ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Ion-product constant of water to 350.deg.

Cite this: J. Phys. Chem. 1972, 76, 1, 90–99
Publication Date (Print):January 1, 1972
https://doi.org/10.1021/j100645a016
    ACS Legacy Archive

    Article Views

    551

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 115 publications.

    1. Xuefei Cao, Xinwen Peng, Shaoni Sun, Linxin Zhong, and Runcang Sun . Hydrothermal Conversion of Bamboo: Identification and Distribution of the Components in Solid Residue, Water-Soluble and Acetone-Soluble Fractions. Journal of Agricultural and Food Chemistry 2014, 62 (51) , 12360-12365. https://doi.org/10.1021/jf505074d
    2. Michael Imle, Jacek Kumelan, Dirk Speyer, Nichola McCann, Gerd Maurer, and Hans Hasse . Solubility of Carbon Dioxide in Activated Potash Solutions in the Low and High Gas Loading Regions. Industrial & Engineering Chemistry Research 2013, 52 (37) , 13477-13489. https://doi.org/10.1021/ie401835x
    3. Mayuri Gupta, Eirik F. da Silva, and Hallvard F. Svendsen . Modeling Temperature Dependency of Ionization Constants of Amino Acids and Carboxylic Acids. The Journal of Physical Chemistry B 2013, 117 (25) , 7695-7709. https://doi.org/10.1021/jp402496u
    4. Michael Wagner, Inga von Harbou, Jaeik Kim, Irina Ermatchkova, Gerd Maurer, and Hans Hasse . Solubility of Carbon Dioxide in Aqueous Solutions of Monoethanolamine in the Low and High Gas Loading Regions. Journal of Chemical & Engineering Data 2013, 58 (4) , 883-895. https://doi.org/10.1021/je301030z
    5. G. H. Zimmerman, H. Arcis, and P. R. Tremaine . Limiting Conductivities and Ion Association Constants of Aqueous NaCl under Hydrothermal Conditions: Experimental Data and Correlations. Journal of Chemical & Engineering Data 2012, 57 (9) , 2415-2429. https://doi.org/10.1021/je300361j
    6. Espen S. Hamborg and Geert F. Versteeg. Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293 to 353) K. Journal of Chemical & Engineering Data 2009, 54 (4) , 1318-1328. https://doi.org/10.1021/je800897v
    7. Espen S. Hamborg,, John P. M. Niederer, and, Geert F. Versteeg. Dissociation Constants and Thermodynamic Properties of Amino Acids Used in CO2 Absorption from (293 to 353) K. Journal of Chemical & Engineering Data 2007, 52 (6) , 2491-2502. https://doi.org/10.1021/je700275v
    8. Kiwamu Sue,, Fumiaki Ouchi,, Kimitaka Minami, and, Kunio Arai. Determination of Carboxylic Acid Dissociation Constants to 350 °C at 23 MPa by Potentiometric pH Measurements. Journal of Chemical & Engineering Data 2004, 49 (5) , 1359-1363. https://doi.org/10.1021/je049923q
    9. Kiwamu Sue,, Toshihiko Usami, and, Kunio Arai. Determination of Acetic Acid Dissociation Constants to 400 °C and 32 MPa by Potentiometric pH Measurements. Journal of Chemical & Engineering Data 2003, 48 (4) , 1081-1084. https://doi.org/10.1021/je030142j
    10. Adrian H. Elcock and, J. Andrew McCammon. Continuum Solvation Model for Studying Protein Hydration Thermodynamics at High Temperatures. The Journal of Physical Chemistry B 1997, 101 (46) , 9624-9634. https://doi.org/10.1021/jp971903q
    11. Stuart Licht and, John Davis. Disproportionation of Aqueous Sulfur and Sulfide:  Kinetics of Polysulfide Decomposition. The Journal of Physical Chemistry B 1997, 101 (14) , 2540-2545. https://doi.org/10.1021/jp962661h
    12. Álvaro Pérez-Salado Kamps and, Gerd Maurer. Dissociation Constant of N-Methyldiethanolamine in Aqueous Solution at Temperatures from 278 K to 368 K. Journal of Chemical & Engineering Data 1996, 41 (6) , 1505-1513. https://doi.org/10.1021/je960141+
