ACS Publications. Most Trusted. Most Cited. Most Read
Thermochemistry of the bromination of carbon tetrachloride and the heat of formation of carbon tetrachloride
My Activity

Figure 1Loading Img
    Article

    Thermochemistry of the bromination of carbon tetrachloride and the heat of formation of carbon tetrachloride
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1973, 77, 22, 2707–2709
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100640a029
    Published October 1, 1973

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 34 publications.

    1. Ádám Ganyecz, Mihály Kállay, József Csontos. High Accuracy Quantum Chemical and Thermochemical Network Data for the Heats of Formation of Fluorinated and Chlorinated Methanes and Ethanes. The Journal of Physical Chemistry A 2018, 122 (28) , 5993-6006. https://doi.org/10.1021/acs.jpca.8b00614
    2. Dominik Schuch, Patrick Fries, Maike Dönges, Bárbara Menéndez Pérez and Jens Hartung. Reductive and Brominative Termination of Alkenol Cyclization in Aerobic Cobalt-Catalyzed Reactions. Journal of the American Chemical Society 2009, 131 (36) , 12918-12920. https://doi.org/10.1021/ja904577c
    3. . Publications. The Journal of Physical Chemistry A 1998, 8443-8456. https://doi.org/10.1021/jp9832490
    4. Fernando Bernardi and, Andrea Bottoni. Polar Effect in Hydrogen Abstraction Reactions from Halo-Substituted Methanes by Methyl Radical:  A Comparison between Hartree−Fock, Perturbation, and Density Functional Theories. The Journal of Physical Chemistry A 1997, 101 (10) , 1912-1919. https://doi.org/10.1021/jp9620680
    5. Christopher F. Rodriquez,, Diethard K. Bohme, and, Alan C. Hopkinson. Theoretical Enthalpies of Formation of CHmCln:  Neutral Molecules and Cations. The Journal of Physical Chemistry 1996, 100 (8) , 2942-2949. https://doi.org/10.1021/jp951994w
    6. Xing He, Xiangyang Yao, Shuai-Fang Cai, Hong-Ru Li, Liang-Nian He. Visible light-driven carbamoyloxylation of the α-C(sp 3 )–H bond of arylacetones via radical-initiated hydrogen atom transfer. Chemical Communications 2022, 58 (39) , 5845-5848. https://doi.org/10.1039/D2CC01761J
    7. Kameron R. Jorgensen, Melissa Cadena. Theoretical study of bromine halocarbons: Accurate enthalpies of formation. Computational and Theoretical Chemistry 2018, 1141 , 66-73. https://doi.org/10.1016/j.comptc.2018.08.016
    8. Grigorii M. Khrapkovskii, Alexander G. Shamov, Roman V. Tsyshevsky, Denis V. Chachkov, Daniil L. Egorov, Ilia V. Aristov. Effect of halogen substituents on C–N bond strength in nitromethane. Computational and Theoretical Chemistry 2012, 985 , 80-89. https://doi.org/10.1016/j.comptc.2012.02.003
    9. Jens Hartung, Kristina Daniel, Thomas Gottwald, Andreas Groß, Nina Schneiders. Microwave-assisted generation of alkoxyl radicals and their use in additions, β-fragmentations, and remote functionalizations. Org. Biomol. Chem. 2006, 4 (11) , 2313-2322. https://doi.org/10.1039/B603480B
    10. Wilson Ng, Patrick E. Hoggard. Kinetics of the photoreduction of bis(2,4-pentanedionato)copper(II) in chloroform. Inorganica Chimica Acta 2001, 321 (1-2) , 1-4. https://doi.org/10.1016/S0020-1693(01)00502-3
    11. Young-Jae Jung, Moon Soo Park, Yong Shin Kim, Kyung-Hoon Jung, Hans-Robert Volpp. Photodissociation of CBrCl3 at 234 and 265 nm: Evidence of the curve crossing. The Journal of Chemical Physics 1999, 111 (9) , 4005-4012. https://doi.org/10.1063/1.479182
    12. Y. R. Lee, Y. J. Yang, Y. Y. Lin, S. M. Lin. Photodissociation of CBrCl3 at 193 nm by translational spectroscopy. The Journal of Chemical Physics 1995, 103 (16) , 6966-6972. https://doi.org/10.1063/1.470374
    13. Z Zhang, R Pollard. Group additivity values for standard heats of formation of gaseous chlorofluorocarbons and related species. Thermochimica Acta 1995, 257 , 21-37. https://doi.org/10.1016/0040-6031(94)02191-P
    14. Y.R. Lee, W.B. Tzeng, Y.J. Yang, Y.Y. Lin, S.M. Lin. Photodissociation of CBrCl3 at 248 nm by translational spectroscopy. Chemical Physics Letters 1994, 222 (1-2) , 141-145. https://doi.org/10.1016/0009-2614(94)00332-7
    15. P.D Lightfoot, R.A Cox, J.N Crowley, M Destriau, G.D Hayman, M.E Jenkin, G.K Moortgat, F Zabel. Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry. Atmospheric Environment. Part A. General Topics 1992, 26 (10) , 1805-1961. https://doi.org/10.1016/0960-1686(92)90423-I
    16. A. Kalamarides, R. W. Marawar, M. A. Durham, B. G. Lindsay, K. A. Smith, F. B. Dunning. Use of Rydberg atoms to probe negative ion lifetimes. The Journal of Chemical Physics 1990, 93 (6) , 4043-4046. https://doi.org/10.1063/1.458736
