of the CH3I ground state. Chemical Physics 1987, 118 (1) , 45-55. https://doi.org/10.1016/0301-0104(87)85035-8
    73. Hari Mohan, K.N. Rao, R.M. Iyer. Gamma-radiolysis of CHI3 in 3-methylpentane at 77 K. Radiation Physics and Chemistry (1977) 1985, 26 (1) , 57-61. https://doi.org/10.1016/0146-5724(85)90034-2
    74. Josef Dannacher. The study of ionic fragmentation by photoelectron‐photoion coincidence spectroscopy. Organic Mass Spectrometry 1984, 19 (6) , 253-275. https://doi.org/10.1002/oms.1210190602
    75. E.S. Mukhtar, I.W. Griffiths, F.M. Harris, J.H. Beynon. Unimolecular, collision-induced and photoinduced dissociation of CH3I+− and CD3+−. International Journal of Mass Spectrometry and Ion Physics 1982, 42 (1-2) , 77-90. https://doi.org/10.1016/0020-7381(82)80054-5
    76. J. Silberstein, R. D. Levine. Statistical fragmentation patterns in multiphoton ionization: A comparison with experiment. The Journal of Chemical Physics 1981, 75 (12) , 5735-5743. https://doi.org/10.1063/1.442011
    77. Anna Samoć, Marek Samoć, Juliusz Sworakowski, Igor Koropecky, Stanislav Nespurek. Photoconductivity of Crystalline Iodoform I.. Molecular Crystals and Liquid Crystals 1981, 78 (1) , 1-13. https://doi.org/10.1080/00268948108082142
    78. S. P. Goss, D. C. McGilvery, J. D. Morrison, D. L. Smith. The photodissociation of some alkyl iodide cations. The Journal of Chemical Physics 1981, 75 (4) , 1820-1828. https://doi.org/10.1063/1.442261
    79. Lester Andrews. Spectroscopy of Transient Species and Molecular Ions in Matrices. Applied Spectroscopy 1979, 33 (3) , 199-205. https://doi.org/10.1366/0003702794925877
    80. Tomas Baer. The Fate of Ions as Studied by Photoion-Photoelectron Coincidence. Journal of Electron Spectroscopy and Related Phenomena 1979, 15 (1) , 225-231. https://doi.org/10.1016/0368-2048(79)87036-X
    81. TOMAS BAER. State selection by photoion–photoelectron coincidence. 1979, 153-196. https://doi.org/10.1016/B978-0-12-120801-1.50011-9
    82. J.H. BEYNON, J.R. GILBERT. Energetics and mechanisms of unimolecular reactions of positive ions: mass spectrometric methods. 1979, 153-179. https://doi.org/10.1016/B978-0-12-120802-8.50011-4
    83. Lester Andrews, Charles A. Wight, Frank T. Prochaska, Stephen A. McDonald, Bruce S. Ault. Vacuum-ultraviolet photoionization of bromoform and its chlorine substituted counterparts during condensation with argon at 15 K. Journal of Molecular Spectroscopy 1978, 73 (1) , 120-143. https://doi.org/10.1016/0022-2852(78)90199-6
    84. J.H.D. Eland, R. Frey, A. Kuestler, H. Schulte, B. Brehm. Unimolecular dissociations and internal conversions of methyl halide ions. International Journal of Mass Spectrometry and Ion Physics 1976, 22 (1-2) , 155-170. https://doi.org/10.1016/0020-7381(76)80116-7
    85. Donald M. Mintz, Tomas Baer. Kinetic energy release distributions for the dissociation of internal energy selected CH3I+ and CD3I+ ions. The Journal of Chemical Physics 1976, 65 (6) , 2407-2415. https://doi.org/10.1063/1.433357
    86. S. Leach, R. C. Powell, R. T. Williams, J. R. Wiesenfeld, E. W. Schlag, A. J. Yencha. Long Seminars. 1976, 369-405. https://doi.org/10.1007/978-1-4684-2793-6_17
    87. Bilin P. Tsai, Arthur S. Werner, Tomas Baer. A photoion–photoelectron coincidence (PIPECO) study of fragmentation rates and kinetic energy release in energy selected metastable ions. The Journal of Chemical Physics 1975, 63 (10) , 4384-4392. https://doi.org/10.1063/1.431155
    88. BILIN P. TSAI, TOMAS BAER, ARTHUR S. WERNER, STEPHEN F. LIN. ChemInform Abstract: A PHOTOELECTRON‐PHOTOION COINCIDENCE STUDY OF THE IONIZATION AND FRAGMENT APPEARANCE POTENTIALS OF BROMO‐ AND IODOMETHANES. Chemischer Informationsdienst 1975, 6 (21) https://doi.org/10.1002/chin.197521055

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1975, 79, 6, 570–574
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100573a006
    Published March 1, 1975

    Article Views

    233

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.