    13. Takayuki Iwata, Shingo Funatsu, Kohei Kajiwara, Yoshihito Shiota, Kazunari Yoshizawa, Mitsuru Shindo. Neutral Nazarov reaction using protic solvents as activators. Bulletin of the Chemical Society of Japan 2024, 97 (2) https://doi.org/10.1093/bulcsj/uoad014
    14. Hugues Arcis, Jacy K. Conrad, Jane P. Ferguson, Kristy M. Erickson, Peter R. Tremaine. First Ionization Constant of Phosphoric Acid and of Acetic Acid in H2O and D2O from T = 373 K to 573 K at p = 11.5 and 20 MPa by AC Conductivity Methods. Journal of Solution Chemistry 2024, 53 (1) , 91-125. https://doi.org/10.1007/s10953-023-01281-4
    15. Takayuki Iwata, Ryusei Kawano, Takuto Fukami, Mitsuru Shindo. Retro‐Friedel‐Crafts‐Type Acidic Ring‐Opening of Triptycenes: A New Synthetic Approach to Acenes. Chemistry – A European Journal 2022, 28 (12) https://doi.org/10.1002/chem.202104160
    16. Mark M. J. van Rijt, Bernette M. Oosterlaken, Heiner Friedrich, Gijsbertus de With. Controlled titration-based ZnO formation. CrystEngComm 2021, 23 (18) , 3340-3348. https://doi.org/10.1039/D1CE00222H
    17. Hugues Arcis, Jane P. Ferguson, Jenny S. Cox, Peter R. Tremaine. The Ionization Constant of Water at Elevated Temperatures and Pressures: New Data from Direct Conductivity Measurements and Revised Formulations from T = 273 K to 674 K and p = 0.1 MPa to 31 MPa. Journal of Physical and Chemical Reference Data 2020, 49 (3) https://doi.org/10.1063/1.5127662
    18. Paul Reimus, Florie Caporuscio, Oana Marina, David Janney. Field demonstration of the combined use of thermally-degrading and cation-exchanging tracers to predict thermal drawdown in a geothermal reservoir. Geothermics 2020, 83 , 101712. https://doi.org/10.1016/j.geothermics.2019.101712
    19. Zhenzi Jing, Jian Li, Wenbo Hao, Jiajun Miao. Hydrothermal synthesis of pollucite with soil and incineration ash for Cs immobilization and its immobilizing mechanism and leaching property. Journal of Radioanalytical and Nuclear Chemistry 2019, 319 (3) , 1083-1091. https://doi.org/10.1007/s10967-018-6393-0
    20. Cédric Lousteau, Hana Ayadi, Claude Descorme. Aqueous phase (catalytic) wet air oxidation of ammonia: Thermodynamic considerations. Applied Catalysis B: Environmental 2017, 202 , 12-20. https://doi.org/10.1016/j.apcatb.2016.09.010
    21. . Water. 2016, 61-134. https://doi.org/10.1002/9783527656189.ch5
    22. T.S. Peretyazhko, B. Sutter, R.V. Morris, D.G. Agresti, L. Le, D.W. Ming. Fe/Mg smectite formation under acidic conditions on early Mars. Geochimica et Cosmochimica Acta 2016, 173 , 37-49. https://doi.org/10.1016/j.gca.2015.10.012
    23. Michael Jödecke, Jianzhong Xia, Álvaro Pérez‐Salado Kamps, Gerd Maurer. An experimental investigation on the influence of phenol on the solubility of CO 2 in aqueous solutions of NaOH. AIChE Journal 2015, 61 (9) , 2832-2840. https://doi.org/10.1002/aic.14742
    24. Richard K. Henderson, Alan P. Hill, Anikó M. Redman, Helen F. Sneddon. Development of GSK's acid and base selection guides. Green Chemistry 2015, 17 (2) , 945-949. https://doi.org/10.1039/C4GC01481B
    25. Jens Krogell, Kari Eränen, Kim Granholm, Andrey Pranovich, Stefan Willför. High-temperature pH measuring during hot-water extraction of hemicelluloses from wood. Industrial Crops and Products 2014, 61 , 9-15. https://doi.org/10.1016/j.indcrop.2014.06.046
    26. Suparna Sarkar, Víctor H. Alvarez, Marleny D.A. Saldaña. Relevance of ions in pressurized fluid extraction of carbohydrates and phenolics from barley hull. The Journal of Supercritical Fluids 2014, 93 , 27-37. https://doi.org/10.1016/j.supflu.2014.04.019