    17. Jean-Michel Savéant. Single Electron Transfer and Nucleophilic Substitution. 1990, 1-130. https://doi.org/10.1016/S0065-3160(08)60044-1
    18. R. A. Taccone, O. Salinovich, E. H. Staricco. Kinetic and thermochemical parameters of chlorine atom transfer reactions from CF 3 Cl, CF 3 CF 2 Cl, CF 2 ClCF 2 Cl, and CF 2 ClCFCl 2 in gas phase. International Journal of Chemical Kinetics 1989, 21 (5) , 331-341. https://doi.org/10.1002/kin.550210504
    19. G. Schmitt, F.J. Comes. Competitive photodecomposition reactions of chloroiodomethane. Journal of Photochemistry and Photobiology A: Chemistry 1987, 41 (1) , 13-30. https://doi.org/10.1016/1010-6030(87)80002-3
    20. E. Tschuikow‐Roux, S. Paddison. Bond dissociation energies and radical heats of formation in CH 3 Cl, CH 2 Cl 2 , CH 3 Br, CH 2 Br 2 , CH 2 FCl, and CHFCl 2. International Journal of Chemical Kinetics 1987, 19 (1) , 15-24. https://doi.org/10.1002/kin.550190103
    21. J. A. Rice, J. J. Treacy, H. W. Sidebottom. Reactions of trichloromethyl radicals with organosilicon compounds. International Journal of Chemical Kinetics 1984, 16 (12) , 1505-1518. https://doi.org/10.1002/kin.550161205
    22. J. Aron, J. Bunnell, T.A. Ford, N. Mercau, R. Aroca, E.A. Robinson. Molecular vibrational constants of some simple polyatomic molecules. Journal of Molecular Structure: THEOCHEM 1984, 110 (3-4) , 361-379. https://doi.org/10.1016/0166-1280(84)80086-X
    23. Ian Matheson, John Tedder, Howard Sidebottom. Photolysis of carbon tetrachloride in the presence of alkanes. International Journal of Chemical Kinetics 1982, 14 (9) , 1033-1045. https://doi.org/10.1002/kin.550140908
    24. Cornelis A.M. van den Ende, Lajos Nyikos, John M. Warman, Andries Hummel. Mobility, reaction kinetics and optical absorption spectrum of the excess electron in pure C6F6 and admixtures with non polar liquids. Radiation Physics and Chemistry (1977) 1982, 19 (4) , 297-308. https://doi.org/10.1016/0146-5724(82)90113-3
    25. U. Brinkmann, V.H. Schmidt, H. Telle. The SrCl(AX, BX) bands in thermal and non-thermal reactive excitation using metastable Sr atoms. Chemical Physics 1982, 64 (1) , 19-41. https://doi.org/10.1016/0301-0104(82)85002-7
    26. E. Illenberger. Measurement of the translational excess energy in dissociative electron attachment processes. Chemical Physics Letters 1981, 80 (1) , 153-158. https://doi.org/10.1016/0009-2614(81)80079-6
    27. G.B. Fazekas, G.A. Takacs. Photochemical stability of atmospheric CF2ClNO and CFCl2NO. Journal of Photochemistry 1981, 16 (2) , 249-254. https://doi.org/10.1016/0047-2670(81)80034-2
    28. H.‐U. Scheunemann, E. Illenberger, H. Baumgärtel. Dissociative Electron Attachment to CCl 4 , CHCl 3 , CH 2 Cl 2 and CH 3 Cl. Berichte der Bunsengesellschaft für physikalische Chemie 1980, 84 (6) , 580-585. https://doi.org/10.1002/bbpc.19800840612
    29. Kenneth V. Macken, Howard W. Sidebottom. The reactions of methyl radicals with chloromethanes. International Journal of Chemical Kinetics 1979, 11 (5) , 511-527. https://doi.org/10.1002/kin.550110505
    30. R. W. Solarz, S. A. Johnson. Laser induced fluorescence studies of the reactions of barium (1 S , 3 D ) and strontium (1 S , 3 P ) with halogenated methanes. The Journal of Chemical Physics 1979, 70 (8) , 3592-3599. https://doi.org/10.1063/1.437962
    31. E. Illenberger, H.-U. Scheunemann, H. Baumgärtel. Negative ion formation in CF2Cl2, CF3Cl and CFCl3 following low energy (0—10 eV) impact with near monoenergetic electrons. Chemical Physics 1979, 37 (1) , 21-31. https://doi.org/10.1016/0301-0104(79)80003-8
    32. M. G. Katz, L. A. Rajbenbach. Correlation of activation energies of radical–molecule metathesis reactions with enthalpic, polar, and steric parameters. International Journal of Chemical Kinetics 1978, 10 (9) , 955-970. https://doi.org/10.1002/kin.550100906
    33. L. A. Gundel, D. W. Setser, M. A. A. Clyne, J. A. Coxon, W. Nip. Rate constants for specific product channels from metastable Ar(3 P 2,0) reactions and spectrometer calibration in the vacuum ultraviolet. The Journal of Chemical Physics 1976, 64 (11) , 4390-4410. https://doi.org/10.1063/1.432108
    34. M. G. Katz, A. Horowitz, L. A. Rajbenbach. Abstraction of chlorine atoms from chloromethanes by the cyclohexyl radical. International Journal of Chemical Kinetics 1975, 7 (2) , 183-194. https://doi.org/10.1002/kin.550070203

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1973, 77, 22, 2707–2709
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100640a029
    Published October 1, 1973

    Article Views

    85

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.