    27. Hieu H. Pham, Christopher D. Taylor, Neil J. Henson. Acidity constants and its dependence on solvent selection from first-principles calculations using cluster-continuum models. Chemical Physics Letters 2014, 610-611 , 141-147. https://doi.org/10.1016/j.cplett.2014.07.017
    28. W. Hamdah W. Ahmad, Yoke-Leng Sim, M. Niyaz Khan. Kinetics and mechanism of the general base-catalyzed hydrolysis of N-hydroxyphthalimide. Monatshefte für Chemie - Chemical Monthly 2013, 144 (9) , 1299-1305. https://doi.org/10.1007/s00706-013-0990-y
    29. Ruth Esther Villanueva-Estrada, Rosa María Prol-Ledesma, Augusto A. Rodríguez-Díaz, Carles Canet, María Aurora Armienta. Arsenic in hot springs of Bahía Concepción, Baja California Peninsula, México. Chemical Geology 2013, 348 , 27-36. https://doi.org/10.1016/j.chemgeo.2012.09.008
    30. Min Yao, Wenlong Tu, Xi Chen, Chang-Guo Zhan. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: unexpected substituent effects. Organic & Biomolecular Chemistry 2013, 11 (43) , 7595. https://doi.org/10.1039/c3ob41055b
    31. M. Bernardi, M. Le Du, I. Dodouche, C. Descorme, S. Deleris, E. Blanchet, M. Besson. Selective removal of the ammonium-nitrogen in ammonium acetate aqueous solutions by catalytic wet air oxidation over supported Pt catalysts. Applied Catalysis B: Environmental 2012, 128 , 64-71. https://doi.org/10.1016/j.apcatb.2012.03.035
    32. Kiyoko TAKEDA, Hiroyuki ANADA, Toshiyuki NAKAI. Metal Release Reduction from TP304L for the Feed Water Heater Tube by Pre-Filming. Journal of the Surface Finishing Society of Japan 2012, 63 (5) , 287. https://doi.org/10.4139/sfj.63.287
    33. Gerd Maurer. Phase equilibria in chemical reactive fluid mixtures. The Journal of Chemical Thermodynamics 2011, 43 (2) , 147-160. https://doi.org/10.1016/j.jct.2010.08.009
    34. A. Liebscher. Review: Aqueous Fluids at Elevated Pressure and Temperature. 2010, 3-19. https://doi.org/10.1002/9781444394900.ch2
    35. Célia S. Bonnet, Pascal H. Fries. Paramagnetic Relaxation Enhancements in Acetate and Its Fluorine Derivatives Interacting with Gd 3+ : Complex Formation, Structure, and Transmetallation. ChemPhysChem 2010, 11 (16) , 3474-3484. https://doi.org/10.1002/cphc.201000448
    36. A. LIEBSCHER. Aqueous fluids at elevated pressure and temperature. Geofluids 2010, 10 (1-2) , 3-19. https://doi.org/10.1111/j.1468-8123.2010.00293.x
    37. Mohammad Niyaz Khan. Can a Typical Protein Assist the Rate of its Own Aqueous Cleavage?. Progress in Reaction Kinetics and Mechanism 2010, 35 (2) , 131-165. https://doi.org/10.3184/146867810X12700573609126
    38. C. Guo, Y. H. Tang, E. L. Zhang, X. C. Li, J. L. Li. Aggregation of self-assembled Ni(OH)2 nanosheets under hydrothermal conditions. Journal of Materials Science: Materials in Electronics 2009, 20 (11) , 1118-1122. https://doi.org/10.1007/s10854-008-9836-5
    39. M. Niyaz Khan. Experimental versus theoretical evidence for the rate‐limiting steps in uncatalyzed and H + ‐ and HO − ‐catalyzed hydrolysis of the amide bond. International Journal of Chemical Kinetics 2009, 41 (9) , 599-611. https://doi.org/10.1002/kin.20435
    40. Inna Kim, Karl A. Hoff, Erik T. Hessen, Tore Haug-Warberg, Hallvard F. Svendsen. Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chemical Engineering Science 2009, 64 (9) , 2027-2038. https://doi.org/10.1016/j.ces.2008.12.037
    41. H Slebocka-Tilk, F Sauriol, Martine Monette, R S Brown. Aspects of the hydrolysis of formamide: revisitation of the water reaction and determination of the solvent deuterium kinetic isotope effect in base. Canadian Journal of Chemistry 2002, 80 (10) , 1343-1350. https://doi.org/10.1139/v02-166
    42. Magnus Norgren, Håkan Edlund, Lars Wågberg, Birger Lindström, Göran Annergren. Aggregation of kraft lignin derivatives under conditions relevant to the process, part I: phase behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 194 (1-3) , 85-96. https://doi.org/10.1016/S0927-7757(01)00753-1
    43. G.D. Cody, N.Z. Boctor, R.M. Hazen, J.A. Brandes, Harold J. Morowitz, H.S. Yoder. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H 2 O-(±FeS)−(±NiS). Geochimica et Cosmochimica Acta 2001, 65 (20) , 3557-3576. https://doi.org/10.1016/S0016-7037(01)00674-3
    44. Jan P. Amend, Everett L. Shock. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews 2001, 25 (2) , 175-243. https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
    45. Ute Lichtfers, Bernd Rumpf. Infrarotspektroskopische Untersuchungen zur Ermittlung von Spezies konzentrationen in wässrigen Lösungen, die Ammoniak und Kohlendioxid enthalten. Chemie Ingenieur Technik 2000, 72 (12) , 1526-1530. https://doi.org/10.1002/1522-2640(200012)72:12<1526::AID-CITE1526>3.0.CO;2-8
    46. Magnus Norgren, Birger Lindström. Dissociation of Phenolic Groups in Kraft Lignin at Elevated Temperatures. Holzforschung 2000, 54 (5) , 519-527. https://doi.org/10.1515/HF.2000.088
    47. Samuel Deberdt, Sylvie Castet, Jean-Louis Dandurand, Jean-Claude Harrichoury. Potentiometric study of Gd– and Yb–acetate complexing in the temperature range 25–80°C. Chemical Geology 2000, 167 (1-2) , 75-88. https://doi.org/10.1016/S0009-2541(99)00201-6
    48. Petra Krammer, Herbert Vogel. Hydrolysis of esters in subcritical and supercritical water. The Journal of Supercritical Fluids 2000, 16 (3) , 189-206. https://doi.org/10.1016/S0896-8446(99)00032-7
    49. Stefano Salvi, Gleb S. Pokrovski, Jacques Schott. Experimental investigation of aluminum-silica aqueous complexing at 300°C. Chemical Geology 1998, 151 (1-4) , 51-67. https://doi.org/10.1016/S0009-2541(98)00070-9
    50. Samuel Deberdt, Sylvie Castet, Jean-Louis Dandurand, Jean-Claude Harrichoury, Ingrid Louiset. Experimental study of La(OH)3 and Gd(OH)3 solubilities (25 to 150°C), and La–acetate complexing (25 to 80°C). Chemical Geology 1998, 151 (1-4) , 349-372. https://doi.org/10.1016/S0009-2541(98)00089-8
    51. Gleb S. Pokrovski, Jacques Schott. Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350°C: implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochimica et Cosmochimica Acta 1998, 62 (9) , 1631-1642. https://doi.org/10.1016/S0016-7037(98)00081-7
    52. Jean-Luc Devidal, Jacques Schott, Jean-Louis Dandurand. An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8. Geochimica et Cosmochimica Acta 1997, 61 (24) , 5165-5186. https://doi.org/10.1016/S0016-7037(97)00352-9
    53. Tae-Wook Shin, Keon Kim, In-Ja Lee. Spectrophotometric determination of the acid dissociation constants for cacodylic acid and p-Nitrophenol at elevated temperatures. Journal of Solution Chemistry 1997, 26 (4) , 379-390. https://doi.org/10.1007/BF02767677
    54. Igor I. Diakonov, Gleb S. Pokrovski, Pascale Bénézeth, Jacques Schott, Jean-Louis Dandurand, Jocelyne Escalier. Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of Ga(OH)4− to 300°C. Geochimica et Cosmochimica Acta 1997, 61 (7) , 1333-1343. https://doi.org/10.1016/S0016-7037(97)00011-2
    55. Catherine Greffié, Marc F. Benedetti, Claude Parron, Marc Amouric. Gold and iron oxide associations under supergene conditions: An experimental approach. Geochimica et Cosmochimica Acta 1996, 60 (9) , 1531-1542. https://doi.org/10.1016/0016-7037(96)00037-3
    56. Jean-Luc Devidal, Jean-Louis Dandurand, Robert Gout. Gibbs free energy of formation of kaolinite from solubility measurement in basic solution between 60 and 170 °C. Geochimica et Cosmochimica Acta 1996, 60 (4) , 553-564. https://doi.org/10.1016/0016-7037(95)00430-0
    57. Myung Hwa Kim, Chang Shik Kim, Haeng Woo Lee, Keon Kim. Temperature dependence of dissociation constants for formic acid and 2,6-dinitrophenol in aqueous solutions up to 175 °C. J. Chem. Soc., Faraday Trans. 1996, 92 (24) , 4951-4956. https://doi.org/10.1039/FT9969204951
    58. A. V. Gordeev, B. G. Ershov. Calculation of the pH of water coolant in the first loop of a VVER reactor. Atomic Energy 1995, 79 (5) , 766-771. https://doi.org/10.1007/BF02416368
    59. In-Ja Lee, Gang-Sook Jung, Keon Kim. Spectrophotometric determination of dissociation constants for propionic acid and 2,5-dinitrophenol at elevated temperatures. Journal of Solution Chemistry 1994, 23 (12) , 1283-1292. https://doi.org/10.1007/BF00974181
    60. Pascale Benezeth, Sylvie Castet, Jean-Louis Dandurand, Robert Gout, Jacques Schott. Experimental study of aluminum-acetate complexing between 60 and 200°c. Geochimica et Cosmochimica Acta 1994, 58 (21) , 4561-4571. https://doi.org/10.1016/0016-7037(94)90191-0
    61. Y. Gu, C.H. Gammons, M.S. Bloom. A one-term extrapolation method for estimating equilibrium constants of aqueous reactions at elevated temperatures. Geochimica et Cosmochimica Acta 1994, 58 (17) , 3545-3560. https://doi.org/10.1016/0016-7037(94)90149-X
    62. Everett L. Shock. Application of Thermodynamic Calculations to Geochemical Processes Involving Organic Acids. 1994, 270-318. https://doi.org/10.1007/978-3-642-78356-2_10
    63. Thomas H. Giordano. Metal Transport in Ore Fluids by Organic Ligand Complexation. 1994, 319-354. https://doi.org/10.1007/978-3-642-78356-2_11
    64. Sylvie Castet, Jean-Louis Dandurand, Jacques Schott, Robert Gout. Boehmite solubility and aqueous aluminum speciation in hydrothermal solutions (90–350°C): Experimental study and modeling. Geochimica et Cosmochimica Acta 1993, 57 (20) , 4869-4884. https://doi.org/10.1016/0016-7037(93)90126-H
    65. Youngsook Huh, Jae-Gook Lee, D. C. McPhail, Keon Kim. Measurement of pH at elevated temperatures using the optical indicator acridine. Journal of Solution Chemistry 1993, 22 (7) , 651-661. https://doi.org/10.1007/BF00646784
    66. P.D. Lundegard, L.S. Land. Carboxylic acid anions in formation waters, San Joaquin Basin and Louisiana Gulf Coast, U.S.A.—Implications for clastic diagenesis. Discussion. Applied Geochemistry 1993, 8 (3) , 297-300. https://doi.org/10.1016/0883-2927(93)90044-H
    67. Xuemin Chen, Sue E. Gillespie, John L. Oscarson, Reed M. Izatt. Enthalpy of dissociation of water at 325�C and LogK, ?H, ?S, and ?C p values for the formation of NaOH(aq) from 250 to 325�C. Journal of Solution Chemistry 1992, 21 (8) , 803-824. https://doi.org/10.1007/BF00651510
    68. Martin A.A Schoonen, Nicholas S Fisher, Maryann Wente. Gold sorption onto pyrite and goethite: A radiotracer study. Geochimica et Cosmochimica Acta 1992, 56 (5) , 1801-1814. https://doi.org/10.1016/0016-7037(92)90311-6
    69. Kazuo Yamanaka. Recent Studies of Pre-filming Technique for Light Water Reactor Materials. Materials Transactions, JIM 1992, 33 (11) , 1004-1011. https://doi.org/10.2320/matertrans1989.33.1004
    70. M.A.A Schoonen, H.L Barnes. Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochimica et Cosmochimica Acta 1991, 55 (12) , 3491-3504. https://doi.org/10.1016/0016-7037(91)90050-F
    71. G.M. Anderson, Sylvie Castet, Jacques Schott, R.E. Mesmer. The density model for estimation of thermodynamic parameters of reactions at high temperatures and pressures. Geochimica et Cosmochimica Acta 1991, 55 (7) , 1769-1779. https://doi.org/10.1016/0016-7037(91)90022-W
    72. Jeffrey S. Seewald, William E. Seyfried. Experimental determination of portlandite solubility in H2O and acetate solutions at 100–350 °C and 500 bars: Constraints on calcium hydroxide and calcium acetate complex stability. Geochimica et Cosmochimica Acta 1991, 55 (3) , 659-669. https://doi.org/10.1016/0016-7037(91)90331-X
    73. Kazuo Yamanaka, Yasushi Matsuda. Relationship between Pre-Oxidized Film Structures and Corrosion Resistance of Ferritic Stainless Steels in High Temperature Pure Water. Materials Transactions, JIM 1991, 32 (4) , 360-367. https://doi.org/10.2320/matertrans1989.32.360
    74. Bruce A. Robinson, Jefferson W. Tester. Kinetics of alkaline hydrolysis of organic esters and amides in neutrally‐buffered solution. International Journal of Chemical Kinetics 1990, 22 (5) , 431-448. https://doi.org/10.1002/kin.550220502
    75. Everett L. Shock, Harold C. Helgeson. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Geochimica et Cosmochimica Acta 1990, 54 (4) , 915-945. https://doi.org/10.1016/0016-7037(90)90429-O
    76. Kazuo Yamanaka, Yasushi Matsuda. Relationship between Oxide Film Structures and Corrosion Resistance of Ferritic Stainless Steels in High Temperature Pure Water. CORROSION ENGINEERING 1990, 39 (12) , 680-687. https://doi.org/10.3323/jcorr1974.39.12_680
    77. Kazuo Yamanaka, Yasushi Matsuda. Relationship between Oxide Film Structures and Corrosion Resistance of SUS 304L Stainless Steel in High Temperature Pure Water. CORROSION ENGINEERING 1990, 39 (5) , 254-262. https://doi.org/10.3323/jcorr1974.39.5_254
    78. Everett L Shock, Harold C Helgeson, Dimitri A Sverjensky. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta 1989, 53 (9) , 2157-2183. https://doi.org/10.1016/0016-7037(89)90341-4
    79. Enrique Merino, Colin Harvey, H. H. Murray. Aqueous-Chemical Control of the Tetrahedral-Aluminum Content Of Quartz, Halloysite, and other Low-Temperature Silicates. Clays and Clay Minerals 1989, 37 (2) , 135-142. https://doi.org/10.1346/CCMN.1989.0370204
    80. Robert M. Smith, Arthur E. Martell. Carboxylic Acids. 1989, 299-359. https://doi.org/10.1007/978-1-4615-6764-6_12
    81. Robert M. Smith, Arthur E. Martell. Inorganic Ligands. 1989, 426-461. https://doi.org/10.1007/978-1-4615-6764-6_24
    82. Robert M. Smith, Arthur E. Martell. Bibliography. 1989, 529-600. https://doi.org/10.1007/978-1-4615-6764-6_27
    83. Paul D. Lundegard, Lynton S. Land. Carbonate equilibria and pH buffering by organic acids — Response to changes in pCO2. Chemical Geology 1989, 74 (3-4) , 277-287. https://doi.org/10.1016/0009-2541(89)90038-7
    84. P. V. Balakrishnan. Liquid-vapor distribution of amines and acid ionization constants of their ammonium salts in aqueous systems at high temperature. Journal of Solution Chemistry 1988, 17 (9) , 825-840. https://doi.org/10.1007/BF00646552
    85. J. L. Oscarson, S. E. Gillespie, J. J. Christensen, R. M. Izatt, P. R. Brown. Thermodynamic quantities for the interaction of H+ and Na+ with C2H3O 2 ? and Cl? in aqueous solution from 275 to 320�C. Journal of Solution Chemistry 1988, 17 (9) , 865-885. https://doi.org/10.1007/BF00646554
    86. Takashi Honda, Kenya Ohashi, Eiji Kashimura, Yasumasa Furutani. Characterization of Oxide Films Formed on Steels in a BWR Environment. CORROSION ENGINEERING 1988, 37 (5) , 278-285. https://doi.org/10.3323/jcorr1974.37.5_278
    87. P. Longhi, T. Mussini, R. Orsenigo, S. Rondinini. Redetermination of the standard potential of the mercuric oxide electrode at temperatures between 283 and 363 K and the solubility product constant of mercuric hydroxide. Journal of Applied Electrochemistry 1987, 17 (3) , 505-514. https://doi.org/10.1007/BF01084124
    88. Donald A Palmer, S.E Drummond. Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution. Geochimica et Cosmochimica Acta 1986, 50 (5) , 813-823. https://doi.org/10.1016/0016-7037(86)90357-1
    89. S.E. Drummond, Donald A. Palmer. Thermal decarboxylation of acetate. Part II. Boundary conditions for the role of acetate in the primary migration of natural gas and the transportation of metals in hydrothermal systems. Geochimica et Cosmochimica Acta 1986, 50 (5) , 825-833. https://doi.org/10.1016/0016-7037(86)90358-3
    90. Ki-Pung Yoo, Soo Yong Lee, Won Hong Lee. Ionization and Henry’s law constants for volatile, weak electrolyte water pollutants. Korean Journal of Chemical Engineering 1986, 3 (1) , 67-72. https://doi.org/10.1007/BF02697525
    91. Takao Tsuruta. Calculation and Measurement of pH at Elevated Temperatures. CORROSION ENGINEERING 1985, 34 (2) , 135-139. https://doi.org/10.3323/jcorr1974.34.2_135
    92. A. J. Read. Ionization constants of aqueous ammonia from 25 to 250�C and to 2000 bar. Journal of Solution Chemistry 1982, 11 (9) , 649-664. https://doi.org/10.1007/BF00650397
    93. . REFERENCES. 1982, 139-180. https://doi.org/10.1016/B978-0-08-029214-4.50009-X
    94. Byong-Tae Chang. Determination of Thermodynamic Properties of Boehmite from its Solubility Data in NaOH Solutions. Bulletin of the Chemical Society of Japan 1981, 54 (9) , 2579-2582. https://doi.org/10.1246/bcsj.54.2579
    95. A. J. Read. Ionization constants of benzoic acid from 25 to 250�C and to 2000 bar. Journal of Solution Chemistry 1981, 10 (7) , 437-450. https://doi.org/10.1007/BF00652078
    96. G. Olofsson, I. Olofsson. Empirical equations for some thermodynamic quantities for the ionization of water as a function of temperature. The Journal of Chemical Thermodynamics 1981, 13 (5) , 437-440. https://doi.org/10.1016/0021-9614(81)90050-1
    97. H.L. Barnes. Measuring thermodynamically-interpretable solubilities at high pressures and temperatures. Physics and Chemistry of the Earth 1981, 13-14 , 321-343. https://doi.org/10.1016/0079-1946(81)90016-1
    98. J. H. Westsik, J. W. Shade, G. L. McVay. Temperature Dependence for Hydrothermal Reactions of Waste Glasses and Ceramics. 1980, 239-248. https://doi.org/10.1007/978-1-4684-3839-0_29
    99. Bruce G. Pound, Digby D. Macdonald, John W. Tomlinson. The electrochemistry of silver in KOH solutions at elevated temperatures—I. thermodynamics. Electrochimica Acta 1979, 24 (9) , 929-937. https://doi.org/10.1016/0013-4686(79)87089-9
    100. Enrique Merino. Internal consistency of a water analysis and uncertainty of the calculated distribution of aqueous species at 25°C. Geochimica et Cosmochimica Acta 1979, 43 (9) , 1533-1542. https://doi.org/10.1016/0016-7037(79)90146-7
